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Abstract: Under normal conditions, the immune system responds effectively to both external
and internal threats without damaging healthy tissues. Cells undergoing a neoplastic transforma-
tion are one such threat. An efficient activation of T cells is enabled by T-cell receptor (TCR)
interactions with antigen-presenting class I and class I molecules of the major histocompatibility
complex (MHC), co-stimulatory molecules, and cytokines. After threatening stimuli are removed
from the body, the host’s immune response ceases, which prevents tissue damage or chronic
inflammation. The recognition of foreign antigens is highly selective, which requires multistep
regulation to avoid reactions against the antigens of healthy cells. This multistep regulation
includes central and peripheral tolerance toward the body’s own antigens. Here, we discuss
T-cell dysfunction, which leads to poor effector function against foreign antigens, including
cancer. We describe selected cellular receptors implicated in T-cell dysfunction and discuss how
immune-checkpoint inhibitors can help overcome T-cell dysfunction in cancer treatment.
Keywords: B- and T-cell lymphocyte attenuator, cytotoxic T-cell antigen 4, lymphocyte-
activation gene 3, programmed cell death protein 1, T-cell exhaustion, T-cell immunoglobulin
and mucin domain 3, checkpoint inhibitors

Introduction

Complex immune mechanisms enable the differentiation between self and non-self so
that the immune response can be effectively directed at foreign antigens, such as cancer
cells, and does not damage the body’s own healthy tissues. The immune system recog-
nizes certain antigens as own due to both central and peripheral tolerance. Similarly,
full activation of the immune system against foreign antigens is precisely regulated
and requires several signals.! An efficient activation of T cells is enabled by T-cell
receptor (TCR) interactions with the antigen-presenting class I and class I molecules
of the major histocompatibility complex (MHC) (signal 1), co-stimulatory molecules
(signal 2), and cytokines (signal 3).? This multistep regulation enables termination of
the immune response when threatening stimuli are removed from the body.

Here, we discuss the role and mechanisms of T-cell dysfunction in cancer, which
leads to immune evasion by cancer cells and, thus, to cancer progression.>* We describe
cellular receptors implicated in T-cell dysfunction and discuss how immune-checkpoint
inhibitors can help overcome T-cell dysfunction in cancer treatment.

Immune evasion in cancer due to T-cell dysfunction

The complex cross talk between cancer cells, immune cells, and tumor microenviron-
ment involves many mechanisms that lead to an inefficient immune response toward
cancer cells. In cancer, T-cell dysfunction may be due to T-cell exhaustion, T-cell anergy,
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decreased phosphorylation of the CD3( chain, and inhibitory
signaling within the tumor microenvironment.

Continuous TCR stimulation in effector T cells gradually
leads to exhaustion of these cells, which occurs mostly in
chronic viral infections and cancer.’ Due to T-cell exhaus-
tion, cytotoxic lymphocytes lose their effector function,
which leads to an impaired immune response. T-cell exhaus-
tion develops more likely when antigen levels are high or
antigen exposure is prolonged.® Lymphocyte exhaustion
manifests initially with decreased IL-2 secretion; however,
subsequently, other cytokines, including tumor necrosis
factor oo (TNF), are secreted in lower amounts.”® Moreover,
T-cell exhaustion impairs antigen-stimulated lymphocyte
proliferation, halts lymphocyte renewal (mediated by IL-7
and IL-15), causes abnormal expression and function of
transcription factors, decreases cytokine production, and
impairs the response of memory T cells.”! In particular, an
accumulation of exhausted cells is observed in the tumor
microenvironment, which resembles the microenvironment of
chronic inflammation.!" Functionally exhausted T cells have
an increased expression of inhibitory molecules.”> A high
expression of inhibitory receptors impairs the effector and
proliferative functions of immune cells, and it creates a state
of immunosuppression. Thus, the immune response toward
cancer cells is insufficient and causes therapeutic failure.'

T-cell anergy — that is, tolerance of T cells toward spe-
cific antigens — may develop due to TCR stimulation with-
out sufficient co-stimulatory signals or in the presence of
inhibitory stimulation. This mechanism of T-cell activation
is associated with reduced IL-2 production and a state of
hyporesponsiveness of T cells. T-cell anergy may develop
in patients with cancer because co-inhibitory signals prevail
over co-stimulatory signals in the tumor microenvironment.
For example, there is a greater expression of the inhibitory
B7 family proteins over B7 stimulatory protein in the tumor
microenvironment. !4

The CD3{ chain is an intracellular element of the TCR
complex. Phosphorylation of the CD3( chain is crucial for
antigen-specific T-cell activation, and downregulation of the
CD3( chain is associated with a reduced response of T cells.
Notably, CD3{ downregulation is observed in many cancers,
particularly in tumor-infiltrating cells.'> As the CD3{ chain is
crucial for T-cell activation, CD3{ chain downregulation may
be associated with T-cell exhaustion and T-cell apoptosis. '
Moreover, there is evidence that T-cell activation without
CD3{ phosphorylation causes T-cell anergy."’

