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Purpose: A computational approach is described to analyze structure–activity relationship 

(SAR) information contained in compound and screening data sets. The methodology is designed 

to explore SAR information in a systematic and compound-centric manner in order to aid in 

the selection of hits from high-throughput screening (HTS) data.

Methods: Chemical neighborhood graphs integrate a graphical representation of the chemical 

environment of each active compound in a data set with the potency distribution within its 

neighborhood and information from a quantitative SAR analysis function. Environments are 

systematically generated and ranked by SAR information content. From these environments, 

key compounds and compound series can be selected.

Results: The methodology is described in detail. In addition, the application to four screening 

data sets is reported, revealing different SAR characteristics. A number of different examples 

of compound environments are presented and discussed that have varying SAR information 

content.

Conclusion: Chemical neighborhood graphs provide an intuitive graphical access to SAR 

 information contained in hit sets. SAR information is analyzed in a compound-centric manner, 

with a focus on local SAR environments (microenvironments). It is anticipated that this 

approach will complement and help to further refine current hit selection strategies and trigger 

the development of additional graphical analysis methods to search for SAR information in 

HTS data.

Keywords: screening data sets, hit selection, computational analysis, graphical representation, 

structure–activity relationship information

Introduction
Given the large size of current screening libraries, high-throughput screening (HTS) 

campaigns typically produce large numbers of active compounds, often 0.1%–1% of 

a screening library. Even after secondary screens and confirmatory assays, hundreds 

of active compounds, or even more, might remain for further study.1 The chemical 

exploration of confirmed hits presents a major bottleneck in early-phase drug dis-

covery because it is of course not possible to build a medicinal chemistry program 

around each chemotype found to be active in a screening campaign. Simply put, 

there are usually many more hits to choose from than one could possibly explore in 

hit-to-lead or lead optimization efforts. Consequently, hit selection becomes a rather 

critical task in the post-screening phase to effectively bridge HTS and medicinal 

chemistry programs, which is well recognized in pharmaceutical research.1 Given 

the large amount of compound activity data that are accumulating in HTS projects, 
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hits evolve into potent leads (in addition to other criteria; 

eg, synthetic accessibility, predicted metabolic stability, or 

potential toxicity).

In order to aid in the extraction of SAR information from 

screening data, we have attempted to organize structural and 

activity information contained in data sets in different ways 

and recently introduced the concept of “SAR pathways” as 

a computational approach to systematically search for SAR 

information in hit sets.10 SAR pathways organize active 

compounds as sequences of pairwise structurally similar 

molecules that follow an ascending potency gradient lead-

ing to, for example, the most active compounds in a data 

set. Through systematic mining of SAR pathways, SARs 

(if present in a data set) can be isolated and visualized.10 

As such, SAR pathways represent one possible concept 

to extract SAR information from screening sets, although 

they too have their limitations. For example, because active 

compounds are organized into molecular sequences on the 

basis of whole-molecule similarity, different chemotypes 

can participate in the formation of such pathways, which 

might make the interpretation of SAR characteristics dif-

ficult on occasions.

Here we describe another computational methodology to 

analyze SAR information contained in hit sets that concep-

tually differs from SAR pathways because it is compound-

centric in nature. Our so-called “chemical neighborhood 

graphs” (CNGs) analyze the structural neighborhood of each 

individual active compound in a data set and annotate it with 

SAR-relevant information. Therefore, this data structure is 

well-suited to characterize “SAR microenvironments” that 

are formed by a series of similar active molecules with differ-

ent potency distributions. CNGs are automatically generated 

and ranked on the basis of SAR information content. Much 

emphasis is put on intuitive graphical representations of 

chemical neighborhoods, interpretability of SAR features, 

and visualization of key compounds. The basic CNG data 

structure and display tools are made publicly available in 

order to support both HTS data analysis and computational 

method development in the scientific community. Herein the 

CNG approach is described in detail and applied to analyze 

four public domain screening data sets to illustrate its key 

features.

Material and methods
Data sets
Hit sets (enzyme inhibitors) from four screening data sets 

available in PubChem,14 as summarized in Table 1, were ana-

lyzed in this study. From these sets, only those compounds 

selection of hits solely on the basis of manual data analysis, 

guided by chemical intuition and experience, is virtually 

impossible.

