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Abstract: The Warburg effect in tumor cells involves the uptake of high levels of glucose, 

enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-

phorylation to generate energy under aerobic conditions. This effect is closely related to the 

occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). 

Current research has further demonstrated that the Warburg effect in GC cells is not only medi-

ated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and 

other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis 

pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial 

functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism 

of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based 

on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid 

metabolism, and we clarify the role of mitochondria. We also examine recent studies of meta-

bolic inhibitors in GC.

Keywords: gastric cancer, glycolysis, mitochondria, metabolic reprogramming, 

Helicobacter pylori

Introduction
Gastric cancer (GC) is currently one of the most common malignant tumors diagnosed, 

and it is the second leading cause of mortality due to cancer.1 GC originates in gastric 

epithelial cells and similar to other types of tumors, it exhibits a Warburg effect. This 

effect involves a high uptake of glucose, enhanced glycolysis, and the metabolization 

of a large amount of pyruvate to lactic acid rather than oxidative phosphorylation to 

provide energy under aerobic conditions.2 The metabolic changes dominated by the 

Warburg effect have recently been referred to as metabolic reprogramming, and studies 

of these changes have provided a deeper understanding of tumor cell metabolism. For 

example, it has been demonstrated that GC cells and normal cells exhibit metabolic 

differences not only in glucose metabolism, but also in the metabolism of lipids and 

amino acids. Accordingly, a large number of specific biomarkers of GC have been 

identified. Metabolic reprogramming of GC has also been recognized as a novel 

approach for the study of the biological characteristics of GC.

In this review, we focus on a discussion of recent insights into the glycolysis path-

way in GC and we summarize the complex relationship that exists between glucose 

metabolism, lipid metabolism, and amino acid metabolism. The role and impact of 

mitochondrial function in each of these aspects are also considered.
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Helicobacter pylori promotes the 
genesis of GC by inducing metabolic 
reprogramming
Infection by Helicobacter pylori (Hp) is the most important 

primary cause of GC. However, progression from a Hp infec-

tion to atrophic gastritis and eventually GC is a long-term 

process.3 In vitro, Hp-infected gastric epithelial cells have 

exhibited increased glycolysis and increased expression of 

Lon protease 1 (Lonp1), a protein that activates the mito-

chondrial unfolded protein response and maintains mito-

chondrial function. Correspondingly, knockdown of Lonp1 

has been shown to reverse alterations in metabolism that are 

caused by Hp,4 thereby suggesting that aerobic glycolysis 

and mitochondrial dysfunction correlate with the genesis of 

GC. Hp-induced GC is also characterized by higher expres-

sion levels of the M2 isoform of pyruvate kinase, PKM2, 

among other factors that are induced in GC and that affect 

mitochondrial function.5,6 Cytotoxin-associated gene A 

(CagA) has been shown to upregulate expression of PKM2 

and pyruvate dehydrogenase kinase (PDK1). Moreover, 

when CagA localizes to mitochondria, it inhibits the activ-

ity of sirtuin 3 (SIRT3) and promotes stability of hypoxia-

inducible factor 1α (HIF-1α).7 Vacuolating cytotoxin A 

(VacA) is another Hp protein, and it has been shown to trigger 

mitochondrial dysfunction, promote mitochondrial division, 

and reduce mitochondrial DNA (mtDNA) copy number.8–10 

Taken together, these findings support a model in which 

Hp induces GC by promoting glycolysis and mitochondrial 

dysfunction (Table 1).

Molecular factors that affect 
metabolic reprogramming in 
GC cells
Metabolic reprogramming that occurs in GC mainly involves 

changes in the following molecular factors: 1) key enzymes 

in glycolysis, 2) mitochondrial proteins, 3) noncoding RNAs, 

and 4) proteins that regulate these factors. The changes mani-

fested by these molecules include significant differences in 

their levels between GC tissues and normal tissues. More-

over, interventions targeting these molecules have been found 

to not only affect the metabolic profile of GC cells, but also 

to affect the genesis, proliferation, invasion, and metastasis 

of GC cells as we describe below.

