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Abstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology 

of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent 

advances in cell and systems biology have disclosed a complex physiopathology involving a 

high number of molecular mediators of injury that lead to cellular processes of apoptotic cell 

death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal 

models of ureteral obstruction using a variety of techniques that include genetically modi-

fied animals have disclosed an important role for the renin-angiotensin system, transforming 

growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, 

high throughput techniques such as proteomics and transcriptomics have identified potential 

biomarkers that may guide clinical decision-making.
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The scope of the problem
Urinary tract obstruction (UTO) is a common clinical problem and a frequent cause of 

renal impairment. It is defined as a physical blockage to urine flow, which may result 

in hydronephrosis and ultimately renal parenchymal damage. UTO has a bimodal 

distribution in incidence, occurring in the very young and in the elderly. The incidence 

of antenatal hydronephrosis, including transient and physiological hydronephrosis, is 

1:100 to 1:500.1 In children, UTO is a frequent cause of end-stage renal disease (ESRD), 

accounting for 21% of chronic kidney disease (CKD) and for 16% of children listed 

for transplantation.2 In the UK, obstructive kidney disease is the third most common 

etiology for CKD in children, accounting for 15% of the cases.3

In adults, UTO is a frequent cause of acute kidney injury (AKI). Up to 17% of AKI 

are secondary to UTO, most commonly due to prostatic disease.4 It also accounts for 

3%–5% of ESRD in patients older than 65 years.5 In the United States, renal replacement 

therapy as a result of acquired obstruction accounts for 1.4% of prevalent patients.6

The major etiologies of UTO vary with patient age. Anatomic abnormalities 

are commonly seen in children while acquired causes are more frequent in adults. 

Ureteropelvic junction (UPJ) obstruction is the most common anatomic cause of 

hydronephrosis detected in utero with an incidence of 1:2000.7,8 Other causes of 

obstruction in children include ureterovesical junction obstruction, posterior urethral 

valves, urethral atresia or stricture and neuropathic bladder. Prostatic obstruction, 

tumors, nephrolithiasis, ureteral strictures and retroperitoneal fibrosis are the primary 

causes of UTO in adults.9,10
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lowering the GFR.17 In addition, the rise in intratubular 

pressure induces secondary renal vasoconstriction, through 

humoral, neuronal and reflex phenomena, and thereby 

reduces the glomerular blood flow.18,19 This results in a 

blood shunt away from the nonfunctioning nephrons of the 

obstructed kidney and can thus be viewed as an appropri-

ate physiologic response.20 The decrease in renal perfusion 

further reduces the GFR and thereby decreases intratubular 

pressures towards normal, starting 5 to 6 hours after urinary 

obstruction.21 However, the renal vascular resistance remains 

increased and may cause ischemia.19,22,23

Cellular processes in obstructive 
renal injury
In addition to the classical mechanical view of UTO, there 

is evidence that the pathophysiological process of nephron 

destruction, although initiated by an increased intratubular 

hydrostatic pressure and secondary ischemia, is later mag-

nified by cellular processes that can be classified into three 

broad categories: tubulointerstitial inflammation, tubular 

cell death and fibrosis.18,24,25 Both the renin-angiotensin-

 aldosterone system (RAS) and endothelin-1 (ET-1) contribute 

to renal vasoconstriction and also have a role in the interstitial 

inflammatory response, renal tubular cell loss, and, ultimately, 

fibrosis.26–31 Moreover, in the obstructed kidney, changes in 

intrarenal pressure cause mechanical stretch of tubular cells 

that are activated to release inflammatory, lethal and pro-

fibrotic mediators, such as transforming growth factor-beta 

(TGF-β1) and others.32,33 By contrast, endogenous nitric oxide 

(NO) is increased in a compensatory fashion and partially 

counteracts the action of other vasoconstrictive systems.34 

Most of the information on pathophysiological events has 

been generated in recent years using models of unilateral 

ureteral obstruction (UUO) in rats and mice. These models 

are of interest to both urologists and nephrologists, since 

they reproduce the cardinal features of progressive CKD in 

an accelerated fashion, thus facilitating their study.

Interstitial inflammation
Inflammation is a complex process that reflects the local 

and/or systemic responses to different stressors, and usually 

enables resistance to disease, repair of tissue damage and 

restoration of normal function with the least possible tissue 

damage. Local expression of cytokines, chemokines and 

membrane expression of adhesion molecules by injured 

parenchymal and endothelial cells recruits leukocytes to the 

site of injury and these cells in turn, amplify inflammation. 