Clearly, the interface between HTS and discovery 

chemistry is an area where scientists from different disci-

plines including biologists, screeners, medicinal chemists, 

and computational scientists need to closely interact. Com-

putational methods are nowadays routinely applied in order 

to organize and statistically analyze compound activity data 

as a prerequisite for hit selection.2 However, currently there 

are no standard recipes available for selecting the “most 

interesting” compounds from screening data; moreover, it 

is often unclear what “most interesting” means in this con-

text. Simply selecting the most active compounds from a 

screening data set is not sufficient to provide a sound basis 

for hit-to-lead efforts because facilitating successful hit-to-

lead transitions depends, first and foremost, on establishing 

sustainable and evolvable structure–activity relationships 

(SARs). Accordingly, both structural and activity criteria 

must be taken into account. For this reason, screening hits are 

usually computationally clustered on the basis of structural 

similarity.3,4 Then the distribution of hits in different clusters 

is analyzed and representative compounds are selected from 

these clusters, taking into account the number of hits a cluster 

contains. Such procedures ultimately select subsets of hits 

that cover the structural spectrum of active compounds, but 

do not take SAR characteristics into account. Therefore, 

clusters and/or pre-selected hits are often further analyzed 

by studying their core structures, or maximum common 

substructures, in order to produce a chemically intuitive 

organization of active compounds from which initial SAR 

information might be deduced. Furthermore, molecular 

scaffolds of active compounds can also be systematically 

decomposed on the basis of structural rules and organized 

in tree structures.5

For analyzing hit distributions in screening data, 

visualization tools have become indispensable6–8 and for 

interactive analysis, display items such as scatter plots 

or activity-based heat maps are routinely used. Recently, 

molecular network representations have also been utilized 

to mirror compound similarity and activity relationships 

in compound and screening data sets.9 However, none of 

the approaches that are currently applied to structurally 

organize active compounds or graphically analyze hit dis-

tributions is capable of directly extracting SAR information 

from screening data sets. Nevertheless, this is a critical task 

because, as mentioned above, evidence of SAR behavior 

is a key criterion to estimate the likelihood that selected 
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were selected that were annotated as ‘active’ and had 

 confirmed potency values (IC
50

) associated with them.

Generation of chemical  
neighborhood graphs
CNGs are generated as a radial view of the chemical 

 neighborhood of an active compound. Given a specific 

reference compound, a CNG presents molecules that are 

structurally similar to this compound in an organized manner 

potency
high

low

lower potency higher potency
potency of centroid

increasing potency

>0.65

= <0.65, >0.55

= <0.55, >0.45

= <0.45, >0.4

1 2 3 4

Figure 1 Shown is a schematic drawing of a CNG that illustrates its design. Molecules are represented by colored nodes and the orange node in the center corresponds to 
the reference compound (central compound) whose neighborhood is shown in the graph. The color code reflects the potency in the data set as indicated in the upper left 
corner. All compounds whose similarity to the central compound exceeds the predefined (ECFP4 Tc) threshold value of 0.4 are included in the graph representation. They 
are organized in layers that are defined by non-overlapping similarity ranges and represented by black concentric circles around the center. The similarity decreases from the 
center to the periphery, as indicated in by the similarity value intervals in the upper right corner. The innermost layer is referred to as the first layer and the outermost as the 
fourth layer. Compounds having lower potency than the central compound are located on the left half of the CNG and those with higher potency on the right half. In addition, 
compounds on each layer are arranged in a clockwise manner by increasing potency, as indicated by arrowheads.

Table 1 Summary of PubChem hit sets explored in this study

Target PubChem AID 
 ­(compound ­identifier)

Number of active  
compounds

Lowest  
potency [µM]

Highest potency 
[nM]

Cytochrome P450 3A4 (CYP-3A4) 885 3334 39.8 15.8

Cytochrome P450 2C19 (CYP-2C19) 899 1769 39.8 2.5

17-hydroxysteroid dehydrogenase type 10 
(HSD17-10)

893 5619 39.8 125.9

Factor XIIa (FXIIa) 852 146 45.3 10.4

Abbreviations: SAR, structure–activity relationship; CNG, Chemical Neighborhood Graph; HTS, high-throughput screening; IC50, half maximal inhibitory concentration;  
CYP-3A4, cytochrome P450 isoform 3A4; CYP-2C19, cytochrome P450 isoform 2C19; HSD17-10, 17-hydroxysteroid dehydrogenase type 10; FXIIa, Factor XIIa.

based on similarity and potency relationships to the reference 

molecule. A schematic radial view is shown in Figure 1. 

