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Abstract: Tumor environment plays a pivotal role in determining cancer biology characteristics. 

Cytokine factors, as a critical component in tumor milieu, execute distinct functions in the 

process of tumorigenesis and progression via the autocrine or paracrine manner. The retinal 

determination gene network (RDGN), which mainly comprised DACH, SIX, and EYA family 

members, is required for the organ development in mammalian species. While the aberrant 

expression of RDGN is involved in the proliferation, apoptosis, angiogenesis, and metastasis 

of tumors via interacting with different cytokine-related signals, such as CXCL8, IL-6, TGF-β, 

FGF, and VEGF, in a cell- or tissue-dependent manner. Thus, joint detection of this pathway 

might be used as a potential biomarker for the stratification of target therapy and for the preci-

sion prediction of the prognosis of cancer patients.
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Introduction
Cytokines, secreted by a wide range of cells, take effect on the cellular biological 

features and behavior in the organic microenvironment via an autocrine, paracrine, or 

endocrine manner.1 They play vital roles in physiological and pathological condition, 

especially in cancer. In the process of embryogenesis, cytokines are involved in tis-

sue specification.2,3 Cytokines, such as C-X-C and IL family, participate in infection 

and immune responses by recruiting and activating inflammatory cells.1 However, 

the dysregulation of those cytokines results in diseases ranging from autoimmune 

disorders to cancers.

Retinal determination gene network (RDGN) was first found in the process of 

Drosophila eye differentiation, and it determined distinct tissue specificity.4 This 

conserved network consists of a dominant suppressor of ellipse, dachshund (dac/

Dach); a tyrosine phosphatase eyes absent (eya/Eya); the Six family transcription 

factor (TF) sine oculis (so/Six); and two Pax6-like homeodomain proteins, eyeless 

(ey) and twin of eyeless (toy).4,5 Among them, ectopic expression of DACH-SIX-

EYA signal presents a novel tumor signal in a coordinated fashion; for example, the 

downregulation of DACH is often accompanied with the upregulation of EYA and 

SIX in tumors.6

It has been showed that RDGN regulates normal or pathological function in a 

tissue-dependent manner via interacting with various cytokines.7 As the major com-

ponent, DACH-SIX-EYA signaling regulates the expression and secretion of specific 

cytokines to affect cell behaviors. In this mini-review, we summarized the regulatory 

effects of RDGN members on cytokine signaling in relation to the initiation and pro-

gression of different tumors.
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Overview of the RDGN signaling
RDGN is a critical signal in tissue specification and organo-

genesis, the aberrant of this network is related to various 

diseases ranging from congenital anomaly (development 

defect) and cancers.8 In vertebrate, DACH gene encodes two 

chromatin-associated proteins, namely, DACH1 and DACH2. 

DACH contains the following two conserved domains: an 

N-terminal Dach and Sno/Ski homolog domain (DS domain) 

with DNA-binding ability and a C-terminal EYA domain 

responsible for protein–protein interactions (Figure 1A). 

