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Background: Although in-lab polysomnography (PSG) remains the gold standard for objec-

tive sleep monitoring, the use of at-home sensor systems has gained popularity in recent years. 

Two categories of monitoring, autonomic and limb movement physiology, are increasingly 

recognized as critical for sleep disorder phenotyping, yet at-home options remain limited out-

side of research protocols. The purpose of this study was to validate the BiostampRC® sensor 

system for respiration, electrocardiography (ECG), and leg electromyography (EMG) against 

gold standard PSG recordings.

Methods: We report analysis of cardiac and respiratory data from 15 patients and anterior tibi-

alis (AT) data from 19 patients undergoing clinical PSG for any indication who simultaneously 

wore BiostampRC® sensors on the chest and the bilateral AT muscles. BiostampRC® is a flexible, 

adhesive, wireless sensor capable of capturing accelerometry, ECG, and EMG. We compared 

BiostampRC® data and feature extractions with those obtained from PSG.

Results: The heart rate extracted from BiostampRC® ECG showed strong agreement with the 

PSG (cohort root mean square error of 5 beats per minute). We found the thoracic BiostampRC® 

respiratory waveform, derived from its accelerometer, accurately calculated the respiratory 

rate (mean average error of 0.26 and root mean square error of 1.84 breaths per minute). The 

AT EMG signal supported periodic limb movement detection, with area under the curve of 

the receiver operating characteristic curve equaling 0.88. Upon completion, 88% of subjects 

indicated willingness to wear BiostampRC® at home on an exit survey.

Conclusion: The results demonstrate that BiostampRC® is a tolerable and accurate method 

for capturing respiration, ECG, and AT EMG time series signals during overnight sleep when 

compared with simultaneous PSG recordings. The signal quality sufficiently supports analyt-

ics of clinical relevance. Larger longitudinal in-home studies are required to support the role 

of BiostampRC® in clinical management of sleep disorders involving the autonomic nervous 

system and limb movements.
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Introduction
The objective recording of sleep physiology is required for certain sleep disorders such 

as sleep apnea and periodic limb movement disorder.1 The role of objective testing 

for other disorders such as insomnia, traditionally diagnosed and managed solely on 

clinical grounds, is gaining increasing attention.2–4 Beyond the commonly accepted 

clinical phenotypes, advanced analytics of autonomic function in particular has an 

extensive evidence basis and shows promise for informing sleep quality and cardio-

vascular risk.5–7 In parallel with this improved understanding of sleep  pathophysiology, 
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advances in at-home technology have facilitated “real-

world” assessments that may mitigate certain limitations 

of in-lab polysomnography (PSG). For example, the first 

night effect8 is a reminder that in-lab PSG may disrupt the 

very process of sleep one intends to measure. In addition, 

at-home sensing allows tracking over time, which is criti-

cal for any process that exhibits night-to-night variability, 

whether stochastic or linked to waking behaviors or expo-

sures that vary over time.9–12 To date, the dominant form of 

at-home monitoring focuses on uncomplicated obstructive 

sleep apnea (OSA) detection,13 whereas at-home detection of 

periodic limb movements of sleep (PLMS) by accelerometry 

has shown only limited success and is not commonly used 

in practice.14 Given the proposed links between PLMS and 

vascular morbidity,15 coupled with the fact that at-home 

sleep monitors for OSA do not contain leg sensors,16 there 

is urgent clinical need specifically for PLMS-tracking solu-

tions. In addition, tracking autonomic physiology through the 

windows of noninvasive cardiac and respiratory physiology 

may inform various aspects of sleep disturbance of potential 

clinical relevance,17–20 in addition to tracking electrocardi-

ography (ECG) for arrhythmia. Interestingly, single-channel 

respiration signals such as thoracic movement can support 

estimation of the apnea–hypopnea index (AHI),21 which 

may inform screening or be used to quantify the so-called 

apnea burden.22 The aim of the current work is to validate 

BiostampRC®, a small, wireless adhesive sensor system that 

is worn on the chest for ECG and respiration measurements, 

or on the leg for anterior tibialis electromyography (EMG) 

measurements.

Methods
This study was approved by the Partners Institutional Review 

Board, and all participants provided signed informed consent. 