Similarity between compounds is calculated as the Tanimoto 

coefficient11 (Tc) based on ECFP4 fingerprints implemented 

in Pipeline Pilot®.12 These extended connectivity fingerprints 

monitor layered atom environments in test compounds and 

serve as molecular descriptors for our analysis.

To delineate the similarity radius of a neighborhood and 

assign compounds to it, we define a threshold value of 0.4 
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for ECFP4-Tc relative to the reference compound as the 

minimum required similarity; only compounds exceeding this 

similarity threshold value are included in the neighborhood. 

Hence, CNGs often capture overlapping subsets of active 

compounds, which helps to assess and differentiate SAR 

information content.

The molecules of the neighborhood are arranged in 

layers of decreasing similarity around the central reference 

compound and represented as colored nodes. The color code 

corresponds to compound potency using a continuous color 

gradient from green to red, corresponding to the lowest and 

highest potency values present in a data set, respectively.

Nodes that represent compounds with lower potency 

than the central compound are positioned on the left and 

more potent compounds on the right half of the graph. On 

each layer, nodes are arranged in a clockwise manner by 

increasing potency. Accordingly, the arrangement of nodes 

on different similarity layers and their color reflects the 

similarity and potency distribution within the neighborhood 

of the central compound.

In addition, nodes are scaled in size according to their 

compound discontinuity score9 that is calculated for a 

 compound i as follows.

discontinuity i

A A i j

j

i j
j i j i j( )

| | ( , )

|

{ | ( , ) . , }=
− ×

> ≠
∑ sim

si

sim 0 4

mm( , ) . ,i j i j> ≠{ }0 4

Here, A
i
 and A

j
 give the logarithmic potency value for 

 compounds i and j, respectively, and sim(i, j) corresponds 

to their ECFP4-Tc similarity value. This discontinuity score 

is calculated for an active compound by comparing it to all 

compounds in its environment and scores are normalized 

with respect to the distribution of scores for the entire data 

set. Under the assumption of a normal distribution, initial 

scores are transformed into z-scores for which cumulative 

probability values are subsequently calculated. The final 

score thus ranges from 0 (lowest discontinuity) to 1 (high-

est discontinuity). This discontinuity has a well-defined 

chemical meaning because it emphasizes structurally simi-

lar compounds having large differences in potency. If a com-

pound has many similar neighbors with significant potency 

differences, it will obtain a high discontinuity score.

Ranking of compound environments
After calculating the CNG for every compound, the resulting 

environments are independently ranked on the basis of three 

different parameters in decreasing order:

1. number of compounds within in the environment

2. mean potency of all compounds in the environment

3. discontinuity score of the central compound.

Accordingly, three individual CNG rankings are obtained 

(one with respect to each parameter) and thus, three rank 

numbers are assigned to each CNG. The sum of these three 

rank numbers is calculated and used to generate a final 

ranking. CNGs are assigned high final ranks if their sum 

of ranks is low, ie if they achieve high ranks for each of the 

three parameters. Accordingly, environments that combine 

a high number of compounds, a high mean potency value, 

and a high discontinuity score of the central compound are 

highly ranked.

Workflow
1. Calculate pairwise ECFP4-Tc similarity values for all 

possible compound pairs in the data set

2. Use each compound in the data set once as the central 

molecule and identify those compounds whose similarity 

to the central molecule exceeds the ECFP4-Tc threshold 

value of 0.4

3. Sort the identified environments by decreasing number 

of compounds and assign rank numbers

4. Sort the environments by decreasing mean potency and 

assign rank numbers

5. Sort the environments by decreasing central compound 

discontinuity score and assign rank numbers

6. For each environment, calculate the sum of these three 

rank numbers

7. Sort the environments by increasing sum of ranks

8. Display the environments as radial views in the previously 

determined order

Implementation
Tools to calculate and display CNGs are provided as a Java 

implementation within the freely available SARANEA 

program13 that can be obtained via the following URL:

http://www.lifescienceinformatics.uni-bonn.de/0-Seiten/

downloads/down.html

For the analysis of CNGs, there are additional convenient 

graphical tools available in SARANEA that are not described 

herein. For example, by moving the cursor over a node, the 

structure of the corresponding compound is displayed, which 

makes compound selection straightforward.