Finally, inhibitory signaling — due to overexpression
of inhibitory molecules in the tumor microenvironment —

is important in the development of T-cell dysfunction in
cancer. Below, we describe the most important inhibitory
molecules implicated in immune evasion by cancer cells
(Table 1).

Inhibitory molecules related to
T-cell dysfunction in cancer

PD-1

PD-1 mRNA was first detected in the mouse thymus; after
treatment with an anti-CD3 antibody, the thymocytes enter-
ing the path of the cell’s programmed death showed an
increase in PD-1 expression.'® Despite its name, PD-1 does
not cause cell death, but it blocks the cell cycle.'* PD-1 is
a transmembrane glycoprotein from the CD28:B7 family.
It is mostly expressed on activated T and B cells, but is also
expressed on activated monocytes, dendritic cells (DCs),
and NK (natural killer) and NKT (natural killer T) cells.’
Unlike other molecules from the CD28 superfamily, which
are expressed only by T cells, PD-1 is expressed by many
cell types. This suggests that PD-1 has a central place in the
regulation of immune responses.”! PD-1 is a receptor with a
length of 288 amino acids, and it is encoded by the PDCD-1
gene on chromosome 2. PD-1 has an intracellular transmem-
brane domain and an extracellular immunoglobulin domain,
which contains 21%—33% sequences that are identical to the
sequences of cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), CD28, and the inducible T-cell co-stimulator
(ICOS).?2 The receptor functions of PD-1 are mediated by
its cytoplasmic part, which contains two tyrosine motifs that
bind phosphatases responsible for transmitting immunosup-
pressive signals. The two motifs include the immunoreceptor
tyrosine-based inhibitory motif (ITIM), located proximally to
the cell membrane, and the immunoreceptor tyrosine-based
switch motif (ITSM), which is essential to the inhibitory
function of PD-1 (Figure 1).2 PD-1 expression is induced by
the signaling pathways of the TCR and the B-cell receptor
(BCR), and it is maintained during antigen stimulation.
Moreover, some cytokines (IL-2, IL-7, and IL-15), Toll-like
receptors (TLRs; TLR-9), and interferons (IFNs) stimulate
the expression of PD-1 in T cells.?** Moreover, the nuclear
factor of activated T cells c1 (NFATcl) is important for
PD-1 expression.?®

PD-LI and PD-L2

Two PD-1 ligands that induce its inhibitory proprieties
have been identified: PD-L1 (CD274 or B7-H1) and PD-L2
(CD273 or B7-DC). Both these ligands are type I transmem-
brane glycoproteins.?’ The constitutive expression of PD-L1
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Table I Immune-checkpoint molecules and their inhibitors

Checkpoint | Cellular Main Mechanism of action Inhibitors
molecules expression ligands
CTLA-4 CD4* T cells CD8o0, Competes with CD28 in binding to | Ipilimumab — approved for advanced melanoma as
CD8" T cells, CD86 CD80 and CD86 monotherapy or combined with nivolumab
Tregs Removes CD80 and CD86 from Tremelimumab — investigated in melanoma,
APC surface mesothelioma, and NSLC but not approved due to a
Treg-mediated immunosuppression | lack of significant effect
Induces T-cell anergy
PD-1 Activated T cells, | PD-LI, Inhibits T-cell proliferation, Nivolumab — approved for advanced melanoma
B cells, PD-L2 survival, and effector as monotherapy or in combination with ipilimumab;
APCs, function through CD3( chain approved as monotherapy in lung cancer, renal cancer,
NK cells dephosphorylation Hodgkin’s lymphoma, urothelial cancer, head and neck
Decreases expression of survival cancer, colorectal cancer, and hepatocellular carcinoma
molecules Pembrolizumab — approved as monotherapy for
advanced melanoma, lung cancer (first-line treatment in
tumors with a high PD-L| expression, after chemotherapy
in tumors with a low PD-L| expression), Hodgkin’s
lymphoma, large B-cell lymphoma, urothelial head and
neck cancer, gastric cancer, cervical cancer, breast cancer
PD-LI T cells, PD-I Same as in PD-1 Atezolizumab — approved as monotherapy for
B cells, advanced urothelial carcinoma, lung cancer, colorectal
DGCs, cancer, breast cancer, renal cancer
MSCs, Avelumab — approved as monotherapy for metastatic
cancer cells Merkel cell carcinoma
Darvulumab — approved as monotherapy for urothelial
cancer
LAG-3 Activated T cells, | MHC Inhibits CD4" cell function LAG-3-Ig fusion protein and anti-LAG-3 mAbs —
NK cells class Il Directly inhibits cytotoxic function investigated in renal cancer, breast cancer, and pancreatic
of CD8" cells cancer as monotherapy or combined with other therapies
TIM-3 CD4" cells, Gal-9 Decreases interferon-y production Different anti-TIM-3 mAbs — investigated in many
Th17 cells, Induces T-cell apoptosis solid tumors and leukemia
CD8" cells Promotes generation of MDSCs
NK cells

