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Purpose: This study focused on identification of long non-coding RNAs (lncRNAs) for 

prognosis prediction of glioblastoma (GBM) through weighted gene co-expression network 

analysis (WGCNA) and L1-penalized least absolute shrinkage and selection operator (LASSO) 

Cox proportional hazards (PH) model.

Materials and methods: WGCNA was performed based on RNA expression profiles of GBM 

from Chinese Glioma Genome Atlas (CGGA), National Center for Biotechnology Information 

(NCBI) Gene Expression Omnibus (GEO), and the European Bioinformatics Institute ArrayExpress 

for the identification of GBM-related modules. Subsequently, prognostic lncRNAs were determined 

using LASSO Cox PH model, followed by constructing a risk scoring model based on these lncRNAs. 

The risk score was used to divide patients into high- and low-risk groups. Difference in survival 

between groups was analyzed using Kaplan–Meier survival analysis. IncRNA-mRNA networks were 

built for the prognostic lncRNAs, followed by pathway enrichment analysis for these networks.

Results: This study identified eight preserved GBM-related modules, including 188 lncRNAs. 

Consequently, C20orf166-AS1, LINC00645, LBX2-AS1, LINC00565, LINC00641, and PRRT3-

AS1 were identified by LASSO Cox PH model. A risk scoring model based on the lncRNAs 

was constructed that could divide patients into different risk groups with significantly different 

survival rates. Prognostic value of this six-lncRNA signature was validated in two independent 

sets. C20orf166-AS1 was associated with antigen processing and presentation and cell adhesion 

molecule pathways, involving nine common genes. LBX2-AS1, LINC00641, PRRT3-AS1, 

and LINC00565 were related to focal adhesion, extracellular matrix receptor interaction, and 

mitogen-activated protein kinase signaling pathways, which shared 12 common genes.

Conclusion: This prognostic six-lncRNA signature may improve prognosis prediction of GBM. This 

study reveals many pathways and genes involved in the mechanisms behind these lncRNAs.

Keywords: lncRNA, risk score, WGCNA, network, pathway

Introduction
Glioblastoma (GBM), grade IV glioma, is the most common and aggressive type of 

brain cancer characterized by high morbidity and mortality and dismal prognosis.1,2 

Reportedly, the median survival of patients with newly diagnosed GBM is approxi-

mately 15 months.3 Despite the development of medical interventions such as surgical 

resection, radiological therapy, and chemotherapeutic therapy, the survival rate remains 

largely unchanged over the past years.4 A deep understanding on the pathogenesis of 
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GBM and the discovery of molecular biomarkers likely 

contribute to the improvement of GBM survival.

Long non-coding RNAs (lncRNAs) are defined as tran-

scripts greater than 200 nucleotides that do not code proteins.5 

With the development of genome-wide expression profiling, 

a huge amount of novel lncRNAs have been discovered. 

These lncRNAs are known to play key roles in a broad range 

of biological processes such as cell differentiation, human 

diseases, and tumorigenesis.6 Unraveling potential roles of 

lncRNAs in GBM has emerged as a leading edge of GBM 

research.7 For instance, Han et al8 revealed that ASLNC22381 

and ASLNC2081 may engage in recurrence and progression 

of GBM through conducting lncRNA and mRNA profiling. 

In addition, Zhang et al9 reported a set of lncRNAs that 

have prognostic value for GBM by lncRNAs bioinformatics 

analysis in The Cancer Genome Atlas (TCGA). Moreover, a 

recent study identifies an immune-related lncRNA signature 

for prognostic prediction based on TCGA data of GBM 

patients.10 Despite these valuable findings, the majority of 

lncRNAs in GBM remains poorly understood.