The calculation of CNGs is not significantly affected by 

increasing data set size. In addition to increasing numbers 
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of CNGs for larger data sets, the only limiting factor is the 

calculation of the pairwise compound similarity metric that 

has quadratic computational complexity. However, this 

matrix only has to be calculated once.

Results and discussion
CNG data structure and information 
content
The radial view in Figure 1 summarizes the information 

contained in CNGs and their organization. Active compounds 

(nodes) are arranged around the central molecule in four lay-

ers of decreasing similarity, each of which corresponds to a 

defined ECFP4-Tc interval. Nodes are colored according to 

their potency and organized in the CNG according to their 

potency relationship with the central compound, ie molecules 

that are more potent than the central compound are positioned 

on the right half of the graph and molecules that are less 

potent on the left half. Furthermore, on each similarity layer, 

compound potency increases in clockwise direction.

In addition to color-coding, nodes are scaled in size 

according to the discontinuity score of the corresponding 

compound, ie the larger the node, the higher the discontinuity 

score. The discontinuity score conveys important information 

concerning the contribution of each molecule including the 

central compound to the SAR discontinuity present within 

the data set. What does SAR discontinuity specifically refer 

to? And what would SAR continuity then mean in this 

context? If a compound is structurally very similar to others 

within the neighborhood, but has either considerably lower 

or higher potency, the underlying SAR is discontinuous in 

nature because there are abrupt changes in activity in the pres-

ence of high structural similarity.9 Such SAR discontinuity 

is thus characterized by the presence of large neighboring 

nodes. A particularly interesting case of SAR discontinuity is 

indicated by the presence of large red and green neighboring 

nodes, ie structurally very similar compounds having highest 

and lowest potency within the data set, which form a so-

called ‘activity cliff’.9,15 Multiple activity cliffs of different 

magnitude can be present within a neighborhood. By contrast, 

combinations of small adjacent and/or distant nodes indicate 

structurally similar compounds and/or increasingly diverse 

compounds that on average have only little or moderate 

 differences in activity, which corresponds to SAR continuity.9 

In this case, changes in chemical structure are accompanied 

by only gradual changes in activity. Moreover, combinations 

of continuous and discontinuous SAR components can be 

found within the same data set or microenvironment, thus 

indicating the presence of SAR heterogeneity.9,10

Because an individual CNG is created for each active 

compound, the number of CNGs available for comparison 

is typically large, eg a hit set containing 500 compounds 

yields 500 CNGs; already too many for side-by-side com-

parisons. Therefore, ranking of CNGs according to SAR 

information content is an important part of our analysis. 

In CNG ranking, general criteria are applied, and equally 

weighted, that are a prerequisite for rich SAR information. 

The criteria we utilize herein are simple and intuitive and 

include the number of active compounds within an environ-

ment (because small numbers of compounds cannot convey 

much information), the mean potency of these compounds 

(because we rather focus on highly than weakly potent 

compounds), and the discontinuity score of the central com-

pound. Applying this third criterion is particularly important 

for our analysis because of its compound-centric view and 

comprehensive nature. Neighborhoods containing SAR 

discontinuity are a priori more rich in SAR information than 

purely continuous environments. Hence, if we know that a 

 central compound induces SAR discontinuity, the neighbor-

hood is of interest to us. However, we do not wish to primar-

ily focus on neighborhoods that are largely discontinuous in 

their SAR character so that we do not lose information from 

high medium low

Rank

<

45

55

65

<

45

55

65

<

45

55

65

Figure 2 Exemplary CNGs taken from the CYP-3A4 data set (see Table 1) are shown to illustrate the results of the ranking procedure.
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Figure 3 (opposite and above) Four CNGs from the CYP-3A4 data set are shown. The structure and potency of the central compound are always given left to the graph, surrounded 
by a box. Selected compounds are marked by black circles and their structures, similarity to the central compound, and potency values are shown right to the graph.

heterogeneous environments. Therefore, we do not apply, 

for example, the mean discontinuity score of a neighborhood 

as a ranking criterion, but rather the discontinuity score of 

the central compound.

Taken together, the three applied ranking criteria capture 

different aspects that are relevant for SAR information and 

ultimately provide a ‘compromise’ solution. This scheme 

generally produces robust and intuitive rankings of CNGs, 

as illustrated in Figure 2; comparing a highly-ranked (a), 

mid-range (b) and lowly-ranked (c) compound neighborhood. 