While inflammation is usually an adaptive response to some 

Untreated urinary obstruction can lead to tubular atrophy, 

interstitial fibrosis and inflammation, loss of nephrons and 

ultimately irreversible renal injury.5,11 If both kidneys are 

affected or if there is only one kidney, ESRD will result. The 

renal prognosis after relief of UTO is dependent upon the 

severity and the duration of the obstruction. In fact, there is 

complete recovery of glomerular filtration rate (GFR) follow-

ing relief of a one-week total ureteral obstruction, whereas 

almost no recovery occurs after 12 weeks.11 Fetal or neonatal 

UTO is further complicated by the deleterious effects of 

obstruction on a maturing kidney, which may lead to renal 

dysplasia and delayed nephron maturation, besides nephron 

loss.12 Moreover, intrauterine severe bilateral UTO can lead 

to oligohydramnios with subsequent pulmonary hypoplasia 

and respiratory failure at birth and limb deformations or even 

early neonatal death.13,14 Other important clinical sequelae of 

UTO are tubular disorders such as sodium wasting, type IV 

renal tubular acidosis and impaired water excretion.8

Treatment of UTO is dictated by the underlying cause, the 

location of the obstruction, and the degree of renal impair-

ment. For example, complete bilateral ureteral obstruction 

presenting as AKI is a medical emergency and requires 

prompt relief of the obstruction to decompress the kidneys 

and salvage renal function. In adults, most causes of UTO 

are amenable to therapy and the prognosis is generally good, 

depending on the underlying disease. However, in children, 

especially when regarding UPJ obstruction, the indications 

for surgical intervention are not so clear-cut and the evalu-

ation and management of obstructive nephropathy remains 

challenging.15 Repeated diagnostic tests and prolonged 

periods of follow-up are common, potentially resulting in 

irreversible kidney injury.

Classical pathophysiology  
of obstructive nephropathy
UTO is classified according to the degree, duration, and site 

of the obstruction.16 The degree of obstruction is said to be 

high grade when it is complete and low grade when partial 

or incomplete. UTO can be further classified as acute or 

chronic, and depending on the site of the obstruction it can 

affect one or both kidneys.

UTO was for many years considered a mere physics 

problem. The onset of UTO leads to an initial increase in 

pressure proximal to the obstruction due to continued glo-

merular filtration. This rise in pressure dilates the collecting 

systems and is transmitted back to the distal and proximal 

tubules. Increased pressure on the proximal tubule leads to 

a decrease of the net hydraulic pressure gradient, thereby 
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aggression, if persistent or dysregulated, as in the case of 

UTO, it may contribute to tissue injury. Acute bacterial infec-

tion, such as acute pyelonephritis, will lead to a dramatic and 

obvious infiltration by neutrophils, however, in most kidney 

diseases inflammation is more subtle and macrophages and 

lymphocytes (“mononuclear cells”) predominate.35,36

In the UUO model, interstitial infiltration by macrophages 

progressively increases from 12 hours after obstruction to 

up to 14 days.37,38 UTO shares mediators of inflammation 

with other forms of renal injury and with tissue injury in 

general. Key molecules in UTO renal inflammation include 

Angiotensin II (AngII) and the nuclear transcription factor-

kappaB (NF-κB).

AngII has a central role in initiation and progression 

of obstructive nephropathy, both directly and indirectly, by 

stimulating production of molecules that contribute to renal 

injury.39 AngII and tumor necrosis factor-alpha (TNFα) 

are clearly upregulated in this model and together with 

other mediators activate NF-κB and the transcription of 

NF-κB-dependent genes encoding chemokines, cytokines 

and growth factors,40–43 that include, in a positive feed-back 

loop, angiotensinogen and TNFα.44–46 After a few hours of 

ureteral obstruction, a dramatic upregulation of adhesion 

molecules (ICAM-1 and VCAM-1), monocyte chemoattrac-

tive protein (MCP-1) and the glycoprotein osteopontin (OPN) 

is observed.37,47,48 MCP-1 attracts macrophages expressing 

its receptor CCR2 to the tubulointerstitium,49 whereas OPN, 

ICAM-1 and VCAM-1 mediate macrophage adhesion. The 

upregulated expression of these molecules persists up to 

7–10 days from the obstruction. ICAM-1 and OPN seem 

to play its role within 5 days after obstruction, but MCP-1 

and VCAM-1 gene induction continue increasing at those 

times.48–50 In later stages macrophage colony-stimulating 

 factor-1 (MCSF-1) mRNA increased in association with local 

macrophage proliferation.51 NO has different roles in inflam-

mation that depend on the amount produced and this, in turn, 

the enzyme synthesizing NO. Thus constitutive expression 

of endothelial NO synthase (eNOS) yields low level NO, 

that inhibits leukocyte adhesion.52 Other mediators, such 

as TGF-β1, contribute to NO degradation.53 Macrophages 

releases cytokines and growth factors and may contribute to 

apoptosis and tubulointerstitial fibrosis.54 One line of intense 

research is the different phenotypes of macrophages and their 

contribution to tissue repair.