In comparison with previous studies that identified prog-

nostic lncRNA signatures based on the limited microarray 

data from TCGA,9,10 we carried out a comprehensive analysis 

on all publicly available gene expression data of GBM from 

Chinese Glioma Genome Atlas (CGGA), National Center 

for Biotechnology Information (NCBI) Gene Expression 

Omnibus (GEO), and the European Bioinformatics Institute 

(EBI) ArrayExpress repositories through a series of bioin-

formatics approaches. We searched for GBM-related key 

modules through constructing a weighted gene co-expression 

network analysis (WGCNA). Based on the lncRNAs con-

tained in these key modules, we acquired a panel of lncR-

NAs as prognostic biomarkers by univariate Cox regression 

analysis, in combination with Cox proportional hazards (PH) 

model based on the L1-penalized least absolute shrinkage 

and selection operator (LASSO) estimation. Subsequently, 

a prognostic scoring system was constructed based on these 

prognostic lncRNAs to evaluate the death risk due to GBM. 

In addition, lncRNA alterations in GBM compared to normal 

samples were analyzed using metaDE method. Furthermore, 

pathway enrichment analysis using Gene Set Enrichment 

Analysis (GSEA) was conducted to give some insights into 

the underlying mechanisms of these predictive lncRNAs.

Materials and methods
Data resource
The data sets in this study were derived from three sources.

First, the gene expression data of 325 glioma samples, named 

“Part D”,11 was downloaded from the CGGA (http://cgga.org.cn/),  

including 144 GBM samples that were selected as the training 

set in this study (platform: Illumina HiSeq 2000 RNA Sequenc-

ing). Survival information was available for 138 patients with 

GBM, of whom, 92 were dead, while 46 were alive with a 

median survival time of 13.22±11.44 months.

Second, the data sets were searched in the NCBI 

GEO (http://www.ncbi.nlm.nih.gov/geo/) and the EBI 

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) reposi-

tories for publication of human GBM with no less than 

40 samples. As a result, three data sets of GSE51062, 

GSE36245, and E-TABM-898 were obtained, including 

52 samples, 46 samples, and 56 samples, separately. The 

platform for all the three data sets was Affymetrix-GPL570. 

We also searched for human GBM data sets that had no 

less than 50 samples and simultaneously available survival 

information in NCBI GEO and EBI ArrayExpress. Two data 

sets, the GSE74187 (n=60) and GSE83300 (n=50), meeting 

the criteria were included in this study. The platform for both 

of them was Agilent-014850. In addition, we needed human 

GBM gene expression data sets that had both GBM samples 

and paired normal tissue samples, with the total number of 

samples greater than 40. Through exploring NCBI GEO 

and EBI ArrayExpress, the GSE22866 (including 40 GBM 

samples and six normal samples; platform: Affymetrix-

GPL570), GSE50161 (including 34 GBM samples and 

13 normal samples; platform: Affymetrix-GPL570), and 

GSE4290 (including 77 GBM samples and 23 normal 

samples; platform: Agilent-014850) were acquired.

Third, RNA-seq data set comprising 154 GBM samples 

and 18 normal samples was downloaded from the TCGA 

(https://gdc-portal.nci.nih.gov/). There were 152 samples 

available with survival information, including 102 dead and 

50 live samples.

Data preprocessing
For the data sets downloaded from Affymetrix-GPL570 

platform, raw data (CEL files) were background corrected 

and normalized12 using the oligo package (version 1.41.1, 

http://www.bioconductor.org/packages/release/bioc/html/

oligo.html) in R language (version 3.4.1). With respect to 

the data sets from Agilent-014850 platform, raw data (TXT 

files) underwent log2 transformation to yield approximately 

normal distribution with the limma13 software (version 3.34.0, 

https://bioconductor.org/packages/release/bioc/html/limma.

html), followed by standardization using the median method. 

CGGA and TCGA data were subject to quantile normaliza-

tion using the preprocessCore package14 (version1.40.0, 

http://bioconductor.org/packages/release/bioc/html/prepro-

cessCore.html) in R language (version 3.4.1).
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Next, according to platform annotation files, the probes 

in all data sets that had RefSeq transcript ID and annotation 

information as non-coding RNA in the Refseq database 

were chosen. Moreover, the platform sequencing data were 

aligned to human genome (GRCh38 version) by using the 

Clustal2 (http://www.clustal.org/clustal2/).15 The acquired 

lncRNAs combining with the annotated lncRNAs in the 

Refseq database16 were extracted for further analysis.

