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Abstract: Botulinum neurotoxins (BoNTs), and in particular serotype A, are the most poison-

ous of known biological substances, and are responsible for the flaccid paralysis of the disease 

state botulism. Because of the extreme toxicity of these enzymes, BoNTs are considered highest 

priority biothreat agents. To counter BoNT serotype A (BoNT/A) poisoning, the discovery and 

development of small molecule, drug like inhibitors as post intoxication therapeutic agents is 

being pursued. Specifically, we are focusing on inhibitors of the BoNT/A light chain (LC) (ie, 

a metalloprotease) subunit, since such compounds can enter neurons and provide post intoxica-

tion protection of the enzyme target substrate. To aid/facilitate this drug development effort, 

a pharmacophore for inhibition of the BoNT/A LC subunit was previously developed, and is 

continually being refined via the incorporation of novel and diverse inhibitor chemotypes. Here, 

we describe several analogs of a promising therapeutic chemotype in the context of the phar-

macophore for BoNT/A LC inhibition. Specifically, we describe: 1) the pharmacophoric ‘fits’ 

of the analogs and how these ‘fits’ rationalize the in vitro inhibitory potencies of the analogs, 

and 2) pharmacophore refinement via the inclusion of new components from the most potent 

of the presented analogs.
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Introduction
Botulinum neurotoxins (BoNTs), secreted by bacteria of the genus Clostridia, have 

been described as both ‘Dr Jekyll and Mr Hyde’1 and ‘two-faced’ enzymes.2 On the one 

hand, very low concentrations of locally injected BoNTs (mainly BoNT/A), and to a 

lesser degree BoNT serotype B, provide many beneficial medical treatments.3–10 On the 

other hand, BoNTs are the deadliest of known biological toxins (eg, the lethal dose of 

BoNT/A in humans is estimated to be 1.0 ng kg-1).1 Due to the ease with which BoNTs 

may be obtained and disseminated, these toxins are categorized among the highest prior-

ity, category A, biothreat agents by the Centers for Disease Control and Prevention.11 

Hence, there is an ongoing effort to develop small molecule, nonpeptidic, inhibitors 

(SMNPIs) to counter the muscle paralyzing effects of these toxins post exposure.

There are seven known BoNT serotypes (designated A–G).12–17 Structurally, the 

active compositions of the enzymes, following proteolytic processing,1 include a heavy 

chain (HC) subunit and a light chain (LC) subunit. The HC mediates toxin internalization 

into the cytosol of motor neurons.18,19 The LC subunit is a zinc (II) metalloprotease that 

cleaves, depending on the serotype, components of the soluble N-ethylmaleimide-sensitive 
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factor attachment protein (SNARE) complex in the neuronal 

cytosol.20 The cleavage of proteins composing the SNARE 

complex inhibits acetylcholine release into neuromuscular 

junctions, which results in the life-threatening flaccid paralysis 

associated with botulism.20

Of the seven BoNT serotypes, A, B, E and F are known 

to cause botulism in humans,21,22 with BoNT/A possess-

ing the longest duration of activity in the neuronal cytosol 

(eg, from several weeks to months, depending on the severity 

of the poisoning23–25). The metalloprotease LC of BoNT/A 

(ie, the BoNT/A LC), cleaves SNARE component synapto-

somal associated protein of 25 kDa (SNAP-25),12 which, as 

its name implies, is anchored to the intracellular membrane 

of the motor neuron terminus.1 Hence, due to its duration of 

action, and because it causes botulism in humans, the vast 

majority of research to develop SMNPIs that will counter 

BoNT intoxication post neuronal internalization, has focused 

on the BoNT/A LC.26–42

In this study, we analyzed BoNT/A LC SMNPI analogs 

of a promising chemotype for therapeutic development, 

namely, 6-carbamimidolyl-2-[4-(4-carbamimidoylphenoxy) 

phenyl]indole (SMNPI 1, Table 1), which: 1) possesses the 

ability to penetrate into the neuronal cytosol,29 2) provides 

dose-dependent protection of SNAP-25 in neurons,29 3) is well 

tolerated by neurons at 40 µM concentration,29 and 4) is 

selective for the BoNT/A LC versus other metalloproteases 

(eg, anthrax lethal factor, the BoNT serotype B LC, human 

matrix metalloprotease-1 (MMP-1), and human MMP-9 

(data not shown)). First, seven analogs of parent SMNPI 

1 possessing half maximal inhibitary concentrations (IC
50

) 

values  25 µM were analyzed and their in vitro activities 

were rationalized based on their pharmacophoric ‘fits’. 