Tubular apoptosis
Apoptosis is an energy-dependent cell death (cell sui-

cide) which is triggered by injurious stimuli or the lack of 

 survival factors.55,56 The balance between apoptosis and cell 

proliferation maintains cell number homeostasis in healthy 

organs. In UTO, tubular atrophy is the result of an increased 

rate of tubular cell apoptosis, with the contribution of other 

processes such as epithelial-mesenchymal transition (EMT).57 

Most apoptosis in UUO takes place in tubular cells, but also 

interstitial cells undergo apoptosis. The latter may contribute 

to resolution of inflammation and repair of fibrosis. However, 

there is an incomplete understanding of the differential 

regulation of apoptosis in different cell types. One day after 

UUO tubular apoptosis is observed, whereas interstitial cells 

undergo apoptosis from 3 days after obstruction. Both aug-

ment in a time-dependent manner.58 After 12 days of UUO, 

tubular dilation and apoptosis peak in both the distal tubules 

and collecting duct throughout the cortex and medulla. 

Tubular apoptosis of the obstructed kidney showed strong 

correlation with the segment’s degree of dilation.59

Among the most relevant players in apoptosis dur-

ing UTO we find AngII, TGF-β1, members of the TNF 

cytokine superfamily, oxidative stress, ATP depletion 

and mechanical stretch itself.60 AngII may induce tubular 

cell apoptosis through generation of TGF-β1, reactive 

oxygen species (ROS) and increased expression of the 

lethal cytokine Fas ligand (FasL) and the lethal receptor 

Fas. TGF-β1 promotes tubular apoptosis by a p38 MAP 

kinase-dependent mechanism.32,61 The expression of both 

Fas and FasL is increased in obstructed kidneys.60 Fas 

belongs to the TNFα family of receptors and is activated 

when cross-linked by the membrane protein FasL, a major 

effector of cytotoxic T lymphocytes and natural killer 

cells that is also expressed by stressed tubular cells.62–64 

 Infiltration of inflammatory cells may contribute to cell 

death by producing lethal cytokines.60,63–65 Stretching of 

human tubular cells increases their susceptibility to lethal 

stimuli such as TNFα.66 Increased generation of ROS is 

the result of AngII or cytokine stimulation. Superoxide 

anion, OH-, peroxynitrite, and H
2
O

2
 may cause direct 

 cellular damage by membrane peroxidation or may promote 

cell injury through modulation of intracellular signaling 

pathways. On the other hand, chronic hypoxia induced 

by a compromised interstitial blood flow could result in 

cellular ATP deprivation that might also serve as an apop-

tosis trigger.67,68 Contrary to other inflammatory settings, 

endogenous NO production as a consequence of inducible 

nitric oxide synthase (iNOS) appears to confer protection 

from stretch-induced tubular apoptosis in UUO.69 Finally, 

changes in the extracellular matrix (ECM) related to 

 fibrosis adversely affect tubular cell survival.56
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Tubulointerstitial fibrosis
Progressive interstitial fibrosis is the most dramatic conse-

quence of chronic obstructive nephropathy, and is the final 

common pathway of all forms of CKD. Fibrosis is charac-

terized by increased numbers of activated fibroblasts and 

diffuse accumulation of ECM components such as collagen 

types I, III, and IV, proteoglycans and fibronectin. Gene 

expression changes related to fibroblast activation, epithelial-

mesenchymal transition (EMT) and ECM accumulation occur 

from day 3 of obstruction. An increased interstitial fibroblast 

population is evidently observed from day 7 of UUO and 

at day 14 a significant portion of the obstructed kidney is 

composed of fibroblasts and macrophages.

ECM accumulation is the end-result of increased ECM 

component secretion, decreased ECM degradation and 

increased ECM deposition. Interstitial cells in the kidney 

are a heterogeneous population that includes fibroblasts, 

dendritic cells and lymphocyte-like cells. Long-term acti-

vation of interstitial fibroblasts results in proliferation and 

excessive ECM accumulation. Activated fibroblasts and 

myofibroblasts, cells that have the appearance of fibroblasts 

but express α-smooth muscle actin (α-SMA), have a key role 

in the genesis of interstitial fibrosis during ureteral obstruc-

tion.70 The number of interstitial myofibroblasts correlates 

closely with the severity of tubulointerstitial fibrosis and 

the progression of renal failure.71 The activated fibroblasts 

and myofibroblasts involved in renal fibrosis originate from 

several sources.70,72 Controversy exists about the precise 

contribution of each source to the final myofibroblast popu-

lation. Activated resident fibroblasts, tubular epithelial cells 

undergoing EMT, pericytes and perivascular fibroblast as well 

as circulating fibrocytes contribute to the increased fibroblast 

number.70,73–76 EMT is characterized by the disruption of 

epithelial junctions and the subsequent loss of cell polarity.77 

These events are accompanied by the downregulation of epi-

thelial marker proteins such as e-cadherin, zonula occludens-1 

(ZO-1) and cytokeratin, and upregulation of mesenchymal 

markers including vimentin, α-SMA and fibroblasts specific 

protein-1 (FSP-1).70 The cell acquires the capacity to degrade 

the basement membrane and migrate from the tubular to the 

interstitial space, where its final myofibroblast morphology 

develops. In addition, chemokines secreted by infiltrating 

leukocytes may activate myofibroblasts.78

Understanding how and the number of fibroblasts generated 

may have therapeutic implications. The main known regulators 

of interstitial fibrosis in UTO are AngII, TGF-β1, connective 

tissue growth factor (CTGF), bone morphogenetic protein-7 

(BMP-7), CCL-21 and the plasminogen–plasmin axis.