Wgcna
The WGCNA (version 1.61, https://cran.r-project.org/web/

packages/WGCNA/index.html)17 was applied to build a 

WGCNA to mine GBM-related preserved modules. For 

this network analysis, the CGGA data were referred to 

as the training set, while the GSE51062, GSE36245, and 

E-TABM-898 as validation sets. Initially, comparability 

between the four sets was analyzed using correlation analysis. 

A WGCNA was constructed in accordance with a previous 

study.18 Briefly, using scale-free topology criterion, the soft 

threshold power of β was established, through which the 

weighted adjacency matrix was developed. The modules with 

size $150 and minimum cut height of 0.99 were selected 

using dynamic tree cut algorithm, and the preserved modules 

were determined using the module preservation function of 

WGCNA package. In addition, the possible biological func-

tions of the significantly preserved modules were studied 

using userListEnrichment function of WGCNA package.

selection of prognosis-related lncrnas
Based on the lncRNAs in the preselected preserved WGCNA 

modules and the corresponding survival information, 

univariate Cox regression analysis was used to identify the 

lncRNAs that were significantly correlated with prognosis 

(logrank P,0.05) by using survival package (version 2.4, 

https://cran.r-project.org/web/packages/survival/index.html) 

in R language (version 3.4.1).19

construction of prognosis scoring model 
based on lncrnas
The identified prognosis-related lncRNAs were used to fit a 

Cox PH model based on the LASSO estimation20 to select 

the optimal panel of prognostic lncRNAs. The optimal value 

for penalization coefficient lambda was selected by running 

cross-validation likelihood (cvl) 1,000 times. Subsequently, the 

Cox PH coefficients and expression levels of these prognostic 

lncRNAs were extracted to calculate the risk score as a measure 

of survival risk for each patient using the following formula:

 

Risk score =  β
lncRNA1

 × expr
lncRNA1

 + β
lncRNA2

  

× expr
lncRNA2

 + ··· + β
lncRNAn

 × expr
lncRNAn

, 

where β
lncRNAn

 represents Cox PH coefficient of lncRNAn and 

expr
lncRNA

 represents expression level of lncRNAn.

All samples in the CGGA set were dichotomized into 

high- and low-risk groups by risk score, with median risk 

score as the threshold. Then, three independent sets with 

concomitant survival information (TCGA set, GSE74187, 

and GSE83300) were utilized to evaluate the effectiveness 

and robustness of the abovementioned risk scoring model. 

As mentioned above, the three data sets contained all avail-

able GBM data with survival information in TCGA, NCBI 

GEO, and EBI ArrayExpress. In the same manner, samples 

in each set were categorized by risk score into predicted high- 

and low-risk groups. Survival difference between different 

risk groups in each set was analyzed using the Kaplan–Meier 

curve in combination with the Wilcoxon logrank test.

analysis of consensus differentially 
expressed rnas (Ders)
GSE22866, GSE50161, and GSE4290 contained both 

GBM samples and normal control samples. We screened 

the overlapped DERs between GBM and normal samples 

across the three data sets using MetaDE package (https://

cran.r-project.org/web/packages/MetaDE/),21,22 under the 

thresholds of tau2=0, Qpval.0.05, P,0.05 and false dis-

covery rate (FDR) ,0.05. Of them, tau2 and Qpval were 

measures of heterogeneity for the heterogeneity test. When 

tau2=0 and Qpval.0.05, the gene was homogeneous and 

unbiased.