Abbreviations: APCs, antigen-presenting cells; DCs, dendritic cells; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; LAG-3, lymphocyte-activation gene 3; mAbs,
monoclonal antibodies; MHC, major histocompatibility complex; MDSCs, myeloid-derived stem cells; MSCs, mesenchymal stem cells; NK, natural killer; PD-1, programmed
cell death protein |; PD-LI, programmed death-ligand |; TIM-3, T-cell immunoglobulin and mucin domain 3; Tregs, T-regulatory cells.

is substantially higher in mice than in humans, particularly
in T and B cells, DCs, macrophages, and mesenchymal stem
cells (MSCs); moreover, PD-L1 expression increases during
activation of these cells.?®?* Besides hematopoietic cells,
PD-L1 is expressed by other cell types, such as pancreatic
cells, epithelial cells, endothelial cells, muscle cells, hepato-
cytes, astrocytes, spleen cells, kidney cells, and lung cells.?*3!
PD-L2 is expressed only in the core layer of the thymus and,
in lesser amounts, in the fetal myocardium and endothelial
cells — particularly within the placenta.’>** PD-L2 expres-
sion can be induced on DCs, peritoneal B1 lymphocytes,
macrophages, medullary mast cells, and memory B cells.*
Importantly, PD-L1 and PD-L2 are expressed by cancer
cells, cancer-associated fibroblasts, and myeloid-derived
stem cells. The expression of PD-L2 increases only slightly
on stimulated CD8* T cells, but it does not increase at all on

CD4* lymphocytes.® Binding of PD-1 to PD-L1 or PD-L2
during TCR activation suppresses the proliferation of both B
and T cells, decreases cytokine secretion, inhibits cytolysis,
and prolongs T-cell survival.’® PD-L1- or PD-L2-mediated
prolongation of T-cell survival and impairment of their func-
tion may occur both indirectly, through interference with
the early activating signals induced by CD28, and directly,
through interference with IL-2 secretion.’” Furthermore,
PD-L1 is essential for Treg induction by DCs.?*

CTLA-4

CTLA-4 is a transmembrane receptor protein that inhibits
T-cell function, mostly by competing with the co-stimulatory
molecule CD28 for CD80 and CD86 located on antigen-
presenting cells (APCs). CTLA-4 is expressed on con-
ventional CD4* and CD8* T cells after TCR stimulation,
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Figure | Signaling pathways of immune-checkpoint molecules.

Notes: Binding of PD-LI/L2 to PD-1 recruits SHP-2, which inhibits TCR signaling by CD3(-chain dephosphorylation. Thus, the signaling cascade leading to T-cell survival,
proliferation, and effector function is inhibited. The SHP-2 recruitment is dependent on its ITSM, whereas the ITIM is not needed for this action. Binding of CTLA-4 to
CD80/86, in addition to SHP-2 recruitment, engages PP2A, which directly dephosphorylates AKT. The signaling pathways of TIM-3, LAG-3, and BTLA are less known. Binding
of TIM-3 to galectin-9 phosphorylates the Y265 intracellular TIM-3 domain. This disrupts the interaction between TIM-3 and Bat-3, which otherwise inactivates the inhibitory
effects of TIM-3. The inhibitory effects due to the binding of MHC Il to LAG-3 are dependent on the intracellular KIEELE domain of LAG-3. It is suspected that the intracellular
ITIM domain of BTLA is necessary for its inhibitory effects after binding to HVEM.

Abbreviations: BTLA, B- and T-lymphocyte attenuator; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; HVEM, herpesvirus entry mediator; ITIM, immunoreceptor
tyrosine-based inhibition motif; ITSM, immunoreceptor tyrosine-based inhibition motif; LAG-3, lymphocyte-activation gene 3; MHC, major histocompatibility complex; P13K,
phosphoinositide 3-kinase; PD-1, programmed cell death protein |; PD-LI, programmed death-ligand |; PD-L2, programmed death-ligand 2; PIP3, phosphatidylinositol (3,4,5)-
trisphosphat; PP2A, protein phosphatase 2A; TCR, T-cell receptor; TIM-3, T-cell immunoglobulin and mucin domain 3.