AngII has direct effects in the fibrotic process, promoting 

EMT and recruiting other mediators such as TGF-β1.79,80 

Genetic studies ascribe to angiotensin-dependent pathways 

about 50% of fibrosis resulting from UUO.81 TGF-β1, the 

most studied fibrogenic protein, is increased after UUO, and 

promotes fibroblasts activation to myofibroblasts, fibroblast 

proliferation, EMT, ECM production and reduces ECM 

degradation.54,82–85 Activation of Smad transcription factors 

is the major signaling pathway for TGF-β1. The SMAD 

proteins are homologs of both the drosophila protein, moth-

ers against decapentaplegic (MAD) and the Caenorhabditis 

elegans protein SMA. The name is a combination of the 

two. The Smad family includes different proteins which 

form phosphorylation-dependent complexes, and move 

to the nucleus in response to TGF ligands to transcribe 

TGF-dependent genes. There are three classes of Smad: 

receptor-regulated, signal mediators and inhibitory Smads. 

Following UUO in mice, nuclear phosphorylated Smad2 

and Smad3 (receptor-regulated Smads) are increased, while 

Smad7 (inhibitory Smad) levels are decreased as a result of 

accelerated degradation and ubiquitination.86 TGF-β1 may 

recruit secondary effectors, such as platelet-derived growth 

factor (PDGF) and connective tissue growth factor (CTGF), 

whose expression is increased in the obstructed kidney.87,88 

Fibrocytes, blood-borne cells that share markers of leuko-

cytes as well as mesenchymal cells are attracted to the UUO 

kidney by locally secreted CCL21 chemokine that interacts 

with their CCR7 receptor.74

The plasminogen-plasmin axis has an important role 

in ECM turnover. In UUO plasminogen is activated to 

the enzyme plasmin, which activates several matrix-

metalloproteinases.89 Both plasminogen activator inhibi-

tor-1 (PAI-1) and tissue-type plasminogen activator (tPA) 

are upregulated in rat kidneys following UUO, indicating 

activation of regulatory and contraregulatory molecules.90

Bone morphogenetic protein-7 (BMP-7), also known 

as osteogenic protein-1 (OP-1), is a member of the 

TGF-β1 superfamily that counteracts some Smad-dependent 

TGF-β1 effects and is downregulated in the obstructed kidney.91 

BMP-7 activates Smad1/5/8 whereas TGF-β1 activates 

Smad2/3. These Smads compete for and have opposing effects 

on some gene targets. For example, while TGF-β1 directly 

inhibits E-cadherin expression and induces EMT in a Smad3-

dependent manner, BMP-7 enhances E-cadherin expression via 

Smad5 and restores the epithelial phenotype.92,93

NO also modulates ECM synthesis in vitro and in vivo.94,95 

In the UUO context the presence of endogenous NO protects 

against fibrosis.96,97
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Molecular regulation of tissue 
injury in obstructive renal injury: 
potential therapeutic targets
Functional studies in animal models of UUO have unraveled 

which, among the various mediators whose local expression 

changes during UTO, may be potential therapeutic targets 

(Table 1). A variety of tools have been employed in these 

studies, including small molecules, cytokine administration, 

neutralizing antibodies, genetically modified animals and 

oligodeoxynucleotides (ODNs).

Many studies have focused on AngII and TGF-β1 

because of their known actions on inflammation, apoptosis 

and fibrosis. These approaches have shown the complexity 

of the regulation of tubulointerstitial fibrosis, involving 

a large number of closely functionally related molecules, 

and revealing unexpected and contradictory roles for some 

molecules.98

Renin-angiotensin system (RAS)
Angiotensinogen cleavage by renin yields angiotensin I 

(AngI), which, in turn, is cleaved by angiotensin-converting 

enzyme (ACE) to generate angiotensin II (AngII), the major 

bioactive product of the RAS (Figure 1).99 Ang II regulates 

cell proliferation, apoptosis, fibrosis and the inflammatory 

response through the activation of AT1 and AT2 recep-

tors.100,101 Angiotensin converting enzyme (ACE) inhibitors 

and Ang II receptor blockers (ARB), targeting AT1, are com-

monly prescribed anti-hypertensive drugs clinically in use 

for renoprotection. CKD is characterized histologically by 

glomerular sclerosis, tubular atrophy and interstitial inflam-

mation, and, thus, shares features with UTO. Ang II has long 

been known as a key player on the functional (glomerular 

hyperfiltration) and histological changes occurring in CKD. 