Pathway enrichment analysis
We built lncRNA-mRNA networks with the selected prog-

nostic lncRNAs and their correlated mRNAs in WGCNA 

modules. GSEA is a powerful approach for annotating gene 

expression data that are characterized by focusing on gene 

set with common biological function, chromosomal loca-

tion, or regulation (http://software.broadinstitute.org/gsea/

index.jsp).23 We performed pathway enrichment analysis 

for the lncRNA-mRNA networks using GSEA. Pathways 

with nominal (NOM) P-value ,0.05 were considered sig-

nificant. GSEA-enriched results were shown by normalized 

enrichment score (NES) that was calculated as previously 

described.24

Results
Wgcna co-expression network 
construction and module mining
After preprocessing, 609 lncRNAs and 14,948 mRNAs were 

overlapped in CGGA data set, GSE51062, GSE36245, and 

E-TABM-898. By using WGCNA, correlation analysis 
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between any two sets of the four data sets, CGGA data 

set (training set), GSE51062, GSE36245, and E-TABM-

898 (validation sets), were performed. As shown in 

Figure 1, the correlation coefficients ranged from 0.5 to 1 

(P-values,1e–200), suggesting that the expression of com-

mon RNAs among the four data sets was coincident.

Initially, WGCNA of RNAs was built for the train-

ing set (CGGA set). According to the scale-free topology 

criterion, the soft threshold power of β was set as 5 when 

scale-free topology model-fit R2=0.9. The phylogenetic tree 

mined nine co-expression modules (module size, $50; cut 

height, $0.99) in the WGCNA (Figure 2A). As shown by the 

color bands underneath the phylogenetic tree, nine modules 

were represented by branches of different colors (M1, black; 

M2, blue; M3, brown; M4, green; M5, gray; M6, pink; M7, 

red; M8, turquoise; M9, yellow). Moreover, these modules 

were validated in E-TABM-898, GSE51062, and GSE36245 

(Figure 2B and D). In the three validation sets, genes were 

colored in the same manner as in TCGA set.

As can be seen from a multidimensional scaling (MDS) 

for gene expression data of the nine modules (Figure 3A), 

genes in yellow and red modules showed similar expres-

sion and genes in brown and black modules exhibit similar 

expression. Hierarchical clustering analysis of modules 

found that the yellow and red modules were on the same 

branch (Figure 3B). These observations illustrate that the 

yellow and red modules possess similar gene expression 

patterns.

Module preservation analysis found that among the 

nine nodules, eight modules had Z-score .5 (Table 1). 

The eight modules were ranked in a descending order 

of Z-score. Top three modules were yellow module 

(Z-score=34.5011), red module (Z-score=34.3040), and black 

module (Z-score=24.5504), which were highly overlapped 

across all datasets. This observation indicates that the three 

modules may provide important information concerning the 

pathological mechanisms of GBM. With regard to functional 

annotation, the yellow module (84 lncRNAs) was related 

to biological adhesion, the red module (26 lncRNAs) was 

associated with immune response, and the brown module 

(eight lncRNAs) was possibly involved in synaptic transmis-

sion (Table 1).

Identification of prognosis-related 
lncrnas
There were 188 lncRNAs in the eight overlapped 

WGCNA modules. Based on the survival information of 

CGGA set, 32 lncRNAs were identified to be significant 

Figure 1 correlation analysis between cgga data set, gse51062, gse36245, and e-TaBM-898.
Abbreviation: cgga, chinese glioma genome atlas.
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Figure 3 Further analyses of Wgcna modules in cgga.
Notes: (A) an MDs plot displaying expression data of genes in different modules. (B) a hierarchical clustering tree of modules.
Abbreviations: cgga, chinese glioma genome atlas; MDs, multidimensional scaling; Wgcna, weighted gene co-expression network analysis.

Figure 2 clustering results of Wgcna modules in cgga set (A), e-TaBM-898 (B), gse51062 (C), and gse36245 (D).
Note: Modules are labeled in different colors.
Abbreviations: cgga, chinese glioma genome atlas; Wgcna, weighted gene co-expression network analysis.
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prognosis-related lncRNAs by univariate Cox regression 

analysis. As shown in Figure 4, among the 32 prognosis-

related lncRNAs, 11 were in the yellow module, eight in the 

red module, and eight in the turquoise module. As aforemen-

tioned, the yellow and red modules had similar gene expres-

sion patterns. Moreover, the two modules were functionally 

related to biological adhesion and immune response, which 

were critical for GBM pathogenesis.25,26 Therefore, the 19 

lncRNAs in the yellow and red modules were selected for 

further analysis.

