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Introduction: Owing to their similarity with humans, rabbits are useful for multiple applica-

tions in biotechnology and translational research from basic to preclinical studies. In this sense, 

mesenchymal stem cells (MSCs) are known for their therapeutic potential and promising future 

in regenerative medicine. As many studies have been using rabbit adipose-derived MSCs (ASCs) 

as a model of human ASCs (hASCs), it is fundamental to compare their characteristics and 

understand how distinct features could affect the translation to human medicine.

Objective: The aim of this study was to comparatively characterize rabbit ASCs (rASCs) and 

hASCs to further uses in biotechnology and translational studies.

Materials and methods: rASCs and hASCs were isolated and characterized by their immu-

nophenotype, differentiation potential, proliferative profile, and nuclear stability in vitro.

Results and discussion: Both ASCs presented differentiation potential to osteocytes, chon-

drocytes, and adipocytes and shared similar immunophenotype expression to CD105+, CD34–, 

and CD45–, but rabbit cells expressed significantly lower CD73 and CD90 than human cells. 

In addition, rASCs presented greater clonogenic potential and proliferation rate than hASCs 

but no difference in nuclear alterations.

Conclusion: The distinct features of rASCs and hASCs can positively or negatively affect their 

use for different applications in biotechnology (such as cell reprogramming) and translational 

studies (such as cell transplantation, tissue engineering, and pharmacokinetics). Nevertheless, 

the particularities between rabbit and human MSCs should not prevent rabbit use in preclinical 

models, but care should be taken to interpret results and properly translate animal findings to 

medicine.
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Introduction
Rabbits (Oryctolagus cuniculus) are widely used as experimental models for both 

human and veterinary medicine by their ease to work with and relatively economic 

maintenance.1 Their size is ideal for surgical procedures and allow for the use of a high 

number of animals in an experiment, improving statistical relevance.2,3 Owing to their 

similarity with humans, rabbits are useful for multiple applications in biotechnology 

and translational medicine from basic research to preclinical studies, such as fertiliza-

tion in vitro, embryonic development and organogenesis, immunology, toxicology, 

neurophysiology, ophthalmology, and cardiology.4

In this sense, translational studies have been testing the efficacy of mesenchymal 

stem cells (MSCs) to treat diverse human diseases and conditions.5–7 The MSCs are 
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characterized by their potential to generate different meso-

dermal tissues and auto-renew.8 In the body, MSCs contribute 

to postnatal development by the substitution of dead cells.9,10 

When transplanted, they exert therapeutic effects by the direct 

differentiation in various cell types and paracrine function by 

the secretion of cytokines and growth factors.11

The adipose tissue is an important source of MSCs high-

lighted by its accessibility, safety to collect, and abundance 

of cells.12–14 The therapeutic potential of adipose-derived 

MSCs (ASCs) was proved in different contexts, such as skin 

wound healing, bone fractures, and cancer immunosuppres-

sion.12,15,16 Thus, ASCs present promising potential to future 

regenerative medicine approaches by their anti-inflammatory 

properties, differentiation potential, angiogenesis induction, 

and paracrine effects.

The ASCs were previously isolated from various animals, 

including humans.17,18 Although sharing basic characteristics, 

MSCs from different sources and species present individual 

features, with possible consequences to future therapeutic 

applications. As many studies have been using rabbit ASCs 

(rASCs) as a model of human ASCs (hASCs), it is funda-

mental to compare their characteristics and understand how 

their distinct features could affect the translation to human 

medicine. Therefore, the aim of this study was to com-

paratively characterize rASCs and hASCs to further uses in 

biotechnology and translational studies.