Changes in key glycolysis enzymes during 
metabolic reprogramming in GC
The glycolysis profile of GC is unique and is based on the 

ability of GC cells to maintain their growth under hypoxic 

conditions, to provide raw materials for cell biosynthesis 

and cell division, and to maintain intracellular redox 

homeostasis.11 These functions also correlate with the 

genesis, proliferation, invasion, and metastasis of GC cells. 

The following six proteins have been identified as key glyco-

lytic enzymes that are affected by metabolic reprogramming 

in GC (Figure 1).

Hexokinase ii
The hexokinase (HK) family of proteins catalyzes the con-

version of glucose to glucose 6-phosphate (G6P) as the first 

rate-limiting step in glycolysis. G6P also participates in the 

pentose phosphate pathway and the process of gluconeo-

genesis. Among the HK family of proteins, HKII has been 

found to be consistently overexpressed in most tumors, 

including GC. HKII is also associated with poor prognosis of 

GC in most cases.12 HKII binds to voltage-dependent anion 

channels (VDACs) on the outer membrane of mitochondria 

to obtain ATP that is required for glycolysis.13 However, 

HKII can also bind to the outer membrane of mitochondria, 

specifically via the antiapoptotic protein, Bcl-2, and the pro-

apoptotic protein, Bax, to inhibit apoptosis.14,15 Thus, HKII 

is an excellent target for blocking glucose flux.

Pyruvate kinase M2
Pyruvate kinase (PK) is a key enzyme in the final step of glycol-

ysis, which catalyzes the conversion of phosphoenolpyruvate 

Table 1 Specific Hp proteins that are associated with metabolic 
reprogramming in GC

Protein Function References

Lonp1 Upregulates glycolysis 4
CagA Upregulates PKM2 5

Upregulates PDK1 6
inhibition of SiRT3 and stabilization of HiF-1α 7

vacA Promotes division of mitochondria 8, 10
Reduces mtDNA 8, 9

Abbreviations: GC, gastric cancer; Hp, Helicobacter pylori; mtDNA, mitochondrial 
DNA; PDK, pyruvate dehydrogenase kinase; PKM2, pyruvate kinase M2; SiRT3, sirtuin 3.

Figure 1 An overview of the pathways mediating upregulation of glycolysis and 
mitochondrial dysfunction in GC.
Abbreviations: GC, gastric cancer; mtDNA, mitochondrial DNA; OXPHOS, 
oxidative phosphor ylation; PKM2, pyruvate kinase M2.
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to pyruvate. There are four members of the PK protein family, 

PKM1, PKM2, PKL, and PKR.16 PKM1 and PKM2 are 

encoded by PKM, while PKL and PKR are encoded by the 

PKLR gene.16 In addition, PKM1 exhibits PK activity, yet 

PKM2 does not. Tumor cells generally express high levels of 

PKM2 and low levels of PKM1, thereby promoting glycoly-

sis and inhibiting mitochondrial oxidative phosphorylation.16 

When PKM2 was knocked out in GC cells, the PI3K/AKT/

mTOR pathway and autophagy were inhibited, thereby 

leading to a decrease in the proliferation and invasive phe-

notype of GC cells.17,18 PKM2 can also translocate to the 

nucleus and promote transcription of HIF-1α and Bcl-xl to 

further enhance glycolysis.19 Moreover, interactions between 

PKM2, β-catenin, and octamer-binding transcription factor 4 

(OCT4) have been shown to maintain the stemness quality of 

cells.20,21 In mitochondria, PKM2 interacts with and activates 

Bcl-2 to inhibit apoptosis.22 Correspondingly, overexpression 

of PKM2 promotes mitochondrial fusion, fewer copies of 

mtDNA, and the expression and degradation of p53. Over-

expression of PKM2 also reduces levels of electron transport 

chain complex proteins I, III, and V.23 Taken together, these 

studies indicate that PKM2 promotes glycolysis and contrib-

utes to the dysfunction of mitochondria.

Pyruvate dehydrogenase kinase
The PDK family of proteins includes four isoforms. Many 

studies have recently focused on PDK1, which is generally 

expressed at high levels in tumors and is associated with 

tumor proliferation, metastasis, and poor prognosis.24 PDK1 

inhibits the activity of pyruvate dehydrogenase (PDH) to 

promote the metabolization of pyruvate to lactic acid, and it 

helps regulate the AKT/NF-κB pathway.6 The ability of PDK 

to inhibit PDH activity also leads to a decrease in the level 

of acetyl-CoA to influence the de novo synthesis of lipids.25

enolase
Enolase (ENO1) catalyzes the conversion of phosphoglycerol 

to phosphoenolpyruvate in glycolysis and is highly expressed 

in GC. Knockdown of ENO1 has been shown to inhibit gly-

colysis and increase the sensitivity of GC cells to cisplatin. 