Development of a six-lncrna prognostic 
scoring system
Expression of the 19 lncRNAs in the yellow and red modules 

were used as input for LASSO Cox PH model. When the cvl 

was maximized to be -466.2711, the optimal lambda value 

was 18.0151. As a result, a panel of six lncRNAs was selected 

as predictive factors for survival, including C20orf166-

AS1, LINC00645, LBX2-AS1, LINC00565, LINC00641, 

and PRRT3-AS1 (Table 2). For predicting each individual 

patient’s survival probability, risk score was calculated for 

each patient with the following formula:

 

Risk score =  (0.83631) × Exp
C20orf166-AS1

 + (1.18806)  

× Exp
LINC00645

 + (0.11155) × Exp
LBX2-AS1

  

+ (1.04407) × Exp
LINC00565

 + (-1.16291) 

× Exp
LINC00641

 + (0.29694) × Exp
PRRT3-AS1

.  

Prediction of overall survival (Os) of 
gBM patients
The aforementioned lncRNA-based risk scoring system was 

applied to the CGGA set. With the median risk score as cut-

off, all patients in the CGGA set were categorized into a high-

risk group (n=69) and a low-risk group (n=69). The results 

showed that the low-risk group had significantly longer OS 

compared to the high-risk group (16.61±14.22 months vs 

9.83±6.17 months, logrank, P=0.000127; Figure 5A).

The predictive capability of this prognostic scoring sys-

tem was tested in TCGA set, GSE74187, and GSE83300, and 

the risk score and risk group categories were similar for each 

of them. As shown in Figure 5B, for TCGA set (n=152), when 

compared to the high-risk group, a notably better survival 

was observed in the low-risk group (14.93±12.54 months vs 

9.19±6.65 months, logrank P=0.0001195). Consistent results 

were also found for GSE74187 (n=60; 22.47±10.14 month 

vs 15.83±10.11 month, log-rank p=0.02568, Figure 5C). For 

GSE83300, the low-risk group had a longer OS compared to 

the high-risk group, with marginally significant difference 

(logrank P=0.09198; Figure 5D). It may be attributed to the 

relatively small sample size (n=50) of GSE83300. These 

findings offer strong evidence for the prognostic power of 

the six-lncRNA prognostic scoring system.

Table 1 Features of Wgcna modules

Module Color Module 
size

Number of 
mRNAs

Number of 
lncRNAs

Preservation 
Z-score

Module annotation

Module 1 Black 199 178 21 24.5504 regulation of action potential in neuron

Module 2 Blue 386 376 10 11.6620 cell cycle

Module 3 Brown 299 291 8 24.2916 synaptic transmission

Module 4 green 214 209 5 7.5840 regulation of system process

Module 5 gray 3,418 3,405 13 2.7203 regulation of cell proliferation

Module 6 Pink 173 173 0 7.6614 rna processing

Module 7 red 232 206 26 34.3041 immune response

Module 8 Turquoise 483 449 34 14.4361 regulation of transcription

Module 9 Yellow 301 217 84 34.5012 Biological adhesion

Abbreviations: lncrnas, long non-coding rnas; Wgcna, weighted gene co-expression network analysis.

Figure 4 Distribution of the identified prognosis-related lncRNAs in WGNCA 
modules.
Abbreviations: lncrna, long non-coding rna; Wgcna, weighted gene co-
expression network analysis.
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Identification of overlapped DERs in 
gse22866, gse50161, and gse4290
GSE22866, GSE50161, and GSE4290 with both GBM and 

normal tissue samples were used in the present study to 

find overlapped DERs between GBM and normal samples. 