which prevents an excessive early immune reaction; factor (GM-CSF), and increases the production of transform-
moreover, CTLA-4 is essential for the suppressive function  ing growth factor beta (TGF[).*! The synthesis of CTLA-4
of regulatory T cells (Treg).***® CTLA-4 ligation causes mRNA increases within the first hours of lymphocyte
lymphocyte anergy, which reduces the synthesis of IFNy,  stimulation, and peaks after 48—72 hours.** CTLA-4 stimula-
IL-2, IL-3, and granulocyte-macrophage colony-stimulating  tion makes lymphocytes more likely to remain in the G /G,
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phase of the cell cycle, which is due to a reduced synthesis of
cyclin D3 and kinases cdk4/cdk6, degradation of the inhibi-
tory protein p27, and increased expression of cyclin D2.+
Anergic lymphocytes are not activated after antigen recog-
nition even when they receive co-stimulatory signals suf-
ficient to activate a naive lymphocyte. CD86, like CD80, is
a ligand for CD28 and CTLA-4, and it is important in the
co-stimulation of T cells during the primary immune response.
CD86 belongs to the superfamily of immunoglobulins, and
it is expressed on monocytes, DCs, as well as activated T,
B, and NK cells. The chromosome region encoding CD86
contains a series of genes involved in carcinogenesis.**
Blocking CTLA-4 by monoclonal antibodies (mAbs) main-
tains T cells in an activation state and improves the immune
response against cancer cells. Thus, anti-CTLA-4 mAbs are
effective in cancer immunotherapy.

LAG-3

LAG-3 (CD223) prevents an excessive immune activation.
This receptor is expressed by T and NK cells after MHC
class II ligation, and by cytotoxic T cells upon antigen
stimulation.??*¢ LAG-3 inhibits CD4" cell activation and
directly decreases the cytotoxic function of CD8* cells.*64
Blocking LAG-3 restores the function of cytotoxic T cells
and simultaneously inhibits Tregs.*® Preclinical studies
showed that LAG-3, fused with immunoglobulin (LAG-
3-Ig), binds with a high affinity to MHC II of DCs, which
stimulates DC maturation, and that, in turn, potentiates T
helper 1 (Thl)-type responses.* In contrast, monomeric
LAG-3, shed from the cell surface, does not bind to MHC
class II molecules.*

TIM-3

Expression of the type I transmembrane protein TIM-3 was
shown in many immune cell types, including Thl, Th17,
NK, and NKT cells as well as Tregs; on APCs, TIM-3
is co-expressed with PD-1.* TIM-3 binds to galectin-9,
which causes apoptosis of CD4* and CD8" cells through
the calcium—calpain—caspase-1 pathway.’*? Galectin-9 is
expressed on the surface of many cancer cell types, whereas
the expression of TIM-3 was observed in tumor-infiltrating
T cells in mice. TIM-3 directly inhibits Th1-mediated auto-
immunity, and it indirectly promotes immunosuppression
by inducing expansion of myeloid-derived suppressor cells
(MDSCs), through an unknown mechanism.?>** Blocking
TIM-3 increases the production of IFNy by lymphocytes,
but it is unclear as to what forms the molecular basis of this
action.™ In patients with gastric, colorectal, liver, and pancre-
atic cancers, TIM-3 tumor expression correlated with tumor

invasion, reduced survival, and metastasis; thus, TIM-3 can
be implicated in carcinogenesis.*

B- and T-lymphocyte attenuator (BTLA)
BTLA is a glycoprotein containing an immunoglobulin
domain, and it is expressed on T cells, resting B cells, mac-
rophages, DCs, and NK cells.®® BTLA downregulates the
activity of lymphocytes after binding to its ligand — the her-
pesvirus entry mediator (HVEM) molecule. HVEM belongs
to the TNF receptor superfamily, whereas BTLA and CD160
are members of the immunoglobulin superfamily.’” The func-
tions and structures of these co-stimulatory molecules are
related to positive and negative co-stimulatory pathways.”*
Binding of BTLA to HVEM inhibits the proliferation of
CD8" T cells, production of proinflammatory cytokines, and
formation of memory T cells; at the same time, it promotes
peripheral tolerance.” Studies in the HVEM™~ knockout
mouse have shown, however, that immunosuppressive
function is preserved in this animal model.*

Novel immune-checkpoint molecules
Novel immune-checkpoint molecules that could be future
targets for cancer treatments are being investigated. They
include, for example, HHLA2, TMIGD2, B7x, B7 homo-
logue 3 (B7-H3), T-cell immunoglobulin and ITIM domain
(TIGIT), CD96, 2B4, and adenosine A2a receptor (A2aR).*>¢!
Moreover, blockade of the V-domain Ig Suppressor of T cell
Activation (VISTA) protein is a promising add-on therapy
to PD-1 inhibitors because it inhibits T-cell activation via
different pathways than does PD-1.9 In addition to immune-
checkpoint inhibition, enhancement of immune-stimulatory
pathways (0OX40, GITR, and CD40) is considered in cancer
treatment. Future studies will show which new molecule will
be used to treat cancer along the currently approved CTLA-4
and PHD-1 inhibitors. In our opinion, because of an advanced
program of clinical trials, LAG-3 will be the third approved
target for immune-checkpoint inhibition.*