Second, the most potent of the analogs (SMNPI 2) was 

compared in three dimensional (3D) space with different 

chemotypes that were used to develop the latest iteration 

of the pharmacophore36 for BoNT/A LC inhibition (ie, the 

3-zone pharmacophore36). Finally, 3D comparisons between 

SMNPI 2 and the other chemotypes,36 were used to further 

refine the pharmacophore for BoNT/A LC inhibition.

Material and methods
SMNPI synthesis
The syntheses employed to generate the presented SMN-

PIs (Table 1) will be reported in detail elsewhere.43 The 

synthesis of 1 has been reported previously.44 In general, 

the reported SMNPIs were obtained from either mononitrile 

or dinitrile intermediates, which were prepared via either 

Cadogan–Sundberg indole syntheses or Suzuki coupling 

reactions.44 SMNPI 2 was synthesized by treating dinitrile 

10 with N,N-dimethylethylenediamine under Pinner reac-

tion conditions (Scheme 1). SMNPIs 3-5 and 7-8 were 

synthesized from their corresponding dinitrile intermediates 

(eg, compounds 10 and 15) employing P
2
S

5
 (Scheme 2). 

Analogs 6, 11, 13 and 14 were also synthesized employing 

either P
2
S

5
 or the Pinner reaction. Amide substituted analogs 

9 and 12 were prepared by treatment of the corresponding 

dinitrile or mononitrile intermediate, respectively, with 4:1 

(v/v) TFA/H
2
SO

4
.

In vitro testing
The FRET-based assay used to determine BoNT/A LC 

inhibition has been previously described.45 In brief, small 

molecule, 20 µM SNAP-25 peptide substrate (residues 

187–203) with the sequence SNRTRIDEAN[DnpK]RA

[daciaC]RML (Peptides International, Louisville, KY), 

and 10 ng of BoNT/A LC (List Biological Laboratories, 

Campbell, CA) were incubated at 37°C for 40 min in the 

presence of buffer (50 mM HEPES–0.05% Tween, pH 7.4) 

(final volume = 100 µL). For each assay run, the reaction 

was terminated using acetic acid (0.5% of the final conc.) 

before fluorescence measurement of the cleaved substrate 

(at 485 nm) following excitation at 398 nm employing a 

Molecular Devices plate reader (Sunnyvale, CA). Half 

maximal inhibitory concentrations (ie, IC
50

 values) were 

calculated via dose-response measurements.

Pharmacophore modeling
All SMNPI overlays (ie, superimpositions and alignments), 

for the evaluation of SMNPIs within the context of the 

pharmacophore, were conducted using Insight II (version 

2005) software (Accelrys, San Diego, CA). Moreover, 

SMNPI conformation energy refinements were carried out 

using the Discover program (Accelrys) (cff91 force field) as 

a module within Insight II. Conformations of SMNPIs were 

examined for viability using an intramolecular atom-atom 

Van der Waals bump cutoff of 0.25 Å. All modeling using 

Insight II was performed on a Dell Precision 690 worksta-

tion (Dell Inc., Round Rock, TX) running Linux Red Hat 

Enterprise (version 4; Red Hat Inc., Raleigh, NC). Figure 2 

was generated using Insight II.

Results and discussion
A promising lead BoNT/A LC SMNPI chemotype for 

development as a potential therapeutic agent (SMNPI 1, 

Table 1) was discovered via database mining29 of the NCI 

Open Repository, and subsequently, a limited number of 
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Table 1 Parent SMNPI 1, analogs 2–8 possessing IC50 values  25 µM, and (for comparison) inactive analogs 9–15. The compound 
­components­are­colored­as­they­‘fit’­the­pharmacophore­displayed­in­Figure­1­(zone-1­components­are­black­and­zone-2­components­are­
colored red). Substituents deviating from the pharmacophore are colored green. Non-cationic zone-1 and zone-2 components, resulting 
in inactive analogs 9–15, are colored burgundy

SMNPI Structure In vitro potency (IC50)
a

1

N
H

O
HN

H2N
NH

NH2

11 µM

2

N
H

O
NH

HN

NH

HN
N

N

2.5 µM
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N
HS

O

N

N

H
N

7.1 µM
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H

O H
N

N

N

NH

OH

HO
7.3 µM
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H

O H
N

N

N

H
N

12.5 µM
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N
H

H
N

N

N

H
N

20 µM

7

N
H

O H
N

N

N

NH 21 µM

8

N
H

N
O H

N

N

N

H
N

24.5 µM

9

N
H

O
H2N

O

O

NH2

100 µM

10

N
H

ON

N

100 µM

11

N
H

Cl

O

H
N

N

100 µM

12

N
H

F
O

NH2

100 µM

13

N
H

H3CO
NH

NH2

100 µM

(Continued)
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Table 1 (Continued)