Adult patients undergoing PSG in the clinical laboratory for 

any reason were eligible to participate. PSG recordings were 

performed in accordance with the American Academy of 

Sleep Medicine (AASM) in this accredited laboratory, and 

scored by experienced technologists off-line. The analysis 

considers N=19 subjects (13 males/6 females) with an aver-

age age of age 54±12 years and average body mass index 

(BMI) of 29.31±4.9. See Table 1 for individual subject 

descriptors. Standard clinical PSG sensors were applied 

according to AASM practice standards, including surface 

electrodes on the left and right anterior tibialis (LAT and 

RAT, respectively) surface muscle. A BiostampRC® sensor 

was applied next to each clinical lead on the bilateral legs, 

and two BiostampRC® sensors were placed on the anterior 

chest for cardiac and respiration measurements.

respiration
The BiostampRC® contains a tri-axial accelerometer that can 

capture motion. When placed on the chest wall, the motion 

detected is associated with inhalation and exhalation. For 

validation, we compare the output of our respiratory rate algo-

rithm on both the BiostampRC® respiratory waveform and 

Table 1 Demographics and ecg analysis across individual subjects

Subject Age 
(years)

M/F BMI Lead I  
readable %

Lead I RMSE 
(bpm)

Lead II  
readable %

Lead II RMSE 
(bpm)

19P0907 67 M 35.1 47 5 93 2
18P0907 42 M 24.9 72 3 13 2
20P0907 52 M 27.9 95 3 27 2
34P0907 53 M 33.7 39 6 55 1
24P0907 70 M 24.1 91 4 61 5
23P0907 62 M 30.2 88 4 81 4
28P0907 60 M 29.1 85 4 86 14
31P0907 33 F 19.7 50 6 81 7
30P0907 58 M 34.5 81 2 22 N/a
29P0907 57 F 32.9 21 3 98 2
17P0907 21 M 25.9 63 5 77 14
32P0907 51 F 34.6 47 10 67 2
33P0907 27 F 28.5 95 2 60 2
27P0907 67 F 38.3 17 4 53 21
26P0907 72 F 29.3 51 21 90 1
25P0907 67 M 25.1 75 4 44 3
21P0907 61 M 28.0 46 2 89 3
Cohort 54.12 11M/6F 29.5 61 5 67 5

Abbreviations: ecg, electrocardiography; M, male; F, female; BMi, body mass index; rMSe, root mean square error; bpm, beats per minute; N/a, not applicable.
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the PSG system’s airflow waveform, as performed by Bates 

et al.23 The BiostampRC® accelerometer-derived respiration 

(ADR) waveform preprocessing consists of three steps: low-

pass filtering (as described in 23), principal component analy-

sis (PCA), and a resonator filter (Figure S1). The low-pass 

filter removes high-frequency noise while still preserving 

the shape of the respiratory waveform. A PCA then linearly 

projects the three axes onto an orthogonal set that maximizes 

variance. We assume the respiration signal can be spread 

across multiple spatial axes. We then select the projection 

identified by PCA as the most variate and augment it as a 

fourth channel. A respiratory signal quality evaluation then 

selects the best of the four channels within a given 1-minute 

epoch. The algorithm assigns a signal quality index to each 

channel according to the signal power ratio of the waveform 

against the human respiration frequency band (0.05–0.5 Hz). 

Both the PSG airflow channel and BiostampRC® respiration 

channels were assigned a signal quality index value. For the 

respiration analysis, epochs where the PSG had low signal 

quality index are not analyzed, even if the BiostampRC® 

system reported an acceptable signal quality index.

The channel with the best quality provides the input for 

the resonator filter. In the case where all channel signal qual-

ity falls below a preset threshold (0.65), a respiration rate for 

that epoch is not reported, as the signal is likely corrupted by 

motion artifacts or other sources of noise.

The resonator filter tunes the signal to its central dominant 

frequency, selected as the most prominent power spectrum 

density peak from its Fast Fourier Transform. This filter 

smooths notches in the respiratory waveform that may bias 

the respiratory rate state machine. The resonator designs 

a tight bandpass filter, with dominant gain at the central 

frequency. The width (kernel) of the filter was empirically 

determined to be 1.5. The respiration rate state machine, 

originally described by Bates et al,23 compares this final ADR 

signal directly against the PSG airflow signal.

