
© 2010 Hoover-Plow, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

Vascular Health and Risk Management 2010:6 199–205

Vascular Health and Risk Management

R E V I E W

open access to scientific and medical research

Open Access Full Text Article

199

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

Does plasmin have anticoagulant activity?

Jane Hoover-Plow

Joseph J Jacobs Center for 
Thrombosis and Vascular Biology, 
Departments of Cardiovascular 
Medicine and Molecular Cardiology, 
Lerner Research Institute Cleveland 
Clinic, Ohio, USA

Correspondence: Jane Hoover-Plow
Department of Molecular Cardiology, 
NB50, Cleveland Clinic Lerner Research 
Institute, 9500 Euclid Avenue, Cleveland, 
OH 44195, USA
Tel +1 216 445 8207
Fax +1 216 445 8024
Email hooverj@ccf.org

Abstract: The coagulation and fibrinolytic pathways regulate hemostasis and thrombosis, 

and an imbalance in these pathways may result in pathologic hemophilia or thrombosis. The 

plasminogen system is the primary proteolytic pathway for fibrinolysis, but also has important 

proteolytic functions in cell migration, extracellular matrix degradation, metalloproteinase 

activation, and hormone processing. Several studies have demonstrated plasmin cleavage and 

inactivation of several coagulation factors, suggesting plasmin may be not only be the primary 

fibrinolytic enzyme, but may have anticoagulant properties as well. The objective of this review 

is to examine both in vitro and in vivo evidence for plasmin inactivation of coagulation, and to 

consider whether plasmin may act as a physiological regulator of coagulation. While several studies 

have demonstrated strong evidence for plasmin cleavage and inactivation of coagulation factors 

FV, FVIII, FIX, and FX in vitro, in vivo evidence is lacking for a physiologic role for plasmin 

as an anticoagulant. However, inactivation of coagulation factors by plasmin may be useful as a 

localized anticoagulant therapy or as a combined thrombolytic and anticoagulant therapy.
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Introduction
Thrombosis, either arterial or venous, is a fatal and disabling consequence of cardio-

vascular disease, the leading cause of mortality and morbidity in developed countries.1 

Thrombosis occurs as a consequence of vascular injury, generally occurring at a vulner-

able atherosclerotic plaque or under low-flow conditions, and imbalance between the 

pathways that regulate thrombus formation and/or dissolution.1 The plasminogen (Plg) 

system (Figure 1) is the major proteolytic pathway responsible for dissolution of blood 

clots. Increased clot formation or decreased degradation is the central event in thrombotic 

disease.2,3 Plasmin is a broad-spectrum serine protease, and increasing evidence has 

implicated critical roles for Plg in the cleavage of nonfibrinolytic substrates, including 

extracellular matrix proteins,5,6 metalloproteinases,7,8 growth factors,9,10 hormones,11,12 

and coagulation factors.13–17 Since plasmin inactivates coagulation factors by cleavage, 

in addition to its fibrinolytic function in the proteolytic degradation of fibrin (ogen), 

plasmin may also act as an anticoagulant. The purpose of this review is to examine both 

in vitro and in vivo evidence for plasmin inactivation of coagulation, and to consider 

whether plasmin may act as a physiological regulator of coagulation.

Plasminogen system
The Plg system (Figure 1) is composed of: a zymogen, Plg; the bioactive enzyme, 

plasmin; and the Plg activators, ie, tissue Plg activator (tPA) and urokinase Plg activator 
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(uPA) and its primary receptor (uPAR), Plg activator 

inhibitors, primarily plasminogen activator inhibitor-1 

(PAI-1); and the primary plasmin inhibitor, α
2
-antiplasmin 

(AP). Plg is a single-chain glycoprotein composed of five 

triple-loop kringle domains, and a serine protease domain.18 

The kringle domains regulate the binding to inhibitors, cells, 

and substrates through their expression of lysine binding 

sites (LBS) which bind to proteins with carboxyl-terminal 

lysines or conformational mimetics of these residues. Plg is 

produced primarily by the liver, circulates in plasma at a high 

concentration (2 µM), and is also found in high concentra-

tions in interstitial fluid. Binding of Plg to cell surfaces and 

extracellular matrix accelerates its activation by Plg activators 

to plasmin. Plasmin is an enzyme with broad specificity,2 

but the Plg activators, uPA and tPA, have much narrower 

specificity and are widely distributed. PAI-1 binds to uPA 

and tPA, blocking their activation of Plg. AP binds initially 

to the LBS of plasmin and then to its catalytic site. Plasmin 

bound to fibrin or cell surfaces is substantially protected from 

AP inactivation because its LBS are occupied.