Totally, 3,989 overlapped DERs (tau2=0, Qpval.0.05, 

P-value,0.05, and FDR,0.05) were found; of which, 

98 were lncRNAs. Notably, of the aforementioned six 

Table 2 six lncrnas selected by cox Ph model

lncRNA β value HR (95% CI) P-values in univariate  
Cox regression

Module

c20orf166-as1 0.8363 1.899 (1.238–2.914) 0.0031 red
linc00645 1.1881 1.119 (1.018–1.231) 0.0182 red
lBX2-as1 0.1116 1.094 (0.652–1.724) 0.0137 Yellow
linc00565 1.0441 1.259 (1.057–1.500) 0.0075 Yellow
linc00641 -1.1629 0.120 (1.039–1.207) 0.0031 Yellow
PrrT3-as1 0.2969 2.688 (1.200–6.021) 0.0159 Yellow

Abbreviations: lncrna, long non-coding rna; Ph, proportional hazards.

Figure 5 Kaplan–Meier survival curves estimating overall survival in cgga set (A), e-TaBM-898 (B), gse51062 (C), and gse36245 (D).
Notes: Patients in each set are sorted by risk score into a high-risk group and a low-risk group. logrank P-values are calculated by logrank test.
Abbreviations: cgga, chinese glioma genome atlas; Tcga, The cancer genome atlas.
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prognostic lncRNAs, LBX2-AS1, LINC00641, LINC00645, 

and LINC00565 were DERs. A heatmap for expression of 

these overlapped DERs demonstrates that the DERs in the 

GSE22866, GSE50161, and GSE4290 had similar expression 

patterns (Figure 6).

establishment of lncrna-mrna 
networks
To explore the relationships between the six prognostic 

lncRNAs and genes in the yellow and red modules, lncRNA-

mRNA networks were constructed for the two modules, 

respectively (Figure 7A and B). For the red module, the 

lncRNA-mRNA network was composed of two lncRNAs 

(C20orf166-AS1 and LINC00645) and 206 genes, of which, 

five were downregulated DERs and 72 were upregulated 

(Figure 7A). For the yellow module, the lncRNA-mRNA 

network contained four lncRNAs (LBX2-AS1, LINC00641, 

PRRT3-AS1, and LINC00565) and 217 genes, of which, 

four were downregulated DERs and 97 were upregulated 

(Figure 7B).

Pathway analysis
We conducted pathway enrichment analysis using GSEA 

for the two lncRNA-mRNA networks. It was revealed 

that C20orf166-AS1 in the red module was significantly 

enriched in antigen processing and presentation and cell 

adhesion molecules (CAMs) pathways (Table 3). The two 

pathways involved nine common genes: major histocom-

patibility complex, class II, DM alpha (HLA-DMA), major 

histocompatibility complex, class II, DM beta (HLA-DMB), 

major histocompatibility complex, class II, DP beta 1 (HLA-

DPB1), CD2, sialic acid-binding Ig-like lectin 1 (SIGLEC1), 

major histocompatibility complex, class II, DO alpha (HLA-

DOA), major histocompatibility complex, class II, DQ alpha 

1 (HLA-DQA1), major histocompatibility complex, class II, 

DR beta 1 (HLA-DRB1), and major histocompatibility com-

plex, class II, DQ beta 1 (HLA-DQB1). As shown in Table 4, 

LBX2-AS1, LINC00641, PRRT3-AS1, and LINC00565 in 

the yellow module were significantly associated with cancer, 

focal adhesion,  extracellular matrix (ECM) receptor interac-

tion, and mitogen-activated protein kinase (MAPK) signaling 

pathways. Twelve common genes were involved in the four 

pathways, including laminin subunit beta (LAMB) 1, collagen 

type V alpha 2 chain (COL5A2), TGFB 1, integrin subunit 

alpha (ITGA) 5, platelet-derived growth factor receptor 

beta (PDGFRB), TNF receptor superfamily (TNFRSF) 12A, 

dual-specificity phosphatase (DUSP) 6, laminin subunit 

gamma (LAMC) 1, LAMC3, TNFRSF1A and myosin light 

chain (MYL) 9.