The state machine defines high (H), middle (M), and low 

(L) bands of the sinusoidal respiratory waveform. A scaling 

factor multiplied by the standard deviation of the epoch’s 

signal establishes the bounds about the mean of the ADR 

sinusoid for the high, middle, and low regions. A breath 

qualifies when the state machine sees that the signal passes 

through the bands in H–M–L–M–H order (or a permutation 

of that order). The algorithm stores the start and end time 

of each breath. This gives an instantaneous respiration rate 

according to each breath. Once all breaths within the min-

ute window have been detected, the algorithm calculates 

the median of the instantaneous respiration rates from each 

detected breath. The median value is the reported respira-

tion rate of that epoch. We limited the reporting of PSG and 

BiostampRC® respiration rates to between 2 and 60 beats per 

minute (bpm), under the assumption that rates outside of this 

range were nonphysiological.

heart rate
The BiostampRC® system contains an analog front-end 

sensor capable of detecting electrophysiological signals 

(sampling frequency range between 125 and 1,000 Hz). Study 

participants wore two BiostampRC® devices on the upper 

torso to capture ECG activity, the first in a Lead I configura-

tion (horizontal) and the second in a Lead II configuration 

(right shoulder to left hip direction, 30 degrees from verti-

cal). A beat detection algorithm identifies the R peaks within 

the QRS complexes of the ECG signal.24 The median R–R 

interval for each minute determines the epoch’s heart rate 

(HR) in bpm for that specific lead configuration. The HR 

calculated from the BiostampRC® ECG signals (Lead I and 

II) are compared against the gold standard defined by the 

PSG pulse rate derived from a pulse oximeter worn on the 

subject’s finger.

The Pan Tompkins beat detection is a widely used and 

reliable R peak identifier, validated on the MIT/BIH and AHA 

databases.24 The algorithm consists of four transformations: 

digital bandpass filter, differentiation, signal rectification, 

and a moving window integration. The digital bandpass 

filter consists of both high- and low-pass filters designed to 

enhance signal components of human ECG frequency bands. 

The filtered signal undergoes differentiation to find the slope 

of the QRS complex. The algorithm then intensifies the slope 

of the frequency–response curve by squaring the differential. 

Rectification limits the prominence of T waves with high 

spectral energy and therefore reduces T wave detection as a 

false positive. Finally, the moving window integration creates 

a signal which contains both the slope and width parameters 

per QRS complex. A series of learned thresholds determines 

beats from this processed signal.

The algorithm determines dual thresholds for detec-

tion based on a series of learning phases. Learning Phase I 

informs the beat detection threshold, adjusting for the signal 

vs noise spectrum. Learning Phase II uses initial heart beats 

to initialize the R–R interval average and limit thresholds. 

If a beat of appropriate slope and width falls within these 

determined threshold, Pan-Tompkins assigns a pulse for the 

QRS complex. With each detection, the thresholds adapt 

to accommodate significant change in the R–R interval. A 

refractory period of 200 ms after each beat detection ensures 
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a single beat will not be identified multiple times and intro-

duce false positives.

We limited reporting of HR and validation statistics to 

when the incoming BiostampRC® ECG signal passes two 

signal quality requirements. The signal quality checks on the 

raw ECG waveform consist of two indices: a frequency power 

ratio and a contact quality index (CQI). The frequency power 

ratio calculates the ratio of power in a selected frequency band 

against the power of the rest of the spectrum. We consider 

the main signal frequency band of the QRS energy to be 

between 10 and 20 Hz.

The frequency power ratio was designed to identify arti-

facts (ie, 60 Hz interference, and some muscle activities). 

Another primary source of noise in the ECG signal is due 

to partial or poor electrode contact on the skin surface. This 

type of noise overlaps with the ECG frequency spectrum. 

To evaluate electrode contact, a temporal-based CQI was 

designed. The ECG signal is first median-filtered to give 

a cleaner estimate of the ECG signal. The median-filtered 

signal is subtracted from the original ECG signal resulting 

in an estimate of the background noise. The CQI equals the 

ratio of the power of the estimated noise to the power of the 

estimated ECG signal. During poor contact, the power of the 

noise will be significantly lower than the power of the median-

filtered ECG signal. With good electrode contact, the noise 

statistics are more Gaussian and the CQI converges to one. 