DACH1 is a crucial component in RDGN through regulating 

expressions of targeted gene by directly binding to specific 

DNA sequences or interacting with other TFs (c-Jun, Smads, 

Six, and ER-α).9–12 In the process of organogenesis, DACH1 

is responsible for the tissue development.11,13,14 While the 

abnormal expression of DACH1 leads to various diseases, 

including bilateral cystic renal dysplasia,15 chronic kidney 

disease,16 familial young-onset diabetes, prediabetes, and 

cardiovascular diseases.17 Besides, DACH1 inhibits aldos-

terone secretion in zona glomerulosa cells.18

EYA family has a conserved transactivation domain and 

EYA domain with four homolog proteins, namely, EYA1 

to EYA4 (Figure 1A). It functions as protein phosphatase 

and transcriptional co-activator for SIX1.11 Dysregulation 

of this compound would cause a range of syndromes.19–21 

The phosphatase function of EYA stimulates tumorigenesis 

and metastasis and reverses the antitumor effect of estrogen 

receptor β (ERβ) in breast cancer.22,23

The vertebrate SIX genes encode six homolog proteins, 

called SIX1 to SIX6. Members of the SIX gene family are 

characterized by a divergent DNA-binding homeodomain 

and an upstream SIX domain, which is involved in deter-

mining DNA-binding specificity and mediating protein–

protein interactions (Figure 1A). SIX gene governs the tissue 

determination and development of many organs, including 

eye, kidney, and muscle.8,24,25 SIX proteins are kept at a 

low level in mature tissues, which are upregulated in many 

tumor tissues.26 SIX1 regulates expressions of targeted genes 

through recognizing and binding to specific DNA sequences 

with the assistance of other cofactors within promoters.27 

For instance, DACH1 acts as a corepressor, while EYA is a 

coactivator for SIX (Figure 1B).11,24

RDGN signaling plays a significant role in the initiation and 

progression of tumors.24,28 In general, DACH1 acts as a tumor 

suppressor, which inhibits growth and metastasis of breast 

cancer, lung cancer, kidney, prostate cancer, and so on.24,29  

By contrast, SIX/EYA complex has the ability to promote 

tumorigenesis and tumor progression.24,29 As a result, down-

regulated DACH1 accompanied with upregulated SIX/EYA 

lead to the onset and aggressiveness of malignant tumors.

Figure 1 Schematic structure of Dach, eya, and Six and their interaction.
Notes: (A) Key structure of Dach, eya, and Six. (B) Proposed working model of Dach, eya, and Six to regulate gene expression. AD, transcriptional activation domain; 
DS domain, Dach and Sno/Ski homolog domain; ED, EYA protein–protein interaction and phosphatase domain; HD, homeobox DNA binding domain; SD, SIX specific 
protein–protein interaction domain.
Abbreviations: TF, transcription factor; NCoR, nuclear receptor co-repressor.
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Cytokine signaling regulated 
by RDGN
TGF-β signaling
TGF-β is a multifunctional cytokine taking diverse effects 

on epithelial and mesenchymal tissues and regulating cell 

behaviors, such as cell differentiation, proliferation, and 

apoptosis.30,31 TGF-β exerts a Janus-faced role in the process 

of tumor development depending on the tumor type and stage 

and genetic/epigenetic changes.32,33 Studies showed that 

TGF-β/Smad axis retarded proliferation of epithelial cells 

in the early stage of tumors, whereas triggered epithelial–

mesenchymal transition (EMT) procedure and promoted 

distant metastasis in advanced tumors by stimulating the 

activation of mesenchymal genes and inhibiting the expres-

sion of epithelial genes.34–36 Moreover, TGF-β is involved 

in the maintenance of stemness of cancer stem cells (CSCs) 

in scirrhous gastric cancer and breast cancer.37,38

RDGN regulates the tumor process by interplaying 

with TGF-β signaling (Figure 2). On one hand, DACH1 in 

association with the nuclear receptor co-repressor (NCoR) 

was shown to block TGF-β signaling by binding to Smad4, 

which in turn restrained TGF-β/Smad-induced EMT in breast 

cancer and gastric cancer (Table 1).39,40 Meanwhile, DACH1 

shared structural homology to Ski/Sno oncogenes, which 
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Figure 2 RDGN regulates TGF-β signaling transduction in tumor cells.
Notes: TGF-β binds to TβR and activates SARA, which then recruits and activates intracellular SMAD2/3 protein. SMAD2/3 forms a heterodimer and enters into the 
nucleus with the assistance of SMAD4 protein. SMAD2/3/4 complex works as a transcription factor regulating the expression of targeted genes, which are associated with 
proliferation, CSCs’ expansion, eMT, and apoptosis of various cancers. SiX/eYA compound acts as an activator of above process, while DACH1 is an inhibitor of TGF-β 
signaling.
Abbreviations: CSCs, cancer stem cells; eMT, epithelial–mesenchymal transition; RDGN, retinal determination gene network; SARA, SMAD anchor for receptor activation; 
TβR, TGF-β receptor.
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blocked TGF-β induction of activator protein-1 (AP-1) and 