Coagulation factors
Several studies have documented the cleavage and inactiva-

tion by plasmin of coagulation factors, including Factor (F)V, 

FVIII, FIX, and FX (Figure 2). These coagulation factors 

circulate in the plasma at low concentrations, and FVIII, FIX 

are components of the intrinsic coagulation pathway and FV 

and FX are components of the prothrombinase complex in the 

common coagulation pathway. FV and FVIII, nonenzymatic 

cofactors, are similar in structure and include two A domains 

(copper binding) at the N-terminus followed by a connecting B 

domain and then an A3 domain and C domain at the C-terminal. 

FIX and FX are serine proteases and are similar in structure, 

containing heavy and light chains with a vitamin K-dependent 

domain, two growth factor domains and a catalytic domain.

Factor V
FV is a nonenzymatic cofactor in the prothrombinase complex 

in the common coagulation pathway. Prothrombinase activity 

is required for thrombin formation and is essential for clot 

formation. FV is produced by the liver and megakaryocytes, 

circulates in the plasma, and is present in platelet a-granules.19 

FVa is inactivated by plasmin cleavage in both heavy and light 

chains.13,20 Plasmin cleaves the heavy chain of FV at three 

sites, Lys309, Lys310, and Arg313, releasing the A
2
 domain 

and causing inactivation of the cofactor.21,22 The plasmin 

cleavages are accelerated in the presence of a membrane 

surface.21 Measuring thrombin formation20,22 or plasma clot-

ting21 determines the functional activity of FV. In humans, 

a deficiency of FV causes excessive bleeding. A common 

genetic mutation in FV, FV Leiden, inhibits protein C, an 

endogenous anticoagulant, and causes persistent thrombosis.23 

In mice, a FV deficiency is embryonically lethal, and FV 

Leiden in mice causes spontaneous thrombosis.24,25

Factor VIII
FVIII is a component of the intrinsic pathway and the 

primary source of circulating FVIII is the liver. FVIII is a 

Figure 1 The plasminogen system.
Notes: Plasminogen activators are tPA and uPA; PAI-1 inhibits tPA and uPA reducing activation of plasminogen to plasmin; α2-antiplasmin inhibits plasmin activity.
Abbreviations: PAI-1, plasminogen activator inhibitor-1; tPA, tissue plasminogen activator; uPA, urokinase plasminogen activator.
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nonenzymatic cofactor, and deficient or defective protein 

causes a bleeding disorder, hemophilia A. FVIII is required 

for the anionic phospholipid surface-dependent conversion 

of FX to FXa by FIXa. Numerous studies have suggested that 

plasmin inactivates FVIII,14,27 and recently Nogami et al28,29 

identified the plasmin cleavage site at Arg336 as responsible 

for FVIII inactivation and a plasmin interactive site in the 

A
2
 domain. Degradation of FVIII by plasmin results in a 

decrease in clotting activity, and deficient FVIII mice offer 

a model for hemophilia A.30

Factor IX
FIX is a serine protease synthesized in the liver as a single-

chain glycoprotein (57 kD), which circulates in plasma and 

is activated by either FXIa or tissue factor (TF) and FVIIa. 

Plasmin cleaves FIX at Arg145 and Arg180 and at three 

other sites to yield the inactivate form.15 Tissue Plg activator-

catalyzed lysis of fibrin formed in human plasma generated 

fragments of FIX and decreased FIX activity,15 suggesting 

tPA activated Plg was involved in the FIX fragmentation. 