To pass, both the frequency ratio and the CQI values have 

to be greater than the prespecified threshold of 0.5, or else 

the section of data is marked unreadable. The ANSI/AAMI 

60601-2-47 standards outline reporting practices for ECG 

recordings.25 According to these standards, ECG recordings 

may be tagged into readable and unreadable sections when the 

ECG signal is lost to noise. For BiostampRC®, the readable 

or unreadable designation is done on 5 second, contiguous 

windows. Validation statistics comparing BiostampRC® to 

the gold standard PSG system was reported only when the 

signal quality deems the BiostampRC® ECG readable. The 

percent of the signal determined to be unreadable is reported 

in Table 1.

Muscle eMg
BiostampRC® contains an analog front end (sampling fre-

quency of 250 Hz) that can detect electrical signals from 

muscle activity present during muscle contractions. We aim 

to systematically compare the PSG and BiostampRC® signals 

by seeing if the same contractions (as annotated by clinicians 

on PSG signal) are visible in both data streams. The PSG 

and BiostampRC® signals were aligned using an instructed 

 activity of leg contractions during clinical biocalibration at 

the start of the PSG recording. The EMG signals from the 

LAT and RAT were treated independently. The expert annota-

tion files were analyzed and selected data followed the AASM 

scoring guidelines. Rarely, annotations of periodic leg move-

ment (PLM) events longer than 10 seconds were noted, and 

presumed to be erroneous and thus were not included in the 

analysis. A total of 25.6 hours of data were selected, consist-

ing of selections ranging in duration from 2 to 30 minutes.

The transformation of the BiostampRC’s® EMG signal 

followed standard practices of EMG analysis.32 The steps are 

as follows: filtering, rectification, and an envelope function. A 

bandpass filter cleans each EMG signal’s frequency content 

to eliminate interference outside of the 1–45 Hz range. A 

median filter with a small kernel (0.15 seconds) addresses 

spikes in the voltage signal such as may occur with gross 

movements. These artifact spikes can be of on the same order 

of magnitude of contractions (0.01–0.15 mV). In rectification, 

all amplitudes become positive by taking the absolute value 

of the filtered signal. Finally, a smoothing operation takes 

place to estimate the envelope of the rectified signal. Options 

to find the envelope include low-pass filter, moving average, 

and root mean square (RMS) calculation. The RMS method 

maintains signal power better than the moving average and 

does not have ringing artifacts that can occur in the low-pass 

filter method.32 RMS was selected for the BiostampRC® 

envelope calculation.

The PSG and BiostampRC® envelope signals were com-

pared directly on a window-to-window basis (2 seconds) with 

the PSG data as the gold standard. Because we are performing 

a sensor-level validation, we focused on correlations in signal 

fluctuations rather than tech-scoring of PLMS events per 

se. The contraction positive class was determined when the 

PSG signal surpassed a threshold and lasted for at least 0.5 

seconds. The envelope function caused an average reduction 

in power of 50% for the PSG signal, so the AASM threshold 

of 0.008 mV was halved to 0.004 mV above baseline noise 

for the contraction identifications threshold. To find the 

optimal BiostampRC® threshold to match the PSG system, 

the BiostampRC® contraction identification was performed 

using a grid search over all parameters. The parameters to 

determine the final threshold included a set mV value added 

to an estimate of the noise floor. In any given section of region 

of interest, we assume the signal contains a significant amount 

of noncontraction samples. A histogram of the considered 

section shows the range of amplitudes within the signal. The 

noise floor was then estimated from the low bin values of 

the histogram.
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The quality of the PSG and BiostampRC® signals are 

dependent on both body physiology and electrode application 

as the electrodes require good conductance for a clear signal. 

The variability of each subject’s application requires a per-

sonalized set of parameters for signal-to-signal comparison. 

For this reason, each grid search was calculated individually 

rather than find a best fit for the cohort.

To minimize edge effects of slight differences in contrac-

tion shape, windows containing edges of the contraction are 

not considered in the final analysis. If either signal in the 

PLM series did not pass a signal-to-ratio requirement, that 

data were not considered. For the signal-to-signal analysis, 

the number of true negatives (TNs) greatly outweighs the 

number of true positives (TPs), which will impact accuracy 

calculations due to weighting by the performance in the 

dominant class. Examples of TN class were randomly chosen 

to balance the number of TP class events by patient.

Results
respiration
The subject population consisted of 15 participants who were 

undergoing clinical PSG evaluation. The mean age was 52, 

the mean BMI was 28.0, and 10 were male (Table 2).