Materials and methods
ethics committee approval
This study was approved by the research ethics committee 

of Faculty of Veterinary Medicine and Animal Science, 

University of São Paulo, Brazil (2560/2012) and by the eth-

ics committee for human research of Santa Catarina Federal 

University, Brazil (1.076.626).

isolation of adipose-derived MSCs
The rASCs were obtained from New Zealand rabbits (n=6) at 

the slaughterhouse of University of São Paulo (Pirassununga, 

Brazil). The hASCs were isolated from human subcutaneous 

fat samples (n=6) discarded from abdominoplasties at the 

Hospital of Santa Catarina Federal University (Florianopolis, 

Brazil) after donors’ written informed consent. The same 

isolation protocol was used for rASC and hASC obtainment.

Briefly, the samples (~3 g) were washed with PBS sup-

plemented with 1% of penicillin and streptomycin (Thermo 

Fisher Scientific, Waltham, MA, USA) and transferred to 

Petri dishes with 5 mL of collagenase IV 0.4% (Sigma-

Aldrich Co., St Louis, MO, USA). Adipose tissue fragments 

were minced with scalpels for 5 minutes and incubated at 

37°C for 10–20 minutes. Samples were then centrifuged at 

300× g for 5 minutes, and the supernatants were discarded 

and cell pellets suspended in the complete culture medium 

composed of DMEM/F12 (LGC Biotecnologia, Cotia, 

 Brazil)  supplemented with 10% fetal bovine serum (Vit-

rocell, Campinas, Brazil), 1% l-glutamine (Sigma-Aldrich 

Co.), and 0.5% penicillin and streptomycin.

Flow cytometry
Flow cytometry was performed in second passage rASCs 

and hASCs for detection of surface antigenic markers CD34, 

CD45, CD73, CD90, and CD105 (BD Bioscience, São Paulo, 

Brazil; Table 1). White blood cells fractions were used as 

positive controls for CD34 and CD45. Negative control 

staining was performed by using fluorophore-conjugated 

mouse IgG isotype antibodies. Briefly, cell suspensions were 

distributed into 15 mL conic tubes, washed twice with PBS, 

and fixed in paraformaldehyde (4%) for 15 minutes at room 

temperature. After two more washes with PBS, cells were 

centrifuged at 500× g for 5 minutes and incubated with block-

ing buffer composed of PBS+2% BSA (Sigma-Aldrich Co.) 

at room temperature for 45 minutes. Cells were centrifuged at 

500× g for 5 minutes, washed twice with buffer composed of 

PBS+BSA (0.2%), and incubated with the antibodies solution 

(1:100) for 1 hour at 4°C in the absence of light. Samples were 

washed, and pellets were suspended in paraformaldehyde 4% 

for flow cytometry analysis (FACSCalibur; BD Biosciences, 

Table 1 Antibodies information

Antibody Isotype Reacts with Conjugated 
fluorophore

Brand and catalog  
number

Anti-CD34 Mouse igg1 human Pe BD Pharmingen, 555822
Anti-CD45 Mouse igg1 human FiTC BD Pharmingen, 555482
Anti-CD73 Mouse igg1 human Pe BD Pharmingen, 550257
Anti-CD90 Mouse igg1 human, rhesus, cynomolgus,  

baboon, dog, pig
FiTC BD Pharmingen, 555595

Anti-CD105 Mouse igg1 human PerCP BD Pharmingen, 560819

Abbreviations: PE, phycoerythrin; FITC, fluorescein-5-isothiocyanate; PErCP, peridinin–chlorophyll–protein.
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San Jose, CA, USA). Resulting graphics were evaluated by 

Flowing Software (Turku Center for Biotechnology, Univer-

sity of Turku, Turku, Finland).

Differentiation
Osteogenic differentiation was tested in 70% confluent, 

second to fourth passage rASCs and hASCs by adding 10−8 

M dexamethasone, 5 µg/mL ascorbic acid (Sigma-Aldrich 

Co.), and 3.15 mg/mL β-glycerophosphate (Sigma-Aldrich 

Co.) in the complete culture medium. Cells were maintained 

at 37°C and 5% CO
2
, changing the medium every 3–4 days. 

After 28 days, cells were fixed with paraformaldehyde 4% 

and stained with Alizarin Red (Sigma-Aldrich Co.).