Discussion
Increasing evidence indicates that a growing number of 

lncRNAs are associated with various cancer types.27 This 

discovery leads to a growing interest in the study of lncRNAs 

in GBM. Based on the gene expression data of GBM from 

CGGA, NCBI GEO, and EBI ArrayExpress, we identified 

a prognostic signature of six lncRNAs (C20orf166-AS1, 

LINC00645, LBX2-AS1, LINC00565, LINC00641, and 

Figure 6 a heatmap showing expression of consensus Ders in tumor and control samples of gse22866, gse50161, and gse4290.
Abbreviation: Der, differentially expressed rna.
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Figure 7 LncRNA-mRNA networks for the identified prognostic lncRNAs in the red module (A) and the yellow module (B).
Notes: a round node stands for a gene, while a square node stands for an lncrna. a regular triangle represents an upregulated gene, while an inverted triangle represents 
a downregulated gene. green or red link signals negative or positive association, respectively, between two nodes.
Abbreviation: lncrna, long non-coding rna.

PRRT3-AS1) through a combination of WGCNA, univariate 

Cox regression analysis, and LASSO PH model. Moreover, a 

six-lncRNA-based risk scoring system was constructed and 

capable to classify GBM patients into two risk groups with 

significantly different survival rates. The prognostic perfor-

mance of the risk scoring model was successfully validated 

in two independent sets. It indicates that the six lncRNAs 

are promising prognostic biomarkers for GBM and may play 

important roles in tumorigenesis of GBM.

LINC00645 is an endometrial cancer-specific lncRNA.28 

Emerging studies have proved that C20orf166-AS1 is 

aberrantly expressed in prostate cancer and bladder cancer.42,43 

However, the involvement of LINC00645 and C20orf166-

AS1 in GBM has not been reported yet. In the present study, 

C20orf166-AS1 was identified as an important lncRNA of 

prognostic value for GBM. Moreover, pathway enrichment 

analysis showed that C20orf166-AS1 was significantly 

related to antigen processing and presentation and CAMs 

pathways, and both pathways shared HLA-DMA, HLA-DMB, 

HLA-DPB1, CD2, SIGLEC1, HLA-DOA, HLA-DQA1, HLA-

DRB1, and HLA-DQB1. Among the nine common genes, 

HLA-DMA, HLA-DMB, HLA-DPB1, HLA-DOA, HLA-DQA, 
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Table 4 results of pathway enrichment analysis for the lncrna-mrna network of the yellow module

Name PRRT3-AS1 LBX2-AS1

ES NES NOM 
P-value

ES NES NOM 
P-value

Kegg_PaThWaYs_in_cancer -0.4574 -1.0686 0.3951 0.1585 0.3544 0.0084

Kegg_FOcal_aDhesiOn -0.3054 -0.7933 0.6885 0.2975 0.7244 0.0276

Kegg_ecM_recePTOr_inTeracTiOn -0.3010 -0.7540 0.7215 0.2821 0.6673 0.0381

Kegg_MaPK_signaling_PaThWaY 0.3486 0.7623 0.7955 0.2419 0.5276 0.0498

LINC00641 LINC00565

ES NES NOM 
P-value

ES NES NOM 
P-value

Kegg_PaThWaYs_in_cancer 0.1796 0.4001 0.0099 -0.4807 -1.1598 0.0031

Kegg_FOcal_aDhesiOn -0.1243 -0.3241 0.0137 -0.4050 -1.1102 0.0370

Kegg_ecM_recePTOr_inTeracTiOn 0.1864 0.4300 0.0397 -0.3442 -0.8985 0.0457

Kegg_MaPK_signaling_PaThWaY 0.1801 0.3902 0.0464 -0.5860 -1.3128 0.0413

Note: Positive and negative nes values denote upregulation and downregulation of genes or lncrnas involved in pathways, respectively.
Abbreviations: es, enrichment score; lncrna, long non-coding rna; nes, normalized enrichment score; nOM, nominal.