The respiratory rate state machine calculated respiratory 

rate from the gold standard (PSG) airflow measurement and 

from the BiostampRC® ADR waveform, epoch by epoch. The 

respiration detected by the BiostampRC® vs that detected by 

PSG for an example subject is shown in Figure 1, including 

a calculated rate (panel A) and superimposed raw waveforms 

(panel B). We were able to calculate a respiration rate 74% 

of the time that the gold standard was able to calculate a rate. 

The root mean square error (RMSE), a common metric for 

reporting error, was 1.84 breaths/minute in the group. For 

individual subject results, see Table 2. The mean absolute 

error across subjects was 0.26 bpm with a cohort relative 

error of 0.04%.

heart rate
Figure 2 is a representative segment comparing the raw ECG 

signals of the PSG and BiostampRC® systems. The analysis of 

HR extracted from the BiostampRC® raw signals, per subject, 

is reported in Table 1. The HR (in bpm) equals the median 

value of the instantaneous R–R intervals over 1 minute. This 

HR is compared with the HR reported by the PSG system 

from a pulse oximeter. We compared two body locations to 

evaluate HR: Lead I at the hypochondrium location and Lead 

II over the upper left chest. Across 17 subjects, the average 

RMSE for both Lead I and Lead II was 5 bpm. (One subject 

could not be reported for Lead II due to a low percentage of 

readable data.)

leg movements
In the validation study for leg movements, we tested the 

surface EMG (sEMG) sensor system on the left and right 

anterior tibialis, adjacent to the gold standard PSG sen-

sors. An image of a BiostampRC® in this position is given 

in  Figure S2. Examples of raw muscle activity signals are 

shown in Figure S3. We considered the muscle contractions 

as the primary indicator for comparison of the BiostampRC® 

and the PSG EMG signals. To determine the threshold 

Table 2 Demographics and respiration analysis across individual subjects

Subject Age (years) M/F BMI Readable (% record) RMSE (min−1) MAE (min−1)

17P0907 21 M 25.9 78 1.59 0.21
18P0907 42 M 24.9 79 1.61 0.23
19P0907 67 M 35.0 71 2.87 0.61
20P0907 52 M 27.9 80 1.58 0.06
21P0907 61 M 28.0 70 1.22 0.26
22P0907 60 M 22.4 72 2.60 0.75
23P0907 62 M 30.2 71 1.38 0.03
24P0907 70 M 24.1 62 2.25 0.40
25P0907 67 M 25.1 69 1.53 0.64
27P0907 67 F 38.3 51 2.95 0.04
31P0907 33 F 19.7 81 2.06 0.04
33P0907 27 F 28.5 76 1.76 0.02
38P0907 73 M 30.0 77 0.92 0.04
42P0907 28 F 39.3 79 1.99 0.42
45P0907 56 F 20.4 88 1.30 0.13
Cohort 52 10M/5F 28.0 74 1.84 0.26

Abbreviations: M, male; F, female; BMi, body mass index; rMSe, root mean square error; Mae, mean average error.
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for identifying limb movement events, we conducted a 

parameter tuning over a grid search. The most influential 

parameter was the adaptive threshold above baseline noise, 

which was iteratively increased from 0.004 to 0.011 mV. 

Figure 2 electrocardiogram measurements.
Notes: Overlaid raw signals from the ecg of the PSg recording (blue) and the ecg measured by the Biostamprc® (red) placed at lead ii position on the chest.
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Figure 1 respiration measurements.
Notes: (A) Overlaid calculations of respiratory rate (rr) from the Biostamprc® system (red dots) and the PSg recording (blue dots) for a full night of recording in the lab. 
(B) Overlaid raw (blue) and filtered (green) signal of respiration from the BiostampRC®.
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BiostampRC’s® average threshold was 0.0085 mV. Figure 3 

shows an example of PSG and BiostampRC® EMG signals, 

annotated as to true/false positive/negative, based on this 

threshold approach.
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Each parameter configuration provided a sensitivity and 

specificity, which were then plotted on a patient-specific 

ROC curve with false positive (FP) rate (1-specificity) on the 

x-axis and TP rate (sensitivity) on the y-axis (Figure 4). The 

final configuration chosen per subject was the point with the 

minimum distance from the [0, 1] point on the ROC curve. 

The overall resulting area under the curve for the ROC curve 

was 0.88. At the balance point of the ROC curve, sensitivity 

equals 0.87 with a specificity of 0.82.