Adipogenic differentiation was tested in 100% conflu-

ent cells by adding 10−2 M dexamethasone (Sigma-Aldrich 

Co.), 100 µM indomethacin (Sigma-Aldrich Co.), 2.5 µg/mL 

insulin (Sigma-Aldrich Co.), and 0.5 mM isobutilmetilxantin 

(Sigma-Aldrich Co.) in the complete culture medium. After 

21 days, cells were fixed and then stained with Oil Red O 

(Sigma-Aldrich Co.).

The chondrogenic differentiation was tested using 

StemXVivo Human/Mouse Kit (R&D Systems, Inc., Minne-

apolis, MN, USA) according to the manufacturer’s protocol. 

Briefly, 2.5×105 cells were maintained as a pellet in a 15 mL 

conic tube under special medium. The medium was changed 

every 3 days until 30 days, when the chondrogenic pellets 

were fixed, histologically processed, and 5 µm sections were 

stained with Alcian Blue (Sigma-Aldrich Co.).

Colony forming units (CFUs)
The CFU assay was performed by plating 5×102 second 

passage rASC and hASC cells in six-well culture plates for 

5 days. The culture medium was removed, and plates were 

washed with PBS and incubated in 4% paraformaldehyde 

for 30 minutes. Then, plates were washed with PBS and 

stained with Toluidine Blue 1% (Sigma-Aldrich Co.) to count 

the number of colonies formed and the number of cells per 

colony. Results were analyzed by GraphPad Prism software 

(La Jolla, CA, USA).

growth curve and doubling time
To determine the growth curve, six-well culture plates were 

plated with 1×104 rASC and hASC first to fourth passage cells 

per well, counting a well every 24 hours from days 3 to 8. The 

population doubling time was determined by the initial and final 

cell counting over time, according to the algorithm provided 

by Roth.19 Results were analyzed by GraphPad Prism software.

Cytokinesis-block micronucleous assay
To compare the nuclear stability of rASCs and hASCs, the 

cytokinesis-block micronucleus assay was performed as 

previously described by Fenech.20 Cells in passages 4–8 

were plated in 25 cm2 culture bottles until they reached 80% 

of confluence when 5 mg/mL of cytochalasin-B (Sigma 

Aldrich) was added for 48 hours. Then, cells were dissoci-

ated, centrifuged, and treated for 3 minutes in a hypotonic 

solution composed of 0.075% potassium chlorite and 1% of 

complete medium in distilled water. Cells were fixed with 

90% methanol and 10% acetic acid for 24 hours and observed 

using a microscope, where they were stained by Giemsa 

0.5%. A total of 600 binucleated cells of three biological 

samples of rASCs and hASCs were counted and analyzed 

using GraphPad Prism software.

Statistical analyses
Statistical significance was evaluated by Student’s t-test for 

comparisons between rASCs and hASCs or two-way ANOVA 

followed by Bonferroni test when multiple times were con-

sidered, using GraphPad Prism software. All experiments 

were performed with at least three independent biological 

replicates (three donors). Differences between mean values 

were considered as significant when P was <0.05.

Results
Stemness characterization
Flow cytometry analysis showed that rASCs and hASCs 

were both absent of hematopoietic markers CD34 and CD45 

(<5% of expression) and positive to CD105 (both 99.9%), 

CD73 (54% vs 100%), and CD90 (48% vs 99.5%) (Figure 

1A). The expression of CD73 and CD90 was significantly 

lower in rabbit cells in comparison with that of human cells.

Differentiation assays showed that both rASCs and 

hASCs were able to generate osteocytes, adipocytes, and 

chondrocytes (Figure 1B). The differentiations were qualita-

tively verified by the staining of calcified extracellular matrix 

by Alizarin Red (osteogenic differentiation), lipid inclusions 

by Oil Red (adipogenic differentiation), and collagen fibers 

by Alcian Blue (chondrogenic differentiation).