Thus, the inhibition of the RAS plays a pivotal role on the 

treatment of CKD of different causes, particularly when 

proteinuria is present.102–108

Inhibition of RAS ameliorates tubulointerstitial fibrosis 

and arrests the inflammatory process in experimental models 

of complete UUO on adult rats.26–30 Moreover, ACE inhibition 

or AT1-receptor inhibition initiated after weaning signifi-

cantly improve renal function in rats subjected to neonatal 

partial UUO.109,110 However, inhibition of Ang II in adult rats 

with partial UTO can aggravate hydronephrosis and decrease 

the ureteral peristaltic activity.111 Ang II inhibition can also 

worsen injury to the partially obstructed kidney in neonatal 

rats during renal maturation, even after completion of nephro-

genesis.112,113 In children, ACE inhibitors reduce urinary 

washout in partially obstructed hydronephrotic kidneys, as 

assessed by diuretic renography.114 Additionally, use of ACE 

inhibitors in pregnancy is widely known to result on serious 

malformations on the urinary tract and on the cardiovascular 

and central nervous systems.115–119

Studies using knockout mice or specific antagonists 

of AT1 (as losartan) or AT2 (PD123319) receptors have 

demonstrated that both receptors modulate kidney disease 

progression in the UUO model.26,43,48,120–122 In this model, AT1 

antagonists did not diminish inflammatory cell infiltration 

and VCAM-1 expression.48 At day 4, obstructed kidneys of 

AT1 knockout mice presented the same gene upregulation 

and inflammatory cell infiltration than WT, and after 7 days, 

similar renal injury.30 By contrast, upon UUO AT2 null mutant 

mice have a more extensive and severe fibrosis compared with 

WT animals.122 In wild type (WT) mice, only ACE inhibition 

or combined therapy with AT1 plus AT2 antagonists blocked 

renal monocyte infiltration, NF-κB activation, and upregula-

tion of NF-κB-related proinflammatory genes.30 These data 

suggest that the blockade of Ang II generation or both AT1 

and AT2 receptors is necessary to prevent the inflammatory 

process.30 AT1 antagonism ameliorated tubular atrophy and 

fibrosis on rat obstructed kidneys, and downregulated profi-

brotic factors like CTGF.26 Direct inhibition of ACE in a rat 

UUO model reduced monocyte/macrophage infiltration and 

ECM proteins accumulation.123

It is interesting that in WT mice, the ACE inhibitor-

induced reduction of TNFα and MCP-1 gene expression 

is higher than that achieved by combined AT1 and AT2 

blockade. These data suggest a role for AngII-derived 

peptides, whose production is inhibited by ACE inhibitors, 

and that may be increased by the availability of AngII fol-

lowing AT1/2 blockade (Figure 1). Besides AngII, other 

Ang peptides, such as AngIV [Ang-(3–8)] and Ang-(1–7) 

may also have important biological activities (Figure 1).124 

In vascular smooth muscle cells, Ang IV binds to the AT4 

receptor, activates NF-κB and increases MCP-1.125 In the 

kidney Ang-(1–7) has AT1/AT2-independent inflammatory 

properties: it binds to the Mas receptor, activates NF-κB 

and promotes the secretion of NF-κB-dependent proin-

flammatory molecules. In this regard, UUO Mas knockout 

mice had decreased perivascular interstitial mononuclear 

cell infiltrates, tubular damage and interstitial fibrosis when 

compared with wild-type UUO.126

The RAS interacts with other players in renal injury: 

blocking the TNFα system (double knockout mice for 

TNFα receptors TNFR1 and TNFR2) or treatment with an 

ACE inhibitor leads to partial blunting of fibrosis, whereas 
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Table 1 Potential therapeutic targets in obstructive nephropathy

Molecule Targeting technique Effect Ref

RAS system

AT1 receptor antagonist Combination with AT2 antagonist  
decreased inflammation

30

KO no effect

AT2 receptor antagonist Combination with AT1 antagonist  
decreased inflammation

30

KO Increased fibrosis 122

Kinin B1 receptor receptor antagonist Decreased inflammation and fibrosis 151

MAS (Ang-(1–7) receptor) KO Decreased inflammation and fibrosis 126

ACE pharmacological inhibition Decreased inflammation and fibrosis 123

Inflammation

NFκB NF-κB decoy double-stranded  

ODN
Decreased NFκB activation and inflammation 148

pharmacological inhibition DHMEQ, PDCT and parthenolide decrease 
 inflammation and fibrosis

30,147

TNFα receptors 1 and 2 KO Decreased inflammation 127

TNFα antibody neutralization Decreased NFκB activation and inflammation 149

CCR2 and CCR1 pharmacological inhibition Decreased inflammation and fibrosis 152,154,155

KO Decreased inflammation and fibrosis 152,154,155

OPN KO Decreased inflammation 156

MCSF-1 receptor antagonist Decreased inflammation 51

CCL21/CCR7 CCL21 antibody neutralization Decreased fibrosis and inflammation 74

CCR7 KO

TGF-β1

TGF-β1 antibody neutralization Decreased apoptosis 129

BMP-7 administration Decreased inflammation and may decrease fibrosis 91

Decorin KO Increased tubular apoptosis and atrophy 135

Smad3 KO Decreased fibrosis, inflammation, and apoptosis 133

KO Decreased fibrosis (decreased EMT and ECM) 132

Smad7 transgenic mice overexpression Decreased inflammation and NFκB inhibition 134