Smad signaling.41 DACH1 also retarded the invasive growth 

of colorectal tumor cells via interfering TGF-β-mediated 

EMT through perturbing the phosphorylation of Smad2.42 

Sunde et al first proved that inhibitory signaling of TGF-β, 

including DACH1, BMP7, and EVI1, was upregulated in 

early-stage of ovarian cancer, which resulted in the resistance 

of ovarian cancer cells to TGF-β-induced antiproliferative 

and antiapoptotic effects.43 On the other hand, DACH1 was 

found to increase TGF-β signaling in human adrenal tissue 

leading to the reduced aldosterone production.18 Besides, 

DACH1 controlled liver cell growth by reactivating TGF-β 

signaling; thus, the loss of DACH1 expression in hepatocel-

lular carcinoma impeded the antiproliferative function of 

TGF-β and stimulated tumor growth.35 It was elucidated that 

DACH1 inhibited esophageal cancer growth by triggering 

and activating TGF-β signaling both in vitro and in vivo 

(Table 1).44 Silencing of DACH1 caused by methylation in 

part contributed to the esophageal carcinogenesis by ham-

pering TGF-β.44

SIX1, known as a carcinogenic factor, facilitated the 

switch of TGF-β from tumor suppressive signal to tumor 

promotional signal through upregulating TGF-β type I recep-

tor (TβRI) in breast cancer (Table 1).45 And SIX1-induced 

prometastatic phenotype of TGF-β signaling further stimu-

lated EMT and distant metastasis process in breast cancer 

transplant mouse model and also predicted poor survival 

of cancer patients.45,46 Furthermore, SIX1-induced nuclear 

Smad3 recruitment resulted in the increased TGF-β signaling 

in breast cancer.46 Besides promoting EMT, SIX1 induced 

the expansion of breast CSC population via activating TGF-β 

and mitogen-activated protein kinase (MAPK) cascade 

pathways.47 It was indicated that ectopic expression of SIX1-

regulated TGF-β-signaling network, including increased 

TGF-β type II receptor (TβRII), which then contributed to 

EMT and CSC properties of cervical cancer.48 The consistent 

result was obtained in a recent study that SIX1 led to the 

overexpression of TGF-β and TβRII and the acceleration of 

CSC self-renewal rate, inducing the progression and poor 

prognosis of esophageal squamous cell carcinoma.49

Table 1 Summarization of cytokines regulated by RDGN

RDGN member Regulated cytokines Regulation direction Tissue type Reference

DACH1 TGF-β ↑ Human adrenal tissue 18

Hepatocellular carcinoma 35

esophageal cancer 44

↓ Breast cancer 39

Colorectal cancer 42

Gastric cancer 40

Ovarian cancer 43

Gliomas 72

CXCL12 ↑ Artery genesis 51

CXCL8 ↓ Breast cancer 54

Lung cancer 55

Prostate cancer 56

CXCL5 ↓ Lung cancer 59

↓ Prostate cancer 56

CXCL1/2 ↓ Prostate cancer 56

↓ esophageal cancer 57

iL-6 ↓ Prostate cancer 56

Gliomas 72

FGF ↓ Gliomas 72

↓ Prostate cancer 56

SiX1 TGF-β ↑ Breast cancer 45–47

Cervical cancer 48

esophageal cancer 49

veGF-C ↑ Breast cancer 75

Cervical cancer 76

TRAiL ↓ Ovarian cancer 87

Abbreviations: CXCL, C-X-C motif ligand; TRAiL, tumor necrosis factor-related apoptosis-inducing ligand.
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EYA coordinated with SIX1 to promote malignant phe-