Proliferative profile
The rASCs presented threefold higher potential to form fibro-

blastic colonies in vitro in comparison with hASCs. By the 

CFU assay, 74.7%±9.9 SD of plated rASCs were able to gen-

erate colonies with five cells or more, while only 23.2%±1.1 

SD of plated hASCs resulted in colonies (Figure 2A). The 
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sizes of the colonies were also significantly higher in rabbits, 

varying up to 73 cells in rASCs (mean of 21.3±15.4 SD) and 

up to 50 cells in hASCs (mean of 12.38±7.6 SD; Figure 2B).

The growth curve assay showed a greater prolifera-

tion rate of rASCs than that of hASCs over time in culture 

(Figure 2C). The rASCs reached 100% of confluence after 

8 days, increasing their population 24.8 times, while the 

hASC population grew 17 times. Accordingly, hASCs needed 

significantly more days to double their population (2.3±0.17 

SD) than rASCs (1.2±0.17 SD; Figure 2D). Together, these 

findings demonstrate that rabbit cells feature higher clono-

genic potential and proliferation capacity than human cells.

nuclear stability
After we find that rASCs have a greater proliferative poten-

tial in vitro than the hASCs, we analyzed if their distinct 

proliferation rates and the culture conditions could cause 

nuclear alterations secondary to mitosis errors. Using the 

cytokinesis-block micronucleus assay, we observed nuclear 

buds (markers of gene amplification and/or elimination of 

Figure 1 Stemness characterization.
Notes: (A) Representative graphics of flow cytometry analysis of immunophenotypic markers in rASCs and hASCs. White peaks represent control cells; gray peaks 
represent immunolabeled cells; bars represent the mean of positive expression from three biological replicates. (B) Differentiation potential of rASCs and hASCs for 
osteogenesis, adipogenesis, and chondrogenesis. Calcified extracellular matrix was detected by Alizarin Red; lipid inclusions were stained by Oil Red and collagen fibers by 
Alcian Blue. Bars: 50 µm.
Abbreviations: rASC, rabbit ASC; hASC, human ASC; ASC, adipose-derived MSC; MSC, mesenchymal stem cell.
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DNA repair complexes), nucleoplasmic bridges (markers of 

DNA strand break misrepair and/or telomere end-fusions), 

and micronucleus (markers of chromosome breakage and/

or loss) in binucleated cells (Figure 3).20,21 In both rASCs 

and hASCs, we found low rates of nuclear alterations, with 

a relative frequency <0.05 of each type and no significant 

differences between the species. Thus, this result suggests 

that besides being highly proliferative, rASCs maintain their 

nuclear stability in vitro.

Discussion
MSCs derived from adipose tissue of different species have been 

widely studied in vitro and in vivo for various  applications.5,6,16,18 

The concept of MSCs as a heterogenic population and their 

distinct characteristics and potentials depending on sources 

and species has also been widely discussed.9,17,22,23 However, 

specific information regarding their distinct features and the 

implications for biotechnology applications and translational 

research is still scarce. In this study, we compared rASCs with 

hASCs and found that despite sharing similar differentiation 

potential and low rate of nuclear alterations over time in culture, 

they present distinct immunophenotype and proliferative pro-

file. Interestingly, these findings could positively or negatively 

affect their use for different applications.

First, we showed that hASCs express significantly more 

CD73 and CD90 than rASCs. These markers are largely 

Figure 2 Proliferative profile of rASCs vs hASCs.
Notes: (A) Efficiency of CFUs. Bar reflects the mean of three independent biological replicates±SD. ***P<0.001 using Student’s t-test. (B) number of cells per colony. each 
dot represents one colony counted in three biological replicates. lines show mean±SD. ***P<0.001 using Student’s t-test. (C) Comparative growth curve of rASCs and 
hASCs, represented as number of cells over time. each time point represents the mean of three biological replicates±SD. ***P<0.001 and **P<0.01 by two-way AnOVA 
followed by the Bonferroni test. (D) Population doubling time. Bar reflects the mean of three biological replicates±SD. ***P<0.001 using Student’s t-test. Together, these 
results demonstrate the higher clonogenic and proliferative profile in vitro of rASCs in comparison to hASCs.
Abbreviations: rASC, rabbit ASC; hASC, human ASC; CFU, colony forming unit; ASC, adipose-derived MSC; MSC, mesenchymal stem cell.
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known to be positive in MSCs from different sources, such 