As can be seen, the number of compounds decreases from 

(a)–(c), node colors shift towards green (ie lower potency), 

and the ratio of large to small nodes also decreases, owing 

to the fact that a high discontinuity score of the central com-

pound means that there usually are at least one or a few large 

nodes present (that are similar to the central compound but 

either much more or less active). The ranking of CNGs of 

a data set makes it not only possible to immediately select 

top-scoring CNGs but also “scroll” through neighborhoods 

of gradually changing SAR character and hence recognize 

patterns that might aid in the selection of additional CNGs 

for further analysis.

Application to screening data
We have applied the CNG methodology to four hit sets from 

screens against different types of targets that are publicly 

available in PubChem. The targets screened were (1) cyto-

chrome P450 isoform 3A4 (CYP-3A4) and (2) isoform 2C19 

(CYP-2C19), (3) 17-hydroxysteroid dehydrogenase type 10 

(HSD17–10) and (4) factor XIIa (FXIIa). These data sets 

were selected because they exhibit different types of SAR 

characteristics.

Cytochrome P450 3A4
Many diverse chemotypes are found in the hit set for target 

CYP-3A4 and a few of them comprise large numbers of 

compounds. Accordingly, highly ranked environments are 

predominantly found to consist of large series of closely 

related compounds having, however, different potency. The 

top-ranked neighborhood is shown in Figure 3a. The major-

ity of the 142 compounds contained in this CNG have low 

to medium potency, as indicated by the dominance of green 

and yellow nodes. Only a few molecules including the central 

compound display higher potency, represented as orange 

nodes. Most compounds are located on the first and second 

similarity layer indicating that they belong to a series of ana-

logs. With an IC
50

 value of 251 nM, the central compound is 

the most potent one within this environment and forms mod-

erately-sized activity cliffs with surrounding weakly potent 

neighbors. The presence of SAR discontinuity in the series 

including the central compound is due to the presence of only 

a few key compounds that have significantly higher potency 

than the majority of molecules in this series. Nevertheless, 

the dense coverage of the low to medium potency range 

together with the presence of a few activity cliffs indicate 

that this compound series is generally amenable to chemi-

cal modification leading to an increase in potency. Thus, the 

central compound and its neighbors might be selected from 

this data set for further chemical exploration.

A different situation can be observed in the neighborhood 

shown in Figure 3b, which corresponds to the 13th-ranked 

CNG and consists of 112 compounds, an example of another 

well-represented compound series. With an IC
50

 of 316 nM, 

the central compound has comparable potency to the central 

compound shown in Figure 3a but has a lower discontinuity 
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score. This can be rationalized by examining the potency 

distribution within the neighborhood. Compared to Figure 3a, 

more compounds have potency values comparable to the 

central compound and thus lower its relevance for introducing 

SAR discontinuity and activity cliffs. The presence of SAR 

discontinuity is also notable here but it is rather a general 

feature of this environment and results from contributions of 

multiple compounds. Accordingly, activity cliffs are formed 

by different pairs of compounds. This neighborhood obtains 

a lower score than the top-ranked CNG because it contains 

significantly fewer compounds and the discontinuity score of 

the central compound is lower. However, it is much richer in 

overall SAR discontinuity than the top-scoring neighborhood 

and also contains continuous SAR elements. Consequently, 

the series including the central compound in Figure 3b also 

represents an attractive candidate for selection and further 

exploration.

Besides the typical appearance of CNGs on medium 

or low ranks, as illustrated in Figure 2, some lower-ranked 

neighborhoods are found to display unusual potency distribu-

tions. For example, in Figure 3c, a neighborhood consisting 

of only seven compounds is shown. However, the potency 

distribution is unusual in that all of these compounds have 

medium to high potency. Accordingly, there is only little 

SAR discontinuity and the nodes are small. Moreover, these 

compounds are structurally not similar to other active mol-

ecules. Observing such an environment is a rather rare event. 

At first glance, this phenotype might be indicative of artificial 

inhibition or the presence of “frequent hitters”. However, the 

central compound, the fungicide imazalil (PubChem CID 

6604394), has been tested in a total of 75 PubChem screening 

assays, but found to be active in only five of them: screens 

for substrates or inhibitors of cytochrome P450 isoforms. 