notypes, including EMT, CSC expansion, and poor survival, 

through activating TGF-β signaling in breast cancer.38 Thus, 

EYA was recognized as a crucial activator of SIX1 and was 

required to mediate SIX1-induced TGF-β-dependent car-

cinogenic signal. Furthermore, deletion of Eya2 in MCF7 

mammary carcinoma cells blocked SIX1-mediated tumor 

progression via TGF-β signaling.38

C-X-C motif ligand (CXCL) family
CXCL family is well known as a prototypical chemokine 

playing roles in inflammation, immune response, and cancer 

process. Inflammatory responses to CXCL factors in the 

tumor microenvironment are responsible to facilitate tumor 

growth, progression, and immunosuppression.50 Regulation 

of CXCL family by RDGN is summarized in Table 1.

A recent study showed that CXCL12 and its receptor 

CXCR4 were potential targets of DACH1 in the process of 

arteries development. DACH1-stimulated CXCL12 expres-

sion promoted the migration of arterial endothelial cells 

against blood flow, which contributed to vascular develop-

ment in vitro.51–53 Whereas, knock down of CXCR4–CXCL12 

signaling could impair DACH1-induced endothelial expres-

sion and migration both in vitro and in vivo (Table 1).51 

Additionally, DACH1 repressed CXCL8 expression through 

Dach and Sno/Ski homolog domain (DS domain) binding 

to CXCL8 promoter in a dose-dependent manner, which 

caused to the reduced migration of cancer cells in vitro and 

distant lung metastasis in vivo.54,55 In the context of prostate 

cancer, enhanced CXCL8 signaling contributed to castrate-

resistant prostate cancer (CRPC) development and promoted 

the invasion of cancer cells, whereas endogenous DACH1 

inhibited the transcription and expression of CXCL8 by 

interacting with CXCL8 promoters, which in turn restrained 

prostate epithelial cell growth and migration (Table 1).56 

According to microarray gene expression profile, CXCL1 

and CXCL2 were also significantly decreased in PC-3 

cells stably expressing DACH1 (Table 1).56 Secretion of 

growth-regulated alpha protein (GRO-α and CXCL1) and 

macrophage inflammatory protein 1-alpha (MIP-1α) was 

also reported to be inhibited by DACH1 in human breast 

cancer cell line MDA-MB-231 and prostate cancer cell.54 

It has been observed that metformin inhibited CXCL1 pro-

tein abundance by inducing the expression of DACH1 in 

cultured esophageal cancer cell and xenograft tumor tissues. 

Moreover, knockdown of DACH1 expression blocked the 

effect of metformin on myeloid-derived suppressor cells’ 

(MDSCs) chemotaxis (Table 1).57 However, it is hard to 

separate direct antitumor effect of DACH1 on tumor cell to 

indirect tumor inhibition from immune modification by this 

in vivo xenograft model.