as bone marrow, adipose tissue, dermis, muscle and umbili-

cal cord blood, and from different species, such as humans, 

cats, dogs, and pigs.8,24–26 However, contradictory results 

have been described in rabbits, as summarized in Table 2. 

Martínez-Lorenzo et al18 found 40.5% of CD90 expression 

in rASCs and negative expression of CD73 and CD105. In 

contrast, Sunay et al5 showed 99% of CD73-positive cells. 

In addition, the adipose tissue is not the only source of rab-

bit MSCs with distinct immunophenotype. Bakhtina et al27 

found absence of CD90 expression, and Lee et al28 observed 

no expression of CD73, CD90, and CD105 in rabbit bone 

marrow-derived MSCs. Despite the tested markers, other 

authors found that both rabbit and human MSCs are positive 

to CD29, CD44, and Sox2 while negative to CD14.11,27–29 

Furthermore, the disparities in the results could be due to 

unspecific antibodies, as anti-rabbit antibodies are not widely 

Figure 3 nuclear stability.
Notes: (A) normal binucleated cell and nuclear alterations observed by cytokinesis-block micronucleus assay. (B) relative frequency of binucleated cells with nuclear 
alterations in rASCs and hASCs. Both rabbit and human cells present lower than 0.05 relative frequency of each error type, with no statistical relevance between species 
using Student’s t-test.
Abbreviations: rASC, rabbit ASC; hASC, human ASC; ASC, adipose-derived MSC; MSC, mesenchymal stem cell.
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available and most studies were performed using reagents 

with no described reaction against rabbits. Differences in 

the passage of cells used in each study and variations in the 

methodologies of rASC isolation or immunostaining could 

also affect the results.26

Despite the immunophenotyping of MSCs having been 

used widely in different forms to characterize cells, the 

biological significance of these findings is not commonly 

discussed. Both CD73 and CD90 act as signaling molecules 

to various cell–cell and cell–matrix interactions.30,31 The CD73 

or ecto-5¢-nucleotidase plays a role in physiological responses 

such as epithelial ion and fluid transport, ischemic precondi-

tioning, tissue injury, platelet function, hypoxia, vascular leak, 

drug resistance, and tumor promotion.31 In addition, immu-

nosuppressive effects via CD73 mechanisms are described in 

MSCs.32 For example, a study using rat CD73+ MSCs suggests 

that this protein exerts a powerful anti-inflammatory effect 
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critical for cardiac recovery following myocardial ischemia/

reperfusion injury.33 It is also suggested that CD73 expression 

is related to MSC migratory potential and direct bone repair 

and regeneration.34,35 Similarly, the CD90 or Thy-1 is described 

to play a role in the synthesis and releasing of growth factors, 

cytokines, and extracellular matrix components to assist tis-

sue repair during inflammation and wound healing.30 CD90 

is also reported to affect stem cells’ growth, differentiation, 

and immunosuppression.36–38 Thus, the distinct expression of 

CD73 and CD90 in rabbit MSCs could be implicated in fail-

ure to translate results obtained in the rabbit model to clinic. 

Nevertheless, care should be taken when interpreting animal 

findings to human uses.

Despite presenting distinct immunophenotype, rASCs 

and hASCs were both able to generate several mesodermal 

tissues, demonstrating that their differentiation potential 

was not affected. Similar qualitative results were previously 

described with no differences between rabbit and human 

cells.5,27 However, our study could not infer quantitative or 

temporal information of rASC and hASC differentiation 

potential. Several independent quantitative studies showed 

contrasting results, while Bakhtina et al found a higher dif-

ferentiation potential of human bone morrow-derived MSCs 

for chondrocytes, osteocytes, and adipocytes.27 Martínez-

Lorenzo et al18 suggested a lower chondrogenic potential 

of hASCs in comparison with rabbit cells. As the MSCs 

are credited to their differentiation potential and paracrine 

effects, it would be useful to elucidate if differentiation 

potential of human and rabbit MSCs is distinct in some level.