Moreover, all seven compounds in this environment belong 

to the imidazole family of fungicides, known inhibitors of 

cytochrome P450 isoforms,15 and their mechanism of action 

depends on interfering with ergosterol synthesis by inhibiting 

fungal P450 enzymes.17,18 The unusual potency distribution 

observed in Figure 3c is therefore unlikely to represent an 

artifact, but might rather be attributed to screening set com-

position bias.

Another unusual situation is evident in the CNG shown 

in Figure 3d. Here the central compound has very high 

potency (25 nM) but its structural neighbors are all only 

weakly potent. The central compound is thus the only cause 

of SAR discontinuity within its environment. This phenotype 

might be indicative, for example, of a false-positive measure-

ment, but searching PubChem does not provide conclusive 

evidence. Although this compound was found to show 

auto-fluorescence, emitted at ∼350 nM (PubChem AID 589 

and 590), the cytochrome assays studied here used a luciferin 

read-out, detecting luminescence at about 562 nM.19 Thus, the 

measurement leading to the phenotype in Figure 3d might be 

correct. Nevertheless, SAR information is unusually sparse 

within its neighborhood, which obtains only a low rank (831) 

in this data set, and the central compound might be flagged as 

a potential ‘outlier’ and one would need to be cautious priori-

tizing it only on the basis of its apparent high potency.

Cytochrome P450 2C19
Similar to the CYP-3A4 screen, highly ranked CNGs for 

the CYP-2C19 isoform are dominated by only a few chemo-

types, as illustrated in Figure 4a and 4b. However, in contrast 

to the previously discussed P450 isoform hit set, com-

pounds with high potency are more frequent in these series, 

although neighborhoods generally contain fewer compounds. 

S
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NH2N
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Figure 4 (opposite and above) Four CNGs from the CYP-2C19 data set are shown. The representation in this and the following figures corresponds to the one in Figure 3. 
The positions of four selected compounds labeled A, B, C, and D are indicated in the graphs.
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The CNGs shown in Figure 4a and 4b are ranked second and 

16th, respectively, and were selected because their central 

compounds (referred to as A in Figure 4a and B in 4b) are 

structurally similar and represent two prevalent series. Con-

sequently, their neighborhoods overlap, notably by sharing 

highly potent compounds. The red nodes seen on the right 

side of the graph in Figure 4a correspond to the red nodes 

on the first similarity layer in Figure 4b, thus indicating that 

they are more similar to series B. The main structural dif-

ference between these two central compounds, which alters 

the composition of their neighborhoods, is the central ring 

system that consists either of a pyrimidine-4-amine (A) or 

quinazoline-4-amine (B). Both neighborhoods contain only 

derivatives of these two ring systems. The red nodes on the 

first layer in Figure 4b represent close analogs that contain 

the central quinazoline-4-amine substructure and, in addi-

tion, have a pyridine-3-methyl group bound to the amine. The 

combination of these two substructures is not found in any 

other molecule of the neighborhood. By contrast, the yellow 

and orange nodes on the third layer in Figure 4b correspond 

to compounds containing a central pyrimidine-4-amine 

group substituted with a pyridine-3-methyl at the amine. All 

compounds containing a quinazoline-4-amine ring system 

are either highly or weakly potent, which leads to high SAR 

discontinuity. However, several compounds containing the 

central pyrimidine-4-amine structure have medium potency, 

which indicates that these two series are characterized by 

different SARs. The quinazoline derivatives have higher 

potency values than the pyrimidines which are due to the 

presence of the additional pyridine ring. Some of the more 

potent pyrimidine compounds also carry this substituent. 

The presence of additional nitrogen atoms in all medium to 

highly potent compounds might suggest a pharmacophore 

resemblance that is not obvious by focusing on the individual 

compound series. Thus, the comparison of the two ring 

systems found in these overlapping neighborhoods reveals 

detailed SAR information and suggests a practical analog 

design strategy. Figure 4c and 4d show two CNGs represent-

ing the same compound series that are differently arranged 

due to the alternative selection of the central compound. 
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Figure 5 Two CNGs from the HSD17–10 data set.
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When choosing compound C as the center (Figure 4c), 

all compounds are found in the first and second similarity 

layer, whereas the compounds are distributed over all four 

layers when compound D becomes the central compound 

(Figure 4d). Hence, compound C is more similar to other 

compounds in this series than compound D. Both compounds 

are highly potent (C: 10 nM, D: 2.5 nM), but compound C is 

structurally very similar to three weakly potent compounds 

and thus forms steep activity cliffs, whereas compound D 

is more similar to compounds having higher potency. Thus, 

in this case, bioactivity better correlates with structural 

similarity to compound D, which represents a continuous 

SAR component. By contrast, compound C introduces SAR 

discontinuity. These different relationships might also be 

exploited in analog design.