Blockade of T-cell dysfunction
as a new method of cancer

immunotherapy

TCR-mediated antigen recognition is the most important
signal for T-cell activation. In addition, there are co-
stimulatory and co-inhibitory molecules on the surface
of effector T cells that take part in the immune response
against tumor cells. Ligands for these molecules are found
on the surface of APCs and tumor cells (Figure 1). The
interaction between specific cell-surface molecules and
their ligands directs lymphocyte response. PD-L1 and
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PD-L2, both located on the surface of APCs and tumor
cells, inhibit lymphocyte activity by binding to PD-1 on
the lymphocyte surface.** The interaction between CD28
on the T-cell surface and CD80 (B7/B7.1) and CD86 (B70/
B7-2) on the surface of APCs or tumor cells is crucial for
the activation of effector T cells. However, when CD80
and CD86 bind to the cytotoxic T-cell antigen 4 (CTLA-4)
instead of CD28, lymphocyte anergy and apoptosis occur.®
In the tumor microenvironment, wherein signals that inhibit
effector T cells predominate, tumor cells may avoid immune
response.®® Because mAbs against the molecules implicated
in T-cell dysfunction may boost the immune response in the
tumor microenvironment, these antibodies have a therapeutic
potential in certain cancers. Currently, mAbs against the
PD-1/PD-L1 pathway, CTLA-4, lymphocyte activation
gene 3 (LAG-3), T-cell immunoglobulin and mucin domain
3 (TIM-3), and BTLA are either an approved treatment or
are undergoing phase III clinical trials in patients with dif-
ferent cancers; some of these treatments are investigated in
preclinical studies.®® Table 2 presents a list of completed
clinical trials of immune-checkpoint inhibitors in patients
with cancer.?’

Blockade of PD-1 and its ligands

PD-1 and PD-L1 are expressed both on tumor cells and on
tumor-specific immune cells.?>?** In humans, PD-L1 is
expressed by different tumors, and it is a negative prognostic
factor in some of them. In cervical cancer, however, PD-L1
expression was associated with a longer overall survival.®®
The expression of PD-L1 on tumor cells may be associated
with a decreased number of tumor-infiltrating lymphocytes.*
PD-L2 is expressed by colorectal cancer, non-small-cell
lung cancer, head and neck squamous cell carcinoma,
hepatocellular carcinoma, cervical cancer, and some B-cell
leukemias.” Moreover, PD-1 and its ligands are expressed
by immune cells in the tumor microenvironment. In breast
cancer, Hodgkin’s lymphoma, and head and neck cancer,
PD-1 expression by tumor-infiltrating lymphocytes corre-
lated with tumor size and a lower overall survival.”' Further,
increased PD-1 expression was observed on DCs in the
tumor microenvironment, which reduced the DC-mediated
activation of T cells.” PD-L1 expression on tumor cells
is induced mainly by IFNy, which is produced by tumor-
infiltrating lymphocytes.” Thus, tumor cells can protect
themselves from lymphocytes by expressing PD-L1, which
inhibits lymphocyte activation and considerably reduces their
efficacy.” Tumor-associated DCs expressing PD-L1 produce
suppressive IL-10.7 In animal studies, the PD-1:PD-L1

interaction enables Treg-mediated suppression of CD8*
T cells in the tumor microenvironment.” Blockade of the
PD-1:PD-L1/2 pathway may increase the therapeutic effec-
tiveness in patients with cancer by reducing the exhaustion
of effector T cells.

In 2002, the therapeutic effects of anti-PD-1 antibodies
were first observed in mice with PD-L1-positive tumors.”’
These and other preclinical findings encouraged phase I
clinical trials in patients with cancer.*® In the first clinical
trials of an anti-PD-1 mAb (MDX-1106, nivolumab), an
objective response was observed in multiple cancer types,
including melanoma, non-small-cell lung cancer, and renal
cell cancer.”™ The drug-related toxicity was acceptable, and
the anticancer effect was long term.’® Nivolumab proved
effective not only in immunogenic tumors like melanoma
and renal cell cancer, but also in non-small-cell lung cancer
(considered insensitive to immunotherapy), hepatocellular
cancer, metastatic colorectal cancer, squamous cell carci-
noma of the head and neck, and urothelial carcinoma.3¢7%%
In addition, nivolumab was investigated in patients with
hematological malignancies (Hodgkin’s lymphoma) because
PD-1 ligands are expressed in these cancers.®! Currently,
nivolumab and nivolumab-combined therapies are approved
by the US Food and Drug Administration (FDA) for the
treatment of melanoma, lung cancer, advanced and meta-
static renal cell carcinoma, Hodgkin’s lymphoma, head and
neck cancers, urothelial carcinoma, colorectal cancer, and
hepatocellular carcinoma (Table 1).%