Discussion
Although in-lab PSG provides important data for clinical 

diagnostics, several limitations are well known: uncomfort-

able environment, high personnel and resource burden, 

regional variation in access to sleep laboratories, and the 

use of single-night snapshots for clinical decision-making. 

Thus, diagnostic testing has seen a transition of monitoring 

into the home, using limited sensors, mainly to detect OSA.13 

However, these kits have their own limitations of comfort, 

usability, and accuracy—and most are designed for only one 

or two nights of recording. Because autonomic and EMG 

signals have use beyond that of OSA detection, the clinical 

need remains for improved at-home monitoring for clinical 

sleep evaluation and management.

This validation study demonstrates that the BiostampRC® 

system provides accurate sensing of HR, RR, and leg EMG, 

compared with gold standard equivalent sensor data during 

routine clinical PSG. As such, the system offers the opportunity 

for a more natural and less invasive approach to multi-night at-

home cardiopulmonary monitoring during sleep. In total, 88% 

of subjects when surveyed upon study completion expressed 

willingness to wear the BiostampRC® system in the home.

For comparison of respiration rate performance, Bates 

et al reported RMSE=0.38, with maximum 3 breaths/minute 

on postoperative patients, in which 45% of the data were 

useable.23 In a subsequent study, 19 patients (age 53±26 

years) who received opioid analgesia were monitored post-

operatively.26 The study compared an accelerometry and nasal 

Figure 3 limb movement detection example.
Notes: The anterior tibialis eMg signals from the Biostamprc® (blue) and PSg system (red) are shown in A. The black bars in B and C represent identified contractions.
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cannula-derived respiration rate at a 5-minute epoch using the 

algorithm described in a study.23 Their analysis found 62% 

of the accelerometer data to be usable for comparison to the 

nasal cannula as gold standard. They reported an absolute 

difference of 0.6 breaths per minute and average 87%±8% 

agreement within 3 breaths per minute on 67%±13% of 

matched breaths. Overall, the BiostampRC® system is com-

parable with other ADR rate methods, in terms of accuracy vs 

gold standard and usable data proportion of recording time. 

Here, the BiostampRC® and PSG were within an average of 

0.26 breaths per minute and at 74% of the PSG total time. 

The degree of acceptable data loss will depend on the clinical 

goals of monitoring, with less tolerance in settings of unstable 

vital signs or alarm-based decision support.

The BiostampRC® system can couple HR and respiration, 

which have been used in algorithms designed to screen for 

sleep apnea,27 or to distinguish obstructive and central forms 

of sleep apnea.28 Future studies of our system in subjects with 

a range of sleep apnea severity and obstructive vs central 

phenotypes can test the hypothesis that the sensor data can 

support such algorithms, especially for at-home monitoring 

uses. Further studies are necessary to determine whether the 

system is feasible for respiration rate monitoring around-

the-clock in patients warranting inpatient care and real-time 

information about respiratory status.

It is possible that a single BiostampRC® sensor could pro-

vide both cardiac and respiratory information. When placed at 

the Lead II location, one BiostampRC® sensor may be used to 

capture both respiratory rate and HR. In this study, respiration 

rate was derived from the accelerometer at the Lead II loca-

tion. The ECG signal also includes respiratory information. 

As a person inhales and exhales, the electrical impedance of 

the body changes and modulates the QRS complexes. The 

modulation reflects the breathing pattern of the subject. The 

electrocardiogram-derived respiration (EDR) signal provides 

another respiratory estimation. Combining respiration rate mea-

surements from multiple data streams as described in a study29 

could improve the robustness of respiration rate estimation.

PLMS is not uncommon, and the main predictor is the 

presence of restless legs syndrome (RLS; or Willis–Ekbom 

disease), with most patients with RLS having elevated 

PLMS if studied using PSG. However, most individuals 

with elevated PLMS will not have RLS symptoms, and thus 

the occurrence of PLMS may remain occult unless PSG is 

performed. Given this clinical uncertainty at the diagnostic 

phase, there is an urgent need for PLMS-specific sensing 

that does not require PSG. Beyond the cross-sectional 

links with vascular morbidity, the link between elevated 

PLMS and non-refreshing sleep remains poorly understood: 