17-hydroxysteroid dehydrogenase  
type 10
Compared to the examples discussed thus far, highly potent 

compounds are rare in the HSD17–10 data set. Although 

many active compounds were found in this screen, the 

potency distribution is narrower than observed for the 

cytochrome P450 isoform hit sets (see also Table 1) and 

compounds with low potency dominate the HSD17–10 set. 

Consequently, compound neighborhoods generated from 

these hits contain many green nodes. Figure 5a shows the 

top-ranked CNG. SAR discontinuity is mainly introduced 

by four compounds with medium to high potency and there 

is only limited SAR information contained in this neighbor-

hood. For this data set, the main source of SAR information 

is the analysis of activity cliffs. For the top-ranked environ-

ments of the HSD17–10 hit set, the distribution of compounds 

and potency values is comparable to the example shown in 

Figure 5a. Thus, although this screening set contains only 

limited SAR information, multiple moderately sized activity 

cliffs are detected in high scoring neighborhoods that can aid 

in compound selection. This information would not be avail-

able by studying potency value distribution alone.

The neighborhood depicted in Figure 5b contains 

a compound series that is well-represented among the 

screening hits. All 79 compounds in this neighborhood 

are purine derivatives. This CNG represents a prototypic 
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Figure 6 Two CNGs from the FXIIa data set.
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example of what would be considered a ‘flat’ SAR. All 

compounds have virtually the same low potency (∼30 µM) 

but span the entire similarity range of the neighborhood. 

Thus, structurally increasingly dissimilar compounds retain 

similar potency, which indicates that further chemical 

modifications might not yield more potent compounds (cor-

responding to ‘flat’ SAR behavior). Only two exceptions 

are found on the right side of the CNG that have slightly 

higher potency values of ∼13 µM. Thus, this neighborhood 

is of very low priority for SAR exploration, as is reflected 

by its low rank (1975).

Factor XIIa
The set of FXIIa inhibitors deviates from the other examples 

because it is much smaller in size, consisting of only 146 

compounds. However, the majority of these compounds 

are structurally rather similar. In Figure 6, neighborhoods 

containing two similar compound series are shown (series A 

in 6a and B in 6b), both consisting of 1,2,4-triazole deriva-

tives carrying a nitrogen substituent (the only exception is 

shown in Figure 6a). Nevertheless, these neighborhoods do 

not overlap. The difference between the series lies in the 

distribution of other substituents. In series A, the nitrogen 

substituent is always a primary amine, whereas series B con-

tains an amide linker with varying substituents. In addition, 

all members of series B have a carboxyl methyl ester group 

attached to the triazole ring.

Series A in Figure 6a represents the top-ranked 

neighborhood, contains more compounds than series B (rank 

4), and displays a larger potency value spread, although the 

potency range covered by both series is comparable. Series 

B in Figure 6b represents a much more discontinuous SAR 

than series A, which is essentially due the absence of com-

pounds in series B that have medium potency. One would 

thus preferably compare the SAR characteristics of series 

A and B after adding more analogues to B. If differences in 

the potency distribution prevail, distinct SAR characteristics 

would be associated with these similar triazole series. If not, 

SAR information might be transferable from one series to 

the other by comparing their substitution patterns. Hence, 

comparison of compound neighborhoods also yields differ-

entiated SAR information for similar compound series.

Conclusion
We have introduced chemical neighborhood graphs for 

the detailed exploration of SAR information contained in 

screening data. The approach is data-driven and compound 

centric in nature and methodologically distinct from other 

computational HTS analysis methods. The CNG method 

puts much emphasis on studying and comparing SAR 

microenvironments in a graphical and intuitive manner. 

Currently, compound potency and discontinuity scores are 

utilized as compound attributes. However, other parameters 

such as drug-likeness or synthetic accessibility could be 

readily added as additional node annotations. Using pub-

licly available screening data, we have demonstrated that 

different levels of SAR information can be readily extracted 

from hit sets of different composition and characteristics. 

This information helps to prioritize compound series for 

selection and further chemical exploration. The CNG tools 

are made publicly available to support HTS data analysis 

and catalyze further methodological developments.
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