A recent study showed that serum CXCL5 concentra-

tion was significantly higher in non-small-cell lung cancer 

(NSCLC) compared with that in healthy volunteers. More-

over, cancer tissue CXCL5 mRNA transcription and protein 

expression correlated with tumor stage and predicted poor 

overall survival in adenocarcinoma (ADC) patients.58 CXCL5 

was also identified as a downstream target of DACH1 in 

lung ADC. DACH1 inversely correlated with the CXCL5 

expression and hampered the CXCL5-stimulated invasion 

and migration of ADC cells (Table 1).59

Most CXCL family members are transcriptionally 

activated by MAPK signaling and NF-κB pathway.50,54,55 

DACH1 was known to block the activity of MAPK signal-

ing and NF-κB pathway induced by tumor necrosis factor α 

(TNF-α), TPA, and serum stimulation,9,55 which may explain 

the inhibitory effect of DACH1 on a panel of cytokines at 

molecular level. DACH1 inhibits cancer cell proliferation 

and invasion through reducing cyclin D1, stemness, and 

EMT. The paracrine signaling not only stimulates tumor cell 

proliferation but also reprograms tumor environment and 

modulates tumor immune response. Therefore, the effects of 

DACH1 on intracellular and extracellular signals contribute 

to the in vivo tumor suppressor function. While recovering 

the nuclear protein DACH1 is still a technical challenge at 

this moment, blocking the hyperactivity of cytokines by 

neutralized antibody or specific inhibitor in DACH1-defected 

tumors may be feasible. Overall, DACH1 plays a vital role 

in the processes of organ development and tumor progres-

sion via regulating CXCL signaling pathways in a cell- and 

tissue-dependent manner. Nevertheless, SIX and EYA have 

not been found to interact with CXCL family.

iL-1 and iL-6
IL-1 is a pleiotropic cytokine involved in various immune 

responses, inflammatory processes, and hematopoiesis. 

It is normally produced by monocytes and macrophages. 

Recent study showed that tumor-derived IL-1α, acting on 

infiltrating myeloid cells, induced the expression of a criti-

cal tumor survival factor TSLP and promoted breast cancer 

metastasis.60 Ecotopic expression of DACH1 significantly 

inhibited the secretion of IL-1α in human breast cancer cell 

line MDA-MB-231 and blocked breast cancer cell metastasis 

to lung.54

IL-6, another proinflammatory cytokine, participated in 

various physiological and pathological processes by interact-

ing with diverse intracellular signaling pathways.61 Previous 

studies showed that IL-6 was elevated in various cancers.62,63 
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Aberrant expression of IL-6 is correlated with high tumor 

burden, such as advanced stage and poor prognosis. Using 

Dach1fl/fl/Probasin-Cre bitransgenic mice, Chen et al showed 

that endogenous Dach1 served as a key endogenous restraint 

to prostate epithelial cell growth and restrained migration via 

IL-6 signaling. Further mechanism study identified that DS 

domain of DACH1 was required for the repression of IL-6 

promoter activity (Table 1).56

Fibroblast growth factor 2 (FGF2)
FGF2, also named basic fibroblast growth factor (bFGF) and 

FGF-β, is a growth factor and signaling molecule involving  

a wide range of biological processes, including cell prolif-

eration, morphogenesis, differentiation, angiogenesis, tumor 

growth, and invasion.64–67 It is worth mentioning that FGF2 

is an indispensable factor in the maintenance of self-renewal 

of glioma stem cells and promotes tumor-initiating spheroid 

formation of glioma cells.68,69 And overexpression of FGF2 

was frequently detected in high-grade gliomas and involved 

in glioma progression.70,71 Watanabe et al72 conducted gene 

expression analysis and chromatin immunoprecipitation 

assay to prove that FGF2 is transcriptionally repressed by 

DACH1 (Table 1). FGF2 enhanced the tumorigenicity char-

acteristics of glioma stem cells in vitro and in vivo, while 

stable expression of DACH1 undermined this function. At 

the meantime, exogenous bFGF rescues stemness and tum-

origenicity of the U87 cells with high expression of DACH1, 

suggesting that loss of DACH1 increases the number of CSC 

through transcriptional activation of bFGF.72 Intriguingly, 

DACH1 was upregulated by growth factor signaling, such 

as FGF2, in the process of limb skeletal development and 

acted as an intermediary in the FGF signaling pathway to 

regulate cell proliferation or differentiation.13

vascular endothelial growth factor 
(veGF)
VEGF C (VEGF-C) is a member of the platelet-derived 

growth factor (PDGF)/VEGF family. Lymphangiogenesis is 

a major function of VEGF-C. It promotes survival, prolifera-

tion, and migration of lymphatic endothelial cells, inducing 

the establishment of lymphatic vessels, through binding to 

VEGF receptor 3.73,74 All these characteristics of VEGF-C 

provided a favorite environment for the dissemination of 

cancer cells.