In phase I clinical trials, treatment with pembrolizumab —
an anti-PD-1 mAb — was associated with a favorable objective
response and a high survival rate in patients with advanced
melanoma.®® Further studies showed that pembrolizumab
was effective in patients with advanced urothelial carcinoma,
gastric cancer, non-small-cell lung cancer, and squamous cell
carcinoma of the head and neck.*® Similarly to nivolumab,
the effects of pembrolizumab are durable, and the frequency
of third- or fourth-level adverse effects related to drug
administration is relatively low.** In a phase III clinical trial,
in patients with advanced melanoma, pembrolizumab was
associated with a higher survival rate and a higher percentage
of objective responses as compared with ipilimumab — an
anti-CTLA-4 mAb.* Currently, pembrolizumab is approved
for the treatment of advanced melanoma, advanced or meta-
static non-small-cell lung cancer, recurrent or metastatic head
and neck squamous cell carcinoma, Hodgkin’s lymphoma,
advanced or metastatic urothelial carcinoma, and recurrent
locally advanced or metastatic gastric or gastroesophageal
junction cancers.®? Treatment with another anti-PD-1 mAb —
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pidilizumab — showed an encouraging effect in patients with
diffuse large B-cell lymphoma (DLBCL) after autologous
hematopoietic stem-cell transplantation and with relapsed
follicular lymphoma.®¢-%7

The effects of anti-PD-L1 mAbs can differ from those
of the anti-PD-1 mAbs because PD-L1 and PD-1 have
different ligands.®® BMS-936559 — an anti-PD-L1 mAb —
caused an objective and durable response in patients with
melanoma, lung cancer, kidney cancer, and ovarian cancer.®
MPDL3280A (atezolizumab), another anti-PD-L1 mAb,
proved effective in patients with metastatic urinary bladder
cancer.® Based on favorable outcomes of clinical trials, the
FDA approved atezolizumab for the treatment of urothelial
carcinoma, certain types of metastatic lung cancer, and
bladder cancer.®? In 2017, the FDA approved avelumab —
another anti-PD-L1 mAb — for the treatment of metastatic
Merkel cell carcinoma and urothelial carcinoma.?? The
effectiveness and safety of avelumab are currently under
investigation in ovarian cancer, non-small-cell lung cancer,
gastric cancer, and mesothelioma.”® Darvulumab, an anti-
PD-L1 mAb, was recently approved for the treatment of
patients with advanced bladder cancer and for unresect-
able stage III non-small-cell lung cancer.®* Currently, the
effectiveness of mAbs against the PD-1:PD-L1/2 pathway
is being investigated in patients with nearly 250 different
neoplastic disorders.®” Although several anti-PD-1 and ant-
PD-L1 mAbs are approved, they have similar efficacy and
toxicity profiles.”'-*?

Blockade of CTLA-4

At the end of the 20th century, studies showed that removing
signals that blocked co-stimulation led to a stronger anticancer
response. In mice with immunogenic colorectal cancer, treat-
ment with anti-CTLA-4 mAbs before the transfer of tumor
cells prevented disease development, mostly due to the activa-
tion of CD8" T cells. Moreover, anti-CTLA-4 mAbs caused
cancer regression in mice with developed tumors, including
weakly immunogenic tumors. This treatment led to the for-
mation of immunological memory against tumor cells.”*%*
Such encouraging preclinical findings prompted clinical trials
with anti-CTLA-4 mAbs in patients with various neoplastic
diseases.” The effectiveness of ipilimumab, an anti-CTLA-4
mAb, was investigated both as a standalone treatment and
in combination with other treatments (IL-2, melanoma
vaccine, and chemotherapy).”*®” In 2011, ipilimumab was
approved by the FDA for the treatment of patients with
advanced melanoma. Subsequently, in 2015, ipilimumab was
approved as an adjuvant treatment in patients with melanoma

after surgery and, in 2017, as a treatment for children with
advanced melanoma.®* Ipilimumab is a promising treatment
for relapsed and refractory B-cell non-Hodgkin lymphomas,
metastatic renal cell carcinoma, small-cell and non-small-cell
lung cancer, prostate cancer, urothelial carcinoma, and ovar-
ian cancer.'® In phase I and phase II clinical trials in patients
with metastatic melanoma, tremelimumab (ticilimumab),
also an anti-CTLA-4 antibody, was associated with a durable
tumor regression.!”! Subsequently, the effect of tremelimumab
was shown in patients with advanced gastric and esophageal
adenocarcinoma, colorectal carcinoma, non-small-cell lung
cancer, and malignant mesothelioma.®® Treatment with anti-
CTLA-4 mAbs such as ipilimumab and tremelimumab is
associated with significant immune-related adverse effects.®
A high incidence of immune-related adverse events of anti-
CTLA-4 treatments is likely due to the depletion of Treg
cells and a systemic activation of autoimmune T cells in
the lymphoid tissue.*® Currently, approximately 300 clini-
cal trials are investigating the effectiveness of ipilimumab
and ipilimumab-combined therapies, and 100 clinical trials
are investigating the effectiveness of tremelimumab and
tremelimumab-combined therapies.®’