SMNPI Structure In vitro potency (IC50)
a

14

N
H

NH

NH2

F
100 µM

15

N
H

N
ON

N

100 µM

Notes: aIC50­values­were­determined­based­on­the­average­of­two­experiments­using­a­FRET-based­assay­(see­‘material­and­methods’­for­details).­The­data­represent­average­
values with a variation of less than 10%.
Abbreviations: BoNT, botulinum neurotoxin; BoNT/A, botulinum neurotoxin serotype A; BoNT/A LC, botulinum neurotoxin serotype A light chain; HC, heavy chain; 
SMNPI, small molecule, nonpeptidic, inhibitor; µM, micromolar; IC50, half-maximal inhibitory concentration; 3D, three-dimensional.

analogs were synthesized and reported.44 Using this SMNPI 

chemotype (in conjunction with other, structurally different 

BoNT/A LC SMNPI chemotypes), a gas-phase, 3-zone 

 pharmacophore for BoNT/A LC inhibition was generated 

(Figure 1).36 Importantly, the pharmacophore was gener-

ated based solely on the 3D overlays of the hydropathic and 

sterically complementary components shared by diverse 

BoNT/A LC SMNPI chemotypes.36 Additionally, in the 

same study,36 the 3-zone pharmacophore was validated via 

its use to generate a 3D search query that, via 3D database 

mining, identified a novel BoNT/A LC SMNPI chemotype.36 

Moreover, the 3-zone pharmacophore was subsequently 

validated by research demonstrating that the synthesis 

of a designed SMNPI incorporating a zone-3 component 

produced an SMNPI with nM range inhibitory efficacy.31 

However, the substituent composition necessary for SMNPI 

optimization within zone-3 has yet to be defined (Figure 1). 

For example, at this time we know that both aliphatic36 and 

aromatic31 moieties can occupy this zone, but we do not 

know if other substituents are tolerated or will demonstrate 

improved zone-3 occupancy. Therefore, to further increase 

the overall resolution of the pharmacophore, we are constan-

tly incorporating new BoNT/A LC SMNPI chemotypes, as 

well as analogs of known BoNT/A LC SMNPIs. In this study, 

a variety of analogs of parent SMNPI 1 (Table 1), a known 

small molecule chemotype with therapeutic potential,29 were 

analyzed.

With regard to 1, this SMNPI occupies only zones-1 

and -2 of the 3-zone pharmacophore (Figure 1); however, 

as indicated above, the addition of a pharmacophore zone-3 

component on this chemotype gives an SMNPI with superior 

inhibitory potency.31 To evaluate the pharmacophoric ‘fits’ of 

the analogs of SMNPI 1 (Table 1) presented in this study, the 

first phase of the research involved examining seven active 

analogs (ie, those demonstrating IC
50

 values 25 µM) for 

pharmacophoric ‘component’ complementarity, as well as 

for any novel substitutions that might contribute to the refine-

ment of the current pharmacophore model.

As observed in Table 1, analogs 2–8 all possess the pre-

viously described pharmacophore zone-1 and -2 ‘flanking’ 

cationic substituents that are necessary for low µM range 

inhibitory potency.36 However, the nearly equivalent IC
50

 

values of SMNPIs 1 and 5 indicate that either amidine 

or imidazoline substituents are equally efficient with 

respect to inhibition of the BoNT/A LC; comparatively, 

the higher IC
50

 value for SMNPI 7 indicates that flanking 

1,4,5,6-tetrahydropyrimidines are also tolerated, but are not 

optimal substituents. In this regard, it is hypothesized that 

the cationic substituents of SMNPIs 1–8 (Table 1) engage 

in hydrogen bonds with anionic residues of the BoNT/A 

LC. Hence, for SMNPI 7, the additional hydrophobic 

ring methylene units of the 1,4,5,6-tetrahydropyrimidine 

substituents are hypothesized to interfere with SMNPI:

BoNT/A LC binding. This hypothesis provides a ratio-

nale for SMNPI 7 being less active than SMNPIs 2–6 

(Table 1). Indeed, our hypothesis regarding the decreased 

inhibitory potency of SMNPI 7 appears to correspond 

with the fact that reestablishing a hydrogen bond donor 

on the 5-positions of these six-membered-ring systems 

(ie, 1,4,5,6-tetrahydropyrimidin-5-ol), to give SMNPI 4, 

results in an analog with an IC
50

 value that is 1.5-fold more 

potent than parent SMNPI 1 (Table 1).