Clotting time is inhibited by plasmin-cleaved FIX and FIXa 

fragments. Deficient mice are a model for hemophilia B and 

exhibit excessive tail bleeding and reduced activated partial 

thromboplastin time.31

Factor X
FX is a serine protease synthesized in the liver and is a 

component of the prothrombinase complex that functions 

to generate thrombin. Plasmin-mediated cleavage of FXa 

exposes a Plg binding site16,32 and inhibits coagulation. In 

the presence of anionic phospholipid, FX and FXa enhance 

Plg activation by tPA33,34 to plasmin. Thus, plasmin cleavage 

of FX not only inhibits coagulation but also enhances 

fibrinolysis. FX deficiency causes partial embryonic lethality 

and fatal neonatal bleeding.35,36

Tissue factor protein inhibitor
In addition to the documented cleavage by plasmin of the four 

coagulation factors, plasmin can inactivate the anticoagulant 

issue factor protein inhibitor (TFPI), a Kunitz-type protease 

inhibitor. TFPI with FXa inhibits the tissue factor-FVIIa 

complex, reducing the initiation of the extrinsic pathway. 

Plasmin cleaves recombinant TFPI (rTFPI) at several sites 

(K86–T87, R107–G108, R199–A200, K249–G250).15 rTFPI, 

added to plasma with uPA, is degraded, and in the presence 

of aprotinin,17 a catalytic inhibitor of plasmin, degradation 

of TFPI is abolished. Plasmin also degrades constitutive and 

heparin-releasable TFPI (with tPA and Plg) from human 

umbilical vein endothelial cells.37 Whether inactivation of 

TFPI would counteract the anticoagulant activity of plasmin 

cleavage of other factors (FV, FVIII, FIX, FX) is unclear. 

TFPI deficiency produces intrauterine lethality.38

In vivo evidence
Mouse models of thrombosis  
formation and lysis
While the plasmin-cleaved coagulation factors have reduced 

formation of thrombin, there is little in vivo evidence for a 

role of plasmin inactivation of coagulation factors and TFPI. 

However, several studies have alluded to this possibility. 

Matsuno et al39 found that Plg-deficient mice had shorter 

arterial occlusion times after photochemical carotid injury 

Figure 2 Plasmin substrates in the coagulation pathways.
Notes: Shaded boxes are plasmin substrates. Cleavage by plasmin inactivates the substrates. Extrinsic, intrinsic, and common pathways are indicated.
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(Table 1) whereas a deficiency of α
2
-AP, PAI-1, or vitronectin 

deficiency resulted in delayed occlusion times.39–42 Patency 

of the injured carotids was more rapid in the PAI-1 and AP-

deficient mice than wild-type (WT) mice (Table 1). Occlu-

sion time of the carotid after photochemical injury was not 

different in mice deficient in Plg activators, uPA, or tPA, but 

patency was delayed in the tPA-deficient mice.42 The delay 

of occlusion time by plasmin/Plg inhibitors suggests a pos-

sible anticoagulant effect for plasmin. The marked delay of 

clot lysis time (patency) in the Plg and tPA-deficient mice 

and increased lysis in PAI-1 and AP is consistent with the 

role of plasmin in fibrinolysis. Another widely used model of 

thrombosis in mice is the FeCl
3
 injury model. In a prelimi-

nary study43 we found there was no difference between the 

WT (17 ± 2 sec, n = 6) and Plg-/- mice (18 ± 4 sec, n = 6) in 

occlusion time after carotid FeCl
3
 injury (Table 1) in contrast 

with the decrease found in the photochemical model. The 

response to FeCl
3
 carotid injury was similar in the PAI-1 defi-

cient mice.44,45 With vitronectin-/- mice, one report with FeCl
3
 

injury had increased occlusion time as with photochemical 

injury, but one study reported a decrease.46 Clot lysis (% 

carotid open after four hours) was markedly delayed in Plg-

deficient mice (17%, 1/7) compared with WT mice (66%, 

2/3).43 The injury to the carotid by FeCl
3
 is more severe and 

occlusion times are faster, which may account for the lack of 

difference in occlusion time between WT and Plg-/- mice in 

this model. Wang et al47 found that if a lower dose of FeCl
3
 

was used, a delay in occlusion was detected and a difference 

in mice deficient in coagulation factors were detected at the 

lower dose, but not at the higher dose.