Blockade of LAG-3

In ovarian and prostate cancers, LAG-3 is expressed by
CD8" tumor-specific T cells that co-express PD-1, which
suggests that LAG-3 might be implicated in the formation of
an immunosuppressive tumor microenvironment.' In pre-
clinical trials, LAG-3 blockade with mAbs was investigated
as a standalone therapy and combined with anti-PD-1 and
anti-CTLA-4 mAbs.!” In mice, the blockade of either PD-1
or LAG-3 did not effectively inhibit tumor development after
transfer of cancer cells, but a dual blockade was more effec-
tive and was associated with higher percentages of T CD8*/
IFNy+ and CD4* T cells.'™ In another study, dual PD-1 and
LAG-3 blockade caused a considerable tumor regression
in all treated mice.'” A triple blockade of PD-1, CTLA-4,
and LAG-3 significantly increased the effectiveness of
cytotoxic T lymphocytes injected to mice with leukemia.'%
However, targeting of multiple T-cell inhibitory molecules
might be associated with an increased incidence of autoim-
mune adverse events.!”” To date, two approaches to inhibit
LAG-3 signaling have been developed: a LAG-3-Ig fusion
protein and anti-LAG-3 mAbs (IMP321, LAG525, IMP701,
TSR-033, REGN3767, and BMS-986016).%>!% Inhibition of
LAG-3 may be effective not only due to the enhancement
of Thl responses, but also due to the stimulation of DC
maturation, in which IL-12 is implicated.?? The effectiveness
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of IMP321 was shown in phase I clinical trials in patients
with breast cancer, renal cell carcinoma, and pancreatic
cancer.'”!!! Currently, approximately 20 clinical trials are
investigating anti-LAG-3 mAbs as a standalone treatment or
combined with other therapies; bispecific proteins binding
to PD-1 and LAG-3 are investigated in different metastatic
cancers, small-cell lung cancer, gastrointestinal cancers,
virus-associated tumors, hematologic neoplasms, brain
tumors, and melanoma.®’

Blockade of TIM-3

TIM-3-blocking mAbs enhance T-cell proliferation and
increase cytokine production, which explains their antitumor
activity.”? Tim-3" tumor-infiltrating Tregs can greatly inhibit
the proliferation of naive T cells.!’? In mice, anti-TIM-3
mAbs trigger an anticancer response, which is dependent
mostly on CD8" T cells that secrete IFNyand on CD4* T cells.
Although a substantial proportion of tumor-infiltrating
CD4'TIM-3* cells co-express Foxp3, the role of TIM-3 in
Treg signaling remains unknown.'”® In a mouse model of
hepatitis B, TIM-3 blockade was associated with increased
production of IFNy by CD8* cells.'** Anti-TIM-3 antibodies
slowed tumor growth in mice, which was associated with a
decreased percentage of exhausted TIM-3* lymphocytes.''
A more potent anticancer response was observed when anti-
TIM-3 mAbs were given in combination with anti-PD-1 or
anti-CTLA-4 mAbs, when compared with the individual
effects of these antibodies.!'® The presence of TIM-3+
T cells correlates with disease severity and poor prognosis
in patients with non—small-cell lung carcinoma and follicular
lymphoma.?*'"” In contrast, expression of galectin-9 — the
main TIM-3 ligand — is associated with a favorable out-
come in many solid tumors, which suggests that galectin-9
may have other effects in cancer than those associated with
TIM-3 signaling.!'8 Currently, anti-TIM-3 mAbs (MBG453,
Sym023, TSR-022, and LY3321367) are being investigated
in phase I and II clinical trials in patients with advanced
malignancies, including leukemia; these treatments will be
investigated in patients with solid tumors and lymphomas
from June 2018 (six clinical trials).?>¢

Blockade of BTLA

Tumor cells change the BTLA/HVEM signaling by either
promoting the development of dysfunctional T cells with
persistent BTLA expression (cells susceptible to inactivation)
or by expressing HVEM — for example, in melanoma.?>!"
In patients with advanced melanoma, BTLA is expressed by
tumor-specific CD8" T cells; moreover, an in vitro BTLA

blockade of melanoma-specific CD8* T cells increased their
proliferation and secretion of IL-2, IFNy, and TNFo; these
effects were even greater with a triple blockade (anti-BTLA,
anti-PD-1, and anti-TIM-3).* Both BTLA and HVEM are
expressed by tumor cells and T-follicular helper cells in
patients with chronic lymphocytic leukemia. These findings
might direct the development of future immunotherapies.'?
BTLA and HVEM are investigated as treatment targets in
preclinical studies.*®

The place of immune-checkpoint

inhibitors in cancer treatment
Although several immune-checkpoint inhibitors are now
available in clinical practice, the place of cancer immuno-
therapy is unclear. It is not often evident which patients
will benefit from immune treatments more than from
standard therapies. The choice between the immune and
standard cancer treatments is even more difficult because
the immune treatments are associated with a new class of
adverse effects.