After characterizing stemness features, we compared 

rabbit and human MSC proliferative profiles, where rASCs 

presented greater clonogenic potential and proliferation rate 

than hASCs. However, a previous study detected a higher clo-

nogenic potential of rASCs but no difference in their growth 

curve.18 Anyway, the remarkable proliferation of rASCs was 

previously reported in various studies when comparing the 

rabbit model with other animal models or the rASCs with 

other sources of MSCs.17,37,39 Interestingly, the proliferative 

rate of MSCs differently affects their use in preclinical studies 

and biotechnology applications.

On one side, the possibility of achieving a great number 

of cells in a short period of time is desired for cell-based 

therapy studies. Preclinical protocols testing MSC transplan-

tation or their association in tissue engineering often require 

millions to billions of cells, so the high proliferative rate of 

rASCs would be useful.40 For example, preclinical studies 

used rabbit MSCs in the treatment of osteochondral defects, 

cardiovascular diseases, and skin wound healing with great 

outcomes.41–43 In addition, the rabbit is the elected model 

for pharmacokinetic studies due its strong correlation with 

clinical trials.44 For instance, the rabbit ear scar model was 

successfully used prior to a Phase I randomized clinical trial 

for safety and tolerability of topically delivered kynurenic 

acid in humans and randomized controlled trials.45 Thus, the 

rASC fast proliferation consists of an advantageous charac-

teristic, promoting vast MSC availability for both in vitro 

and in vivo applications with a great translation described 

to human clinical medicine.

On the other hand, biotechnology studies have suggested that 

fast proliferation can be detrimental to cell  reprogramming.39,46 

For instance, Honda et al39 described not been able to induce 

pluripotency in rabbit fibroblasts due to their high prolifera-

tion rate. Similarly, our group could not effectively reprogram 

rASCs using the same protocols successfully applied in other 

species, such as dog, horse, bovine, and human.47–50 The induced 

pluripotent stem cell (iPS)-like colonies vanished after few 

days, possibly due to the high proliferation of rASCs (Figure 

S1A and B). After cell cycle arrest and synchronization by 

serum starvation, we were able to reduce the proliferative rate 

of rASCs and improve the transduction and reprogramming 

(Figure S1C–G).51 During mitosis, chromosomes were tightly 

condensed, making it difficult for transcription factors to bind 

to the DNA, which could explain why a high proliferative pro-

file may impair cell transduction.52 However, the mechanisms 

Table 2 Distinct findings of immunophenotypic markers’ expression in rabbit MSC studies

Reference Source CD73 (%) CD90 (%) CD105 (%)

This study Adipose tissue 54 48 99.9
Martínez-lorenzo et al18 Adipose tissue 1.6 40.1 20.5
Sunay et al5 Adipose tissue 99 – 99
Bakhtina et al27 Bone marrow – 0.1 –
lee et al28 Bone marrow 0.5 1.2 1.6
Tan et al54 Bone marrow 96.4 96.9 –
Kovac et al55 Amniotic fluid 1.2 17.1 2.5

Note: Values represent the mean described by the authors; – denotes not evaluated.
Abbreviation: MSC, mesenchymal stem cell.
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regarding the influence of the proliferation in the reprogram-

ming process are still poorly understood.