Table 3 results of pathway enrichment analysis for the lncrna-
mrna network of the red module

Name ES NES NOM 
P-value

Kegg_anTigen_PrOcessing_
anD_PresenTaTiOn

0.5920 1.3432 0.0192

Kegg_cell_aDhesiOn_
MOlecUles_caMs

0.5170 1.3731 0.0311

Note: Positive and negative nes values denote upregulation and downregulation of 
genes or lncrnas involved in pathways, respectively.
Abbreviations: es, enrichment score; lncrna, long non-coding rna; nes, 
normalized enrichment score; nOM, nominal.

HLA-DRB1, and HLA-DQB1 are major histocompatibility 

complex class II molecules that are mainly expressed on 

antigen-presenting cells and play an important role in immune 

response. The protein encoded by CD2 gene is a CAM located 

on the surface of T cells and NK cells, and it acts as a specific 

marker for these cells.29 SIGLEC1 protein is a member of 

siglecs that are predominately expressed on the surface of 

immune cells and bind to glycans enclosing sialic acids.30 

Interactions between siglecs and glycans are implicated in 

cell adhesion and cell signaling. These findings reveal that 

C20orf166-AS1 might participate in immune response and 

cell adhesion in GBM through the regulation of these genes in 

antigen processing and presentation and CAM pathways.

Recent studies report that upregulation of LBX2-AS1 has 

been observed in lung cancer.31,32 Interestingly, LBX2-AS1 

is significantly upregulated with the increase of tumor grade 

in GBM,33 suggesting that this lncRNA probably has an 

important regulatory role in GBM prognosis. Alterations of 

LINC00641, PRRT3-AS1, and LINC00565 in cancer have 

been scarcely reported. The current study provided evidence 

that the four lncRNAs had predictive value for survival 

of GBM patients. Notably, the study uncovered that they 

were significantly linked to focal adhesion, ECM receptor 

interaction, and MAPK signaling pathways. These pathways 

involved 12 common genes, including LAMB1, COL5A2, 

TGFB1, ITGA5, PDGFRB, TNFRSF12A, DUSP6, LAMC1, 

LAMC3, TNFRSF1A, and MYL9. Increasing evidence has 

established that MAPK pathway is involved in regulating 

GBM cell migration and proliferation.34,35 LAMB1, LAMC1, 

and LAMC3 are members of ECM glycoproteins. COL5A2 

encodes an alpha chain for fibrillar collagen, a major com-

ponent of ECM proteins.36 TGF-β1 is a member of TGF β 

superfamily and plays a role in the regulation of growth, 

proliferation, and differentiation of glioma cells.37 Integrin 

alpha-5 protein encoded by ITGA5 belongs to the integrin 

alpha chain family that is critical for cell adhesion.38 Recently, 

it is found that PDGFRB is elevated in GBM microvascular 

proliferation compared to GBM tumor cells and selectively 

expressed PDGFRB protein in pericytes.39 DUSP6 protein 

belongs to the dual-specificity protein phosphatase subfamily 

that acts as a negative regulator over MAPK members.40 

Besides, it has been found that DUSP6 is upregulated in 

GBM and promotes the development of GBM.41 These results 

imply that the involvement of LBX2-AS1, LINC00641, 

PRRT3-AS1, and LINC00565 in GBM may be involved in 

focal adhesion, ECM receptor interaction, and MAPK sig-

naling pathways. These common genes might be potential 

therapeutic targets for GBM.
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Conclusion
Based on the comprehensive analysis of publicly accessible 

GBM data in CGGA, NCBI GEO, and EBI ArrayExpress, 

this study identifies a novel six-lncRNA signature for GBM 

prognostic prediction. This study also highlights the pathways 

and genes involved in the regulatory mechanisms underlying 

these prognostic lncRNAs. Further studies are warranted prior 

to the application of this lncRNA signature in clinical practice.
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