In a tail bleeding/rebleeding assay,48 Plg-/- mice had 

increased bleeding times, but had no difference in rebleed-

ing times (Table 2). In contrast, in PAI-1-deficient mice 

bleeding time was not different to that in the control strain 

(B6), but clot stability time was reduced, consistent with a 

fibrinolytic role of plasmin. The increase in bleeding time in 

Plg-deficient mice may be a reflection of the tissue site51 and 

which coagulation pathway is involved. Mackman49 found 

that mice with low TF and low FVII, both part of the extrinsic 

coagulation pathway, had normal tail bleeding, but in FVIII- 

or FIX-deficient mice bleeding times were increased. These 

results suggest that a role of plasmin as an anticoagulant may 

be pathway- or tissue-dependent.

Regulation of TFPI
An in vivo role for Plg in the regulation of TFPI is not clear. 

Stalboerger et al50 reported that TFPI is released in human 

artery sections by plasmin treatment, suggesting a possible 

increase in the anticoagulant TFPI. However, it was also sug-

gested that plasmin may deplete TFPI in the vascular wall 

and contribute to rethrombosis in atherosclerotic plaque. In 

a sepsis-induced model in baboons,51 immunosuppression of 

TFPI and inhibition of PAI-l led to a decrease in TFPI and 

fibrin accumulation in the lung, suggesting plasmin may play a 

role in proteolysis of TFPI and sepsis-induced coagulation.

In vivo testing for plasmin 
anticoagulant activity
Deficient mice offer potential options for testing the 

anticoagulant activity of plasmin in vivo. There are several 

Table 1 Thrombosis formation and lysis after carotid injury

Mouse genotype Model Time to occlusion Patency Reference

Plg-/-

AP-/-

Photochemical Decreased
Increased

Decreased
Increased

39

PAI-1-/-

AP-/-

Photochemical Increased
Increased

Increased
Increased

39,40

PAI-1-/-

VN-/-

Photochemical Increased
Increased

41

PAI-1-/-

tPA-/-

uPA-/-

Photochemical Increased
NC
NC

Increased
Decreased
NC

42

Plg-/- FeCl3 NC Decreased 43

PAI-1-/- FeCl3 ND Increased 44

PAI-1-/-

VN-1-/-

FeCl3
FeCl3

Increased
Increased

Increased
Increased

45

VN-1-/- FeCl3 Decreased ND 46

Abbreviations: AP, α2-antiplasmin; NC, no change; ND, not determined; PAI-1, plasminogen activator inhibitor-1; Plg, plasminogen; tPA, tissue plasminogen activator; uPA, 
urokinase plasminogen activator; VN, vitronectin.
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approaches that could be utilized to elucidate the role of 

plasmin in coagulation: 1) Testing the local modulation of 

plasmin in thrombus formation in the photochemical and 

FeCl
3
 injury models by using Plg-deficient mice and adding 

either microplasmin or plasmin-neutralizing antibodies or 

inhibitors directly to the injured carotid; 2) testing small 

peptides that would inhibit the plasmin cleavage-specific 

coagulation factors; and 3) generating genetically mutated 

coagulation proteins in factor-deficient mice by knocking-in 

the mutated gene. An example would be increasing plasmin in 

FV Leiden mice which are prone to developing spontaneous 

thrombosis, to determine if thrombus formation was reduced. 

Thrombus formation and thrombolysis could be distinguished 

by following the generation of fibrin degradation products. 

Cheng et al52 crossed Plg-deficient and FIX mice and found 

reduced wasting in the double-deficient mice compared with 

the Plg-deficient mice; bleeding and thrombosis were not 

determined. Utilization of genetically altered mice offers 

approaches to test and define the potential of the anticoagu-

lant activity of plasmin in vivo.

Anticoagulant and thrombolytic 
therapy
The two major issues to consider in the treatment of throm-

botic disease are reducing thrombus formation and lysis of 

an existing clot. Often both factors must be treated in the 

same pathological situation. There are several new oral 

anticoagulants that are currently in clinical trials being 

investigated for long-term oral use.53,54 Unlike warfarin, the 

most widely used anticoagulant, these new anticoagulants 

target single proteins in the coagulation pathway and include 

FXa, FIX, FVII/TF, Va/VIIIa, and thrombin inhibitors. These 

are the same coagulation proteins that plasmin inactivates, 

suggesting the possibility that plasmin inactivation may be a 

viable anticoagulant with the added benefit of fibrinolysis.