Conversely, overexpression of ENO1 enhances the prolifera-

tion and metastasis of GC cells.26,27 In a proteomic analysis, 

ENO1 was found to be closely related to heat shock protein 

beta-1 (also known as Hsp27), while it has also been found 

to affect the regulation of anti-stress pathways.28

Glucose transporter
As implied by their name, glucose transporters (GLUTs) 1–4 

are responsible for the transport of glucose into cells, and in 

GC, where GLUT1 and GLUT4 are highly expressed. When 

GLUT1 was knocked out in GC cells in vitro, metabolic 

reprogramming was significantly reversed and apoptosis was 

triggered.29 Levels of HK2 and PKM2 also declined in the 

absence of GLUT1.29 Conversely, upregulation of GLUT4 

by p38 mitogen-activated protein kinase affects myocyte 

enhancer factor 2α and promotes glycolysis.30

Lactate dehydrogenase
Lactate dehydrogenase (LDH) catalyzes the conversion of 

pyruvate to lactic acid and is a key enzyme in the metabolic 

reprogramming of tumors. LDH is highly expressed in GC 

and promotes glycolysis. In GC, the transcription factor, fork 

head/winged-helix 1, upregulates the M isoform of LDH, 

LDHA.31 Meanwhile, downregulation of LDHA by OCT4 

has been associated with a good prognosis in GC.32

Association between mitochondria and 
metabolic reprogramming in GC
Mitochondria are the energy factories for cells and their 

functions are often compromised in tumors. While dysfunc-

tional mitochondria have been recently shown to promote 

tumor survival, the underlining mechanism(s) remain to be 

elucidated.33 Here, we describe three aspects of mitochondrial 

function in GC.

MtDNA
Low levels of mtDNA have been shown to have an important 

effect on the biogenesis and homeostasis of mitochondria.34 

In 62.5% of GC patients, mutations in mitochondrial genes 

have been identified. A decrease in mtDNA copy number 

has also been observed in 54.8% of GC patients, especially 

patients affected by advanced GC.15,35 Furthermore, it has 

recently been reported that curcumin suppresses the growth 

of GC by increasing the production of ROS to mediate 

depletion of DNA polymerase gamma. These changes affect 

mitochondrial oxidative phosphorylation and inhibit cell 

biosynthesis.36

Mitochondrial topoisomerase i
Replication of mtDNA requires topoisomerases, except for 

mitochondrial topoisomerase I (TOP1MT). The latter exerts 

a negative effect on the regulation on mtDNA replication, 

yet plays an important role in the formation and mainte-

nance of D-LOOP regions of mtDNA and in maintaining 

mitochondrial homeostasis.37,38 Thus, low levels of TOP1MT 

are generally expressed in GC. In the absence of TOP1MT, 

oxidative stress and mitochondrial autophagy are induced,37 
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glycolysis is promoted, the epithelial–mesenchymal transi-

tion (EMT) is accelerated, and the proliferation, invasion, and 

metastasis of GC cells are enhanced.39 Expression of LDHA 

and glycolysis are also increased in the absence of TOP1MT, 

thereby indicating that TOP1MT affects cell proliferation by 

modulating glycolysis.39 In clinical studies of GC, TOP1MT 

has been associated with poor prognosis.