SIX1 induced lymphangiogenesis and lymphatic metas-

tasis of breast cancer and cervical cancer partially through 

promoting the transcription and expression of VEGF-C 

both in cell lines and xenograft mouse model (Table 1).75,76 

Therefore, it was elucidated that SIX1/VEGF-C axis played 

a vital role in the lymphatic dissemination of breast cancer 

cells. Interestingly, recovery of VEGF-C in SIX1 knockdown 

breast cancer cells promoted lymphatic metastasis but not 

distant metastases to the lungs.75 Additionally, TGF-β was 

recognized as an intermediate in SIX-stimulated VEGF-C 

expression. SIX1 augmented the TGF-β-activated SMAD2/3 

and then assisted with the SMAD pathway to modulate 

VEGF-C expression.76 Although TGF-β inhibited lymp-

hangiogenesis by limiting tube formation of lymphatic 

endothelial cells, the increased VEGF-C could counteract the 

inhibitory effect of TGF-β and promoted the migration of 

lymphatic endothelial cells directly.76 Another study showed 

that nuclear DACH1 repressed the microvascular density 

(MVD), but whether this effect relies on the inhibition of 

VEGF is not known.77

Other factors
TNF-related apoptosis-inducing ligand (TRAIL), belonging 

to the TNF cytokine family, is a protein triggering the process 

of apoptosis.78,79 Generally, TRAIL secreted by normal tissue 

cells induces apoptosis primarily in tumor cells via interacting 

with specific death receptors.78 For instance, TRAIL triggered 

extrinsic apoptotic pathway by activating the death receptor 4 

(DR4) and death receptor 5 (DR5) expressed on the cell 

membrane, which then recruited intracellular death adaptor 

molecule to form the death-inducing signaling complex and 

resulted in cell death.80–84 By starting the apoptosis program, 

TRAIL was involved in tumor suppression, such as enhanc-

ing innate immunosurveillance and inhibiting tumorigenesis 

and tumor progression.85 Moreover, TRAIL was proved to 

have cytotoxic activity against ovarian carcinoma cells both 

in vitro and in vivo.86

High mRNA expression of SIX1 was found to be related 

with late stage and worse prognosis of ovarian carcinoma 

(Table 1).87 In terms of mechanism, SIX1 prevented ovar-

ian carcinoma cells from TRAIL-mediated cell death and 

contributed to the tumorigenesis and distant metastasis of 

ovarian carcinoma via conferring resistance to apoptosis-

related process of tumor cells.87 Inhibition of TRAIL pathway 

by SIX1 impaired the immunosurveillance activity of natural 

killer cells against tumor cells and led to poor survival in 

patients.

Receptor activator of nuclear factor kappa-Β ligand 

(RANKL) is a member of the TNF superfamily and a ligand 

for the receptor activator of nuclear factor kappa-Β (RANK). 

RANKL controls cell proliferation, apoptosis, and immune 

functions.88 DACH1 was found to repress FGF2-enhanced 
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RANKL expression in stromal/preosteoblast cells in associ-

ated with NCoR.89

Conclusion
RDGN pathway acts as a tumor regulator mainly through 

interfering the transcription of targeted genes. It is acknowl-

edged that most of cytokine pathways can promote the 

proliferation, tumorigenesis, angiogenesis, and metastasis 

of tumor cells. Specifically, cytokine is a critical mediator 

in the regulatory function of RDGN in tumor initiation and 

progression. Thus, DACH1, as a tumor suppressor, retards the 

tumor growth through blocking cytokine signaling, such as 

TGF-β, CXCL1, CXCL5, CXCL8, and FGF. While another 

member of RDGN, SIX1 facilitates tumor progression by 

stimulating cytokines’ secretion and activating the pathways 

triggered by cytokine factors. EYA-SIX forms a transcrip-

tional complex to activate TGF-β signaling and induce the 

EMT of cancers. Overall, there is a tight interaction between 

RDGN and cytokine factors in tumorigenesis and progression 

and its effect is cell type dependent.
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