Thrombolytic agents, primarily Plg activators or their 

derivates, have been developed to promote thrombolysis, but 

the risk of bleeding (reviewed by Ellis and Brener53 and Bottiger 

et al)54 has been a major problem. Numerous clinical53,54 and 

animal55–57 studies have documented the potential for bleed-

ing when tPA, the Plg activator, is administered. Bottiger 

et al54 reported that use of a third-generation Plg activator, 

tenecteplase, a tPA derivative, did not improve the outcome 

when used alone. Recently, strategies other than plasmin acti-

vators have been investigated, such as inhibition of the plasmin 

inhibitors, AP58 and PAI-1.59,60 Plasmin61 and microplasmin, 

a derivative of plasmin, have also been considered for 

use as intravenous thrombolytics.62,63 Plasmin has several 

advantages as a thrombolytic drug,61 including: elimination 

of the need for Plg and its activation; a significant margin of 

safety against bleeding even with high doses; a dose-response 

to plasma fibrinogen; and inhibition of systemic excess by 

AP. Prevention of thrombotic occlusion without excessive 

bleeding is critical in patients with myocardial infarction, 

ischemic stroke, abdominal aortic aneurysm, and peripheral 

artery disease. Topical application of plasmin is used in 

the treatment of macular degeneration,54 vitrectomy,65 and 

ligneous conjunctivitis.66 Comerato67 reports the effective-

ness of catheter-directed intrathrombus thrombolysis with 

plasmin for the treatment of acute lower extremity arterial 

occlusion. Given the advantages of intravenous plasmin, a 

mild anticoagulant and a fibrinolytic, plasmin may be an 

alternative to anticoagulants and thrombolytics that have the 

potential to cause bleeding.

Conclusions
Plasmin cleaves and deactivates FV, FVIII, FIX, and FX 

in vitro and suggests another potential therapeutic strategy 

to regulate thrombotic occlusion. Since plasmin is one of 

several broad-spectrum serine proteases, cleavage by plasmin 

in vitro may not necessarily imply Plg plays this role in vivo. 

In addition, in vivo detection of an anticoagulation role of 

plasmin may be difficult because of its rapid thrombolytic 

activity. Studies in animals are suggestive of an anticoagulant 

effect of plasmin, but there is insufficient evidence to sup-

port a definitive role of plasmin as an anticoagulant in vivo. 

Mice with deficiencies in clotting factors and Plg-pathway 

components are suitable models for defining the in vivo role 

of plasmin in anticoagulation. Plasmin has recently been 

suggested as an ideal thrombolytic therapeutic drug, but may 

also confer mild anticoagulation that would be important 

Table 2 Plg-/- mice have increased bleeding time and PAI-1-/- mice 
have reduced clot stability time in the tail bleeding/rebleeding 
assay

Tail bleeding/rebleeding assay

Bleeding time (sec) Rebleeding time (sec)

WT 79 ± 5 (28)♦ 207 ± 38 (28)

Plg-/- 130 ± 15 (9)♦ 188 ± 86 (9)

B6 99 ± 17 (34) 189 ± 25 (34)*

PAI-1-/- 123 ± 26 (21) 108 ± 30 (21)*

Notes: The mouse tail is warmed in saline, clipped and remains in the saline during 
the time measurements. Bleeding time is the time between the start of bleeding (after 
tail clip) and rebleeding time is the time between the cessation of the bleeding and the 
start of the second bleeding. Statistical difference ♦P  0.05 between WT/Plg+/+ mice 
and Plg-/- mice, and *P  0.0001 for B6 mice compared to PAI-1-/- mice. (Hoover-Plow 
et al. modified from Figure 1, Ref. 48).
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when both thrombolysis and anticoagulation without excess 

bleeding are required. Further evidence is needed to deter-

mine whether plasmin could be used as a therapeutic agent 

to prevent thrombus formation.
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