Based on the available data, a significant proportion of
patients do not respond to treatment with immune-checkpoint
inhibitors. Among patients with advanced melanoma, less
than 20% respond to ipilimumab, approximately one third
respond to pembrolizumab, and less than a half respond to
nivolumab.'?!"1? When anti-CTLA-4 (ipilimumab) and anti-
PD-1 (nivolumab) treatments are given in combination, the
response rate increases to approximately 60%.'* The same
treatment combination is associated with a response rate of
approximately 40%—50% among patients with lung cancer.'*
These observations suggest non-redundant effects of CTLA-4
and PD-1 blockade.'” For instance, T cells expressing
CTLA-4 are found predominantly in secondary lymphoid
organs, whereas PD-1 expression is characteristic for T cells
in the tumor microenvironment.'?® Moreover, CTLA-4 targets
mostly recently primed cells, and PD-1 targets primarily
effector T cells.!?® Furthermore, CTLA-4 and PD-1 have
different intracellular signaling pathways (Figure 1).

It is important to establish predictive factors for selecting
patients who will most likely benefit from immunotherapy.
In general, it is believed that patients with tumors that are well
infiltrated by immune cells (hot tumors) respond to immuno-
therapy better than patients with tumors that display scarce
immune infiltration (cold tumors). Infiltration of tumors
by immune cells depends both on tumor immunogenicity
and on host immune function. For example, immunogenic
tumors — that is, those characterized by a high mutational
load and, thus, a high neoantigen load — respond well to
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immune-checkpoint inhibitors.'?® Similarly, high counts of
circulating immune cells with proliferative potential (CD8*
Ki67+), relative to tumor burden, are associated with a favor-
able response to immune-checkpoint inhibition.'?”” Moreover,
expression of immune-checkpoint ligands by tumors seems
important, because immune-checkpoint inhibitors are thought
to act by competing with its ligands. Indeed, high concen-
trations of PD-L1 are associated with a favorable clinical
response to PD-1 blockade.'?*!?° In line with this observation,
in patients with urothelial cancer who have a low PD-L1
status, the effects of PD-1 blockade are worse than those
of chemotherapy.!3° Other predictors of clinical response to
immune-checkpoint inhibitors are being investigated. For
example, a recent study showed that patients with melanoma
who responded to anti-PD-1 immunotherapy had different
gut microbiome than did non-responders. "'

Immune-checkpoint inhibitors are associated with a
new class of immune-mediated adverse events. In general,
immune-related adverse effects occur more commonly with
anti-CTLA-4 blockade (~50%) than with anti-PD-1 blockade
(~25%).132 Moreover, the frequency of immune-related
adverse effects is higher with a combination of CTLA-4
and PD-1 blockade. However, patients with advanced
cancer seem to better tolerate PD-1/PD-L1 blockade than
chemotherapy.'** The immune-related adverse effects are
due to immune overactivation, and they include skin changes,
diarrhea related to colitis, hepatotoxicity, pneumonitis, and
different endocrinopathies such as autoimmune thyroid dis-
ease (hypothyroidism and hyperthyroidism), hypophysitis,
adrenal insufficiency, and type 1 diabetes mellitus. These
adverse effects are usually managed with glucocorticoids,
which, in turn, may cause infections such as tuberculosis.'*
The adverse effects of immune-checkpoint inhibitors are
often severe and lead to treatment discontinuation. For
example, approximately half the patients who received adju-
vant ipilimumab after surgery for melanoma discontinued
treatment due to adverse effects.!>® Thus, the adverse effects
of immune-checkpoint inhibitors should be weighed against
their expected benefit, particularly when considering com-
bined CTLA-4 and PD-1 blockade. Although this combined
treatment is more effective than its individual components,
it is associated with the highest risk of immune-related
adverse effects.

Conclusion
In most advanced cancers, chemotherapy is possibly
approaching or has already reached the greatest possible

therapeutic effect. The different methods used to overcome
T-cell dysfunction have proved effective in some cancers,
and this approach might replace chemotherapy in the future.
Treatments aimed at boosting immune function have several
advantages over other treatments, such as a relatively short
treatment period (several weeks). Moreover, they do not
need to be specifically prepared for each individual patient
(like DC vaccines). Some of these treatments are already
approved on the basis of encouraging outcomes of clinical
trials. Cancer immunotherapy has lower toxicity compared
with chemotherapy; in some cancers, it may achieve a long-
term disease control. Currently, finding reliable response
factors to immunotherapy is crucial to properly select the
best treatment for each patient. Treatment with mAbs that
boost immune function, particularly a simultaneous use of
antibodies that target different mechanisms of T-cell exhaus-
tion, in combination with other treatments, shows the greatest
promise for patients with cancer, including those with cancer
resistant to standard therapies.
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