For comparison, Table 1 also shows analogs 9–15, which 

are structurally similar to SMNPIs 1–8, but which possess 

amides, a chlorine, a fluorine, a methoxy, or nitrile functional 

groups at the same flanking positions of pharmacophore 

zones-1 and -2; analogs 9–15 are all inactive. This analysis 

provides indisputable evidence supporting the importance of 

the zone-1 and -2 cationic components of the pharmacophore 

(Figure 1) that are found in 1–8.

Analogs 1–8 also possess the zone-1 and -2 planar com-

ponents that are, as specified by the 3-zone pharmacophore 
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(Figure 1), necessary for BoNT/A LC inhibitory potency.44 

However, SMNPI 6 possesses an ‘abridged’ zone-1 planar 

component compared to other analogs displayed in Table 1. 

Specifically, for parent SMNPI 1, zone-1 is composed of 

two phenyl rings bridged by an oxygen atom. By con-

trast, the abridged zone-1 planar component of SMNPI 6 

(ie, a lone phenyl ring), significantly shortens the length 

of this analog compared to parent SMNPI 1 (Table 1); 

this deviation from the pharmacophore rationalizes the 

decreased potency of SMNPI 6 versus SMNPI 1 (Table 1). 

Furthermore, the higher IC
50

 value for SMNPI 8 indicates 

(compared to the inhibitory efficacies of all other SMN-

PIs in Table 1), that a benzimidazole, while tolerated for 

this SMNPI chemotype, is not an optimal substitution 

for an indole as the planar component of pharmacophore 

zone-2.

Regarding new analog structural components that dif-

fer from parent SMNPI 1, and which may be used to refine 

the pharmacophore model, the inhibitory efficacy of ben-

zothiophene containing SMNPI 3 (Table 1) indicates that 

either a hydrogen bond donor (ie, the indole nitrogen atom 

of the parent chemotype 1) or acceptor (the sulfur atom of 

benzothiophene-based 3) is tolerated as the heteroatom in the 

planar ring system component of zone-2. However, based on 

the increased potency of SMNPI 3, which is 1.5 fold more 

potent than parent SMNPI 1, and 1.8 fold more potent than 

SMNPI 5 (Table 1), it appears that a hydrogen bond acceptor 

is preferred at this position in the zone-2 heteroatom-con-

taining ring system. Interestingly, this was also observed 

for several SMNPIs that were identified at the same time as 

was SMNPI 1, which possessed zone-1 benzofuranyl het-

eroatom containing ring systems29 versus an indole. Finally, 

the superior inhibitory efficacy of SMNPI 2 (Table 1), 

which is 4.4 fold more potent than parent SMNPI 1, indi-

cates that extending two cationic N,N-dimethylaminoethy1 

substituents from both ends of the zone-1 and zone-2 cat-

ionic components is favorable. Importantly, the extended 

N,N-dimethylaminoethyl substituent on the zone-2 amidine 

of SMNPI 2 (Table 1) is hypothesized to occupy zone-3 of 

the 3-zone pharmacophore for BoNT/A LC inhibition, and 

partially accounts for the improved inhibitory potency of 

SMNPI 2 compared to either parent SMNPI 1, or any other 

analogs (ie, SMNPIs 3–8 shown) in Table 1. This hypoth-

esis is analyzed in detail below using 3D superimpositions 

with structurally diverse BoNT/A LC SMNPIs that were 

used to develop the 3-zone pharmacophore for BoNT/A 

LC inhibition.

Comparisons of SMNPIs 1–8 (Table 1) (discussed 

above) prefaced the second phase of this study: the analy-

sis of how potent SMNPI 2 (Table 1) overlays with other, 

structurally diverse SMNPIs in the context of the 3-zone 

pharmacophore, and how the inclusion of SMNPI 2, along 

with zone-1 information from SMNPI 3, served to refine the 

pharmacophore.