EPO administration Decreased fibrosis (decreased EMT)

Plasminogen/plasmin system

tPA KO Decreased EMT, preservation of the  
integrity of tubular basement membranes

142

PAI-1 transgenic mice overexpression Increased inflammation and fibrosis 143

KO Decreased inflammation and fibrosis 144

Other

ET-1 receptor antagonist Decreased tubular apoptosis,  
restoration of blood flow

31

PTHrP transgenic mice overexpression Increased inflammation 150

receptor antagonist Decreased inflammation

CDK pharmacological inhibition Decreased tubular cell proliferation and apoptosis 158

iNOS KO Conflict results
Increased inflammation and fibrosis  
Decreased fibrosis (through other NOS isoforms) 

96
141

L-arginine administration Decreased fibrosis (Induces NO) 139

Notes: Bolded text in Effect column = interventions with negative consequences.
Abbreviations: KO, knock-out; TNF, tumor necrosis factor; ACE, angiotensin-converting enzyme; NF-κB, nuclear transcription factor-kappaB; OPN, osteopontin; 
MCSF-1, macrophage colony-stimulating factor-1; TGF-β1, transforming growth factor-β1; BMP-7, bone morphogenetic protein-7; EPO, erythropoietin; PAI-1, plasminogen 
activator; inhibitor-1; RAS, renin-angiotensin-aldosterone system; ET-1, endothelin-1; PTHrP, parathyroid hormone-related protein; iNOS, inducible nitric oxide synthase.
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blocking both AngII and TNFα systems further inhibited 

interstitial fibrosis and tubule atrophy in UUO.127

The different responses to Ang II targeting in experimental 

models and the lack of clinical trials on UTO create a gap 

for the clinical use of ACE inhibitors and angiotensin 

receptor blockers (ARBs) in this setting. Indeed, patients 

with UTO are usually excluded from clinical trials of these 

drugs in CKD.106,128 Additional studies will thus be required 

to establish the optimal clinical indications for Ang II 

 targeting in UTO.

Other pathways
Additional functional studies have targeted TGF-β1 and 

Smad, other profibrotic molecules and inflammation-related 

pathways, including NF-κB.

The blockade of TGF-β1 with neutralizing antibodies 

markedly reduced apoptosis as well as protein overexpression 

of ECM components (Type III Collagen and Fibronectin) in a 

rat UUO model129 as observed in cultured renal cells.130,131 The 

antifibrotic potential of anti-TGF-β1 antibodies is undergoing 

a clinical trial in the renal glomerular fibrosis and podocyte 

loss of focal segmental glomerular sclerosis (ClinicalTrials.

gov Identifier: NCT00464321). Smad3-null mice with 

UUO did not upregulate TGF-β1 and the EMT process, and 

 displayed reduced interstitial fibrosis.132 These results were 

confirmed in another independent Smad3 knockout mice 

UUO model that showed attenuation of renal fibrosis, inflam-

mation, and apoptosis when compared to wild type UUO.133 

By contrast, UUO transgenic mice overexpressing Smad7 had 

around 70% less interstitial fibroblasts and renal ECM accu-

mulation.134 Further supporting a role for TGF-β1, in mice 

with UUO targeted deletion of decorin, a proteoglycan that 

counters the actions of TGF-β1, increases tubular apoptosis 

and tubular atrophy.135 Therapy with BMP-7 in rats protects 

against UUO-induced renal injury by inhibiting inflammation 

and EMT and preserving tubular epithelial integrity. These 

beneficial effects were greater than that obtained with the 

ACE inhibitor enalapril,91 Despite these results, BMP-7 failed 

to attenuate TGF-β1-induced EMT in vitro.136 Recombinant 

human erythropoietin (EPO) in a mice model of ureteral 

obstruction inhibited the progression of renal fibrosis, partly 

through the reduction of TGF-β1-induced EMT.137

Another key mediator in UUO is NO. NO is synthesized 

from L-arginine via the enzyme NO synthase (NOS), which 

exists in three forms: neuronal NOS (nNOS) and endothelial 

NOS (eNOS), which are constitutively expressed, and there 

is an inducible isoform (iNOS). During ureteral obstruction, 

endogenous NO protects the kidney through the inhibition 
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Figure 1 Schematic representation of the enzymatic pathways involved in the generation of angiotensin peptides. 
Abbreviations: ACE, angiotensin-converting enzyme; AMP, aminopeptidase; AT1, Ang II type 1 receptor; AT2, Ang II type 2 receptor; AT4, Ang IV receptor; MAS, Ang-(1-7) 
receptor; IRAP, insulin-regulated aminopeptidase; PCP, prolyl-carboxypeptidase; PEP, prolyl-endopeptidase; NEP, neutral-endopeptidase.
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of excessive vasoconstriction triggered by the RAS system, 

reduces macrophage infiltration, apoptosis and ECM accu-

mulation.34,96,138,139 Arginine, a direct precursor to NO, blunts 

the fibrosis response in a rat model of ureteral obstruction.139 

Following UUO, iNOS is upregulated mainly in the kidney 

medulla, whereas constitutive NOS are more upregulated 

in the cortex.140 Targeted deletion of the iNOS gene (iNOS 

knockout mice) exacerbates interstitial fibrosis.96 However, 

there is also evidence for the participation of constitutive 

NOS in tissue injury in UUO.141

One promising target, directly involved in ECM accu-

mulation, is the tPA and PAI-1 system. Targeted deletion 

of tPA blocks EMT and reduces the activity of matrix 

metalloproteinase-9 (MMP-9), preserving the integrity of 

tubular basement membranes in mice with UUO,142 suggest-

ing that plasminogen activation may be a therapeutic target. 