In addition, high proliferation and culture conditions are 

related to cell mutations.52,53 Malignant mutations can gener-

ate tumors in vivo, so low levels of errors are required for 

safe cell therapy applications.21 Interestingly, we found no 

significant difference between rabbit and human cells, and 

both presented low frequency of errors, similar to previously 

described in literature in human cells.20,21 For our knowledge, 

this is the first report of cytokinesis-block micronucleus 

assay in rabbit MSCs. This methodology is useful to predict 

risk factors; however, karyotyping or other genetic analysis 

is required to identify specific chromosomal alterations.21 

Together, these findings suggest that despite having a high 

proliferation, rASCs maintain their nuclear stability in vitro 

and could be safely used in preclinical therapeutic studies.

This study highlighted the distinct features of rASCs 

and hASCs and their possible implications to biotechnology 

applications and translational studies (Table 3). Both ASCs 

presented differentiation potential to osteocytes, chondro-

cytes, and adipocytes and shared similar immunophenotype 

expression to CD105+, CD34-, and CD45-, but rabbit cells 

expressed significantly less CD73 and CD90 than human 

cells. In addition, rASCs presented greater clonogenic poten-

tial and proliferation rate than hASCs but no difference in 

nuclear alterations. Future assays regarding the differentiation 

potential of rASCs and hASCs would be useful to elucidate 

if there are quantitative interspecific variations. In addition, 

authors should carefully evaluate results in the rabbit model 

as some specific features could affect translation of animal 

findings to future human applications.

Conclusion
rASCs and hASCs present distinct features regarding 

their immunophenotype and proliferative profiles that 

can  positively or negatively affect their use for different 

Table 3 Summary of comparative characterization of rASCs and hASCs

Feature rASC hASC Implications

immunophenotype CD34–, CD45–, CD73±, 
CD90±, CD105+

CD34–, CD45–, CD73+, 
CD90+, CD105+

MSC behavior and possible failure to 
translation

Differentiation potential 
(qualitative)

Osteocytes, chondrocytes, and 
adipocytes

Osteocytes, chondrocytes, 
and adipocytes

Unclear due to contrasting quantitative 
studies

Proliferative profile higher lower good source of cells to preclinical 
therapeutic applications but detrimental to 
reprogramming

nuclear alterations low low Safe for cell therapy

Abbreviations: rASC, rabbit ASC; hASC, human ASC; MSC, mesenchymal stem cell; ASC, adipose-derived MSC.

 applications in biotechnology (such as cell reprogramming) 

and translational studies (such as cell transplantation, tissue 

engineering, and pharmacokinetics). Despite their differ-

ences, rabbit studies have shown great translation to clinic; 

thus, these particularities between rASCs and hASCs should 

not prevent their use in in vitro and preclinical models, but 

care should be taken to interpret results and properly translate 

animal findings to medicine.

Abbreviations
ASC, adipose-derived MSC; CFUs, colony forming units; 

FITC, fluorescein-5-isothiocyanate; hASC, human ASC; iPS, 

induced pluripotent stem cells; MSC, mesenchymal stem cell; 

PE, phycoerythrin; PErCP, peridinin–chlorophyll–protein; 

rASC, rabbit ASC.
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Supplementary material

Figure S1 induction of pluripotency in rASCs.
Notes: rASCs after pluripotency induction showing iPS initial characteristic morphology (A) and partial reprogramming morphology (B). All colonies vanished after few 
days, possibly due to the high proliferation of rASCs. (C) Serum starvation treatment (rASC/starv) successfully decreased rASC activity, as shown by MTS viability assay 
(***P<0.001 using Student’s t-test). in the same way, starved cells transduced with a lentivirus carrying the gFP plasmid presented a higher expression than not starved rASCs 
by flow cytometry analysis (D), suggesting that the high proliferation of rASCs is detrimental to reprogramming and controlling the cell cycle by starvation can improve the 
pluripotency induction. Starved rASC-derived iPS colonies showing characteristic morphology (E) and positive alkaline phosphate staining under bright field (F) and phase 
contrast microscopy (G). Bars: 50 µm.
Abbreviations: rASC; rabbit ASC; iPS, induced pluripotent stem cell; Ctrl, control; ASC, adipose-derived MSC; MSC, mesenchymal stem cell; MTS, 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium).
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