patients may remain asymptomatic, or have insomnia, or 

hypersomnia. The ideal path to diagnose elevated PLMS is 

unclear, as symptom prediction outside of clinical RLS is 

quite uncertain.30 Another major challenge in the diagnostic 

phenotyping of PLMS is night-to-night variability.31 At the 

management phase, assessing the impact of therapy depends 

on self-reported sleep symptoms, whether insomnia or 

Figure 4 rOc curve for PlMS detection.
Notes:  each vertical bar is 2 seconds duration (the entire segment is just over 2 minutes of recording). The signals are color coded according to the legend in the top left. 
For example, the first upward deflection of the BiostampRC® (left side of tracing) was not seen by the PSG sensor, and thus is a false positive limb movement detection. 
The blue and red horizontal lines near the bottom of the plot are the thresholds (“limit” in the legend), relative to baseline noise, used by the algorithm for event detection. 
There are no false negatives in this image. edges where signal falls below threshold adjacent to suprathreshold segments are shown for illustrative purposes only, but are not 
considered in the algorithm (see Methods section).
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hypersomnia or both. However, if therapy targeting PLMS 

does not improve sleep symptoms, it could be because the 

treatment did not sufficiently reduce the PLMS, or because 

the PLMS were not actually causing the symptoms. We can-

not distinguish between these alternatives in practice without 

objective testing, which is not routinely available in the home 

or via PSG. Thus, a solution is needed that would allow for 

at-home objective PLMS monitoring, ideally over multiple 

nights, before and after therapy changes are initiated.

This study demonstrates that a simple adhesive wear-

able sensor system can detect and store muscle contraction 

activity with fidelity sufficiently high to support algorithm 

development relevant for detection and classification of 

PLMS. Quantifying PLMS is currently limited in practice, 

where their detection is often incidental during laboratory 

PSG performed for other reasons such as sleep apnea. Fur-

thermore, given pressures to move objective sleep testing 

into the home, and the lack of limb leads on at-home kits 

designed for sleep apnea testing, PLMS measurement will 

remain limited. Our results suggest that PLMS measurement 

is feasible with a simple monitoring system. We suspect 

that EMG-based sensor systems will be more sensitive and 

specific, as they reproduce the gold standard PSG approach 

to PLMS, compared with accelerometry-based systems that 

require gross movement. The growing literature suggesting 

the importance of PLMS for vascular morbidity and the 

challenges in clinically predicting elevated PLMS outside of 

RLS15 are strong incentives to develop objective measurement 

options to enhance the diagnostic, management, and clinical 

research efforts in this important area.

limitations
This study has important limitations, which can be addressed 

in future work. First, larger studies can identify clinical fac-

tors that impact adhesive-based sensors (in the laboratory, 

or in a portable device), such as body habitus, medications, 

neurological conditions, and sweat, that could impact ECG, 

EMG, or even thoracic respiration movement sensing. Sec-

ond, the sensors were applied by research staff; future work 

will assess whether unsupervised application in the patient’s 

home is also feasible and acceptable for patient experience. 

Third, electrode placement may impact accuracy, given the 

necessity for adjacent positioning between PSG leads and the 

BiostampRC®, which may introduce variance in muscle activ-

ity detection based on position (not physiology), or variance 

in ECG or respiration dynamics. Fourth, algorithmic work for 

auto-detection of sleep apnea or limb movements using an 

isolated EMG sensor on the leg is subject to clinical scoring 

conventions that require assessment of other sensors (elec-

troencephalogram for sleep–wake distinction, and respiratory 

sensors for sleep apnea events). Without concurrent sensors 

in the home, for example, overestimation of leg movements 

could occur if sleep apnea were also present, or if protracted 

wake time with motor restlessness occurs. Training on larger 

datasets, annotated not just for PLMS but also for non-PLMS 

motor activity (such as gross body movements during arous-

als), will be helpful.
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Supplementary materials

Figure S1 Schematic of signal processing of respiration signals.
Abbreviations: aXl, accelerometer; Brc, Biostamprc® sensor system; lP, low pass; Pca, principle component analysis; rMSe, root mean square error; rr, respiration 
rate; x, y, z, axes of the accelerometer; SQi, signal quality index.
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Figure S2 Biostamprc® device.
Note: left, position on the lower leg; right, close-up view of one device.
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Figure S3 The true positive (TP) rate (ie, sensitivity) is shown on the y-axis, and the FP rate (ie, 1-speciificity) is shown on the x-axis
Abbreviations: aUc, area under the curve; eMg, electromyography; PSg, polysomnography; rMS, root mean square; TP, true positive.
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