However, the pathophysiological role of the system is more 

complex than previously thought, and inhibiting this path-

ways by overexpressing PAI-1 increased macrophage recruit-

ment, myofibroblast transformation and collagen I mRNA 

in mice UUO model.143 Targeted deletion of PAI-1 reduces 

macrophage infiltration, myofibroblast transformation and 

TNFα
Fas/FasL

ROS

AngII

INFLAMMATION

APOPTOSIS

FIBROSIS

ECM proteins
CTGF

tPA/PAI-1
PDGF

TGF-β1

EMT

Chemokines
Adhesion molecules

OPN
TNFα/NFκB

BMP-7
Decorin

ET-1

Figure 2 Unilateral ureteral obstruction (UUO) processes and molecules. Representation of interconnections between the different processes in UUO and the main molecules 
involved.

 interstitial fibrosis in mice with UUO.144 Blocking PAI-1 

function has shown particular capacity in preventing or 

reversing fibrosis in various models of progressive renal 

disease, but it is likely that multiple pathways will need to 

be inhibited to have a significant impact.145,146

NF-κB has a key role in inflammation. Pharmacological 

inhibition of NF-κB activation with dehydroxymethy-

lepoxyquinomicin (DHMEQ), pyrrolidine-dithiocarbamate 

(PDCT) or parthenolide reduced the presence of inflamma-

tory cells (macrophages, T cells, etc), the upregulation of 

chemokines and cytokines and finally, ameliorated renal 

damage in the obstructed kidneys of mice.30,147 However, 

these molecules are not completely specific for NF-κB. 

A stable ring type NF-κB decoy double-stranded oligode-

oxynucleotide (R-NF-κB ODN) efficiently inhibited NF-κB 

activity in vitro, and in vivo in a mouse UUO model result-

ing in a decreased expression of TNFα, IL-1β, TGF-β1 and 

ECM proteins such as fibronectin.148 TNFα neutralization 

has inhibited NF-κB activation in rat UUO.149

In other mouse UUO models, anti-c-fms (antibody to 

receptor of MCSF-1) treatment slightly decreased monocyte 

recruitment at day 1, but reduced macrophage accumulation 
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by 75% at day 10.51 Parathyroid hormone-related protein 

(PTHrP) also contributes to UUO-induced renal injury.150 

Transgenic mice overexpressing PTHrP had exacerbated 

inflammation upon UUO. Losartan (AT
2
 antagonist) and 

PTHrP receptor 1 antagonist reduced inflammation after 

ureter obstruction of these transgenic mice, suggesting that 

PTHrP could recapitulate some proinflammatory actions of 

AngII. PTHrP increased inflammation through activation 

of the extracellular signal-regulated kinase (ERK)/NF-κB 

pathway. Any reversal of PTHrP constitutive overexpres-

sion in these transgenic mice decreased this inflammatory 

response. The proinflammatory kinin B1 receptor (B1R) is 

overexpressed in mouse UUO and post-treatment with an 

orally active nonpeptide B1R antagonist blocks macrophage 

infiltration, reversing renal fibrosis.151

Targeted deletion of the CCR2 gene or administration 

of CCR2 inhibitors reduces macrophage infiltration and 

interstitial fibrosis following UUO in mice.152,153 Similarly, 

deletion or inhibition of the CCR1 receptor attenuates leu-

kocyte recruitment following UUO.154,155 Macrophage influx 

was reduced in OPN knockout mice compared to wild type 

mice in early stage (day 4 and day 7), but not in later stage 

(day 14) of UUO nephropathy.156 In mice, the blockade 

of CCL21/CCR7 signaling by anti-CCL21 antibodies or 

CCR7 deficiency reduced macrophage infiltration, MCP-1/ 

CCL2 and TGF-β1 expression, and renal fibrosis after ure-

teral obstruction.74 The obstructed kidney tries to adapt by 

expressing protective molecules, such as hemoxygenase-1 

(HO-1). Overexpression of HO-1 confers marked resistance 

to apoptotic stimuli.157 A further maladaptive response 

might be tubular cell proliferation. The cyclin-dependent 

kinase inhibitor p27Kip1 limits tubular cell proliferation 

and apoptosis following UUO in mice.158 Other potential 

target is ET-1 that has a key role in vasoconstriction during 

UUO. Pretreatment with the ET-1 receptor dual antagonist, 

bosentan, reduced by 60% apoptotic cells in the UUO rat 

model compared with untreated group, and almost restored 

the normal blood flow.31

Molecular tools for clinical  
outcome prediction
Availability of a biomarker constitutes an urgent need for the 