N
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N
N

N
N

O
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N
H

1. HCI (g), EtOH

NH2, EtOH

HN

NH
NH
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Scheme 1 The synthesis of SMNPI 2.
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Scheme 2 The synthesis of SMNPIs 3–5 and 7–8.
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Figure 2a displays 3D overlays of SMNPIs 1, Q2-15,36 

and NSC 10499936 (which was identified via a 3D search 

query that was based on the 3-zone pharmacophore36) within 

the context of the 3-zone pharmacophore for BoNT/A LC 

inhibition. The Figure 2a SMNPI overlays are displayed to 

preface the SMNPI overlays shown in Figure 2b. Figure 2b 

displays the 3D overlays of SMNPIs 2 (Table 1), NSC 

104999, and Q2-15 in the context of the 3-zone pharmaco-

phore. Not surprisingly, this overlay clearly shows that the 

extended N,N-dimethylaminoethyl substituent on the zone-2 

amidine of SMNPI 2 can occupy pharmacophore zone-3. 

Interestingly, the cationic tertiary nitrogen of SMNPI 2 super-

imposes closely with the weakly basic 4-amino functionality 

of the Q2-15 4-amino-7-chloro-quinoline component that 

occupies zone-3 (Figure 2b). At the same time, the methylene 

units of the N,N-dimethylaminoethyl substituent extending 

from the zone-2 amidine of SMNPI 2 superimpose well 

with the N-butyl moiety methylene units of NSC 104999 

that occupy zone-3. Hence, the overlays shown in Figure 2b 

refine the 3-zone pharmacophore for BoNT/A LC inhibition 

by indicating that zone-3 may be occupied by not only 

aromatic and hydrophobic-aliphatic moieties,36 but also 

by an aliphatic-cationic moiety (ie, the tertiary amine of 

SMNPI 2).

The overlay of SMNPI 2 with SMNPI NSC 10499936 in 

Figure 2b also indicates the possibility of a new pharmaco-

phore zone-4 as an extension from zone-1. Previously, it was 

speculated that there may be additional binding surface com-

plementarity for moieties extending from SMNPI zone-1.36 

The close superimposition of the N-butyl moiety extending 

from the zone-1 aromatic component of NSC 10499936 and 

the N,N-dimethylaminoethyl substituent extending from the 

zone-1 amidine of SMNPI 2 provides additional evidence 

supporting this hypothesis. However, more SMNPI testing 

is required to accumulate the necessary quantity and quality 

A)

B)

ZONE 1

ZONE 1 ZONE 2

ZONE 2
ZONE 3

ZONE 3

Possible New
Zone-4?

Hydrogen bond donor
or Acceptor possible

Aromatic,
aliphatic,
cationic

Figure 2 The 3D superimposition of diverse SMNPIs in the context of the 3-zone 
pharmacophore­for­BoNT/A­LC­inhibition­resulted­ in­pharmacophore­refinement­
(black arrows and text). Nitrogen atoms are blue, oxygen atoms are red, and chlorine 
atoms are light green. A) Overlay of SMNPIs 1, NSC 104999, and Q2–15. Carbon 
atoms are green for 1, magenta for NSC 104999, and cyan for Q2–15. B) Overlay of 
SMNPI 2, NSC 104999, and Q2–15. Carbon atoms are orange for SMNPI 2; all other 
atom colors are as indicated in (a).        

of data needed to unequivocally justify pharmacophore 

refinement via the inclusion of a zone-4 component.

Finally, although SMNPI 3 (Table 1) is not shown in the 

Figure 2b overlay, the inhibitory efficacy of SMNPI 3, which 

is more potent than parent SMNPI 1, implies that either a 

hydrogen bond acceptor or a hydrogen bond donor is allowed 

as the heteroatom in the planar ring system component of 

pharmacophore zone-2. Specifically, SMNPI 3 possesses 

a zone-2 benzothiophene core (Table 1), versus the indole 

zone-2 core found in all other SMNPIs in Table 1. Therefore, 

in Figure 2b, the pharmacophore has been refined by show-

ing that the zone-2 planar ring system may contain either a 

hydrogen bond donor or a hydrogen bond acceptor.

Conclusion
Several analogs of potent BoNT/A LC SMNPI 1 (Table 1), 

which is a lead chemotype for development as a potential 

therapeutic agent, were evaluated in the context of a 3-zone 

pharmacophore for BoNT/A LC inhibition. The most potent 

SMNPI analog (SMNPI 2, Table 1) was overlaid with other, 

structurally diverse SMNPIs (Figure 2b), and in combination 

with SMNPI 3, resulted in refinement of the 3-zone pharma-

cophore for BoNT/A LC inhibition.
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