diagnosis and management of UTO, especially in newborns 

and infants where the clinical significance of obstruction 

constitutes the main issue, dictating the need for surgery or 

a conservative approach. This is further complicated by the 

invasive and repetitive tests needed for the surveillance of this 

condition and the possible induction of irreversible kidney 

lesions by temporary UTO.159,160 A non-invasive biomarker 

may provide information on the degree of injury and func-

tional impairment as well as prognostic information.159,161

Until recently the search for a biomarker was based on the 

identification of several key molecules for the pathogenesis 

of UTO in animal models and their subsequent investigation 

in clinical studies. This approach allowed the identification 

of several promising molecules potentially useful for clini-

cal prediction of the prognosis of UTO,161 namely TGF-β1, 

MCP-1, EGF, ET-1 and tubular enzymes.

TGF-β1 is increased in kidney tissue,162 in the stenotic 

ureter163 and in urine164–167 from children with UPJ obstruc-

tion, allowing the diagnosis with good accuracy values (for 

a threshold of 190 pg/mg creatinine) for UPJ obstruction 

requiring surgery (Table 2).167 However increased TGF-β1 

is not specific for UTO as it can also be found on other 

renal diseases.168–171 MCP-1, a chemokine, and endothelin-1, 

a vasoactive protein with proinflammatory properties, are also 

upregulated in tissue and urine of children with UPJ obstruc-

tion.172–174 The urinary level of endothelin-1 had a sensitivity 

of 74.3%, a specificity of 90%, and an overall accuracy of 

81.5%, for a cut-off value of 3fmol/mg creatinine, allowing 

the identification of UPJ obstruction requiring surgery 

(Table 2).175 Epidermal growth factor (EGF), a growth factor 

with proliferative and pro-survival properties for tubular 

cells, on the other hand, was reduced in children with UPJ 

obstruction.162,163,173,174 However, subsequent studies did not 

confirm decreased urinary EGF in subjects with UTO, thus 

reducing its biomarker potential.167,176

Urinary tubular enzymes, such as N-acetyl-beta-D-

 glucosaminidase (NAG), gamma-glutamyl transferase (GGT) 

and alkaline phosphatase (AP) have been evaluated for diag-

nostic and prognostic value in clinical UTO.177–179 The combi-

nation of NAG and AP was reported to have a sensitivity of 

100%, a specificity of 80% and an overall accuracy of 94% for 

differentiating between children with ureteropelvic junction 

obstruction requiring pyeloplasty and those with dilated nonob-

structed kidneys suitable for conservative treatment (Table 2).179 

However urinary tubular enzymes are nonspecific markers of 

tubular injury and are elevated in other renal diseases.180

Interestingly, most of these urinary biomarkers take 

several months to regress to normal values after pyelo-

plasty, reflecting the fact that the initial obstruction sets in 

motion local, self-sustained inflammatory and tissue repair 

events.167,175,179

An alternative approach involves large-scale unbiased 

gene expression profiling using transcriptomic array tech-

niques or unbiased urine proteomic profiling. These tech-
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niques are not based on prior physiopathological knowledge. 

Rather they screen the level of expression or concentration 

of thousands of genes or peptides/proteins, looking for pat-

terns that may help in making a diagnosis or predicting a 

prognosis.181 In addition, these techniques may identify novel 

pathophysiological networks not previously suspected from 

information generated by traditional approaches. Transcrip-

tomics has uncovered new molecules with the potential to 

become biomarkers in UTO.182–185 However, they have not 

yet been explored in clinical studies. The emergence of pro-

teomics has made possible the full analysis of a large range 

of proteins and peptides on different biological samples. 

Its application to UTO has allowed the discovery of new 

molecules involved on its pathogenesis186 as well as specific 

and sensitive biomarkers.187 The analysis of 51 urinary 

polypeptides by proteomic techniques allowed the discrimi-

nation between infants with several severity degrees of UPJ 

obstruction that would benefit from surgical correction with 

a sensitivity and specificity of 98% and a predictive value 

of 94%.187 Future studies should focus on the potential of 

biomarkers of individual peptides that may be assayed by 

more conventional techniques; as proteomics is not routinely 

available for diagnosis in most clinical laboratories. A recent 

European initiative, EUROKUP, has, among other aims, to 

establish homogeneous sampling and processing techniques 

that would facilitate the clinical use of urine proteomics.188

Conclusions
The main treatment of UTO is to relieve the obstruction. 

However, under some circumstances the precise timing of 

the intervention is not unclear. The mechanical UTO sets 

in motion a series of molecularly mediated events that lead 

to tubular cell death, interstitial inflammation and fibrosis. 

These events may provide a molecular signature of a damaged 

kidney that may be used for biomarker-based diagnosis and 

indicators of therapy. In addition, these molecules may be 

therapeutic targets that may limit renal injury when removing 

the obstruction must be delayed.
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