SiRT3
SIRT3 localizes to mitochondria and is mainly involved in 

regulating oxidative stress. However, SIRT3 has also been 

shown to upregulate manganese-dependent superoxide 

dismutase, inhibit mitochondrial ROS levels, regulate the 

unfolded protein response of mitochondria, and maintain 

mitochondrial homeostasis.7,40,41 Thus, SIRT3 is considered a 

tumor suppressor gene. However, there are conflicting data 

regarding the role of SIRT3 in GC. For example, expression 

of SIRT3 in GC tissues has been found to be lower in some 

studies, and higher in others, than in normal tissues.42 Simi-

larly, overexpression of SIRT3 has been associated with a 

significant reduction in cell proliferation,43 and conversely, 

has also been associated with enhanced cell proliferation.42 

When SIRT3 was overexpressed in GC cells, promotion of 

ATP production and glycolysis were observed.42 Moreover, 

SIRT3 has been shown to acetylate LDHA to enhance its LDH 

activity.42 In the clinic, patients with high levels of SIRT3 

expression have been associated with good prognosis.44 Thus, 

the role of SIRT3 in GC remains an active area of research, and 

inconsistencies among reported results remain to be resolved.

Despite advances in characterizing mitochondrial factors 

and their roles in metabolic reprogramming in GC, there 

have been very few studies that have examined the relation-

ship between mitochondria and metabolic reprogramming. 

However, as described above, the localization of glycolysis-

related proteins to mitochondria can affect the functions 

of mitochondria, while mitochondrial proteins can also 

affect glycolysis. Thus, it appears that mitochondria are 

tightly linked with metabolic reprogramming that occurs, 

and this complex relationship remains to be thoroughly 

characterized.

The effect of other molecules on 
metabolic reprogramming in GC
There are other types of molecules which can regulate gly-

colysis and mitochondrial function in GC, and we introduce 

some of these molecules below. These representative mol-

ecules demonstrate how metabolic reprogramming can cor-

relate with the EMT, cell cycle, and other cellular processes.

Snail
Snail is a key molecule in the EMT process and also regulates 

glycolysis. When Snail is overexpressed in GC cells, glucose 

intake is increased while activity of fructose bisphosphatase 1 

is inhibited.45 In GC, overexpression of Snail has been shown 

to correlate with metastasis and poor prognosis.46

Hypoxia-inducible factor 1α
HIF-1α is a key factor for cell survival under hypoxic con-

ditions. In GC, HIF-1α is highly expressed and is closely 

related to poor prognosis and drug resistance.47 The level of 

HIF-1α expression in GC metastases has also been found 

to be higher than that in primary tumors, and it appears to 

promote GC metastasis by inhibiting integrin 5α.48

Thymidine phosphorylase
Thymidine phosphorylase (TP) catalyzes the conversion of 

thymidine to thymine and 2-deoxy-D-ribose 1-phosphate. 

In GC, TP activates the NF-κB pathway to promote angio-

genesis, lymphangiogenesis, and metastasis.49 Under con-

ditions of nutritional deprivation, thymidine provides a 

carbon source for glycolysis, and a high level of thymidine 

catabolism has been observed in GC.49

Monocarboxylic acid transporter
The monocarboxylic acid transporter (MCT) family of pro-

teins has 14 members. In GC, MCT1, MCT2, and especially 

MCT4, are highly expressed. These proton pumps transport 

monocarboxylic acids, pyruvic acid, lactic acid, ketone 

bodies, and other substances to maintain high glucose flux. 

They also play an important role in cell survival under highly 

acidic conditions in tumor cells.50 Moreover, expression of 

MCT4 has also been associated with advanced tumor size-

lymph nodes-metastases staging of GC.51

p53
p53 is a tumor suppressor protein which plays an impor-

tant role in cell cycle arrest, apoptosis, DNA repair, and 

glycolysis.52 Currently, it is widely accepted that wild-type 

(WT) p53 inhibits glycolysis and promotes oxidative phos-

phorylation. For example, WT p53 downregulates GLUT1/4 

and GLUT3 by inhibiting NF-κB signaling, thereby reducing 

the intracellular flux of glucose.53,54 WT p53 can also inhibit 

expression of HKII at the transcriptional level and upregulate 

the protein, parkin,55 to induce ubiquitination of PKM2 and 

inhibit glycolysis.56 In addition, WT p53 is able to inhibit 

glycolysis by upregulating TP53-induced glycolysis and 

the apoptosis regulator, TIGAR.54 In humans, p53 mutations 
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have been detected in .50% of cancer patients.57 Mutant 

p53 proteins have also been shown to mediate functions 

that oppose those of WT p53. For example, mutant p53 

proteins have been shown to promote glycolysis in tumors 

via upregulation of GLUT1, GLUT4, and HKII.58 In GC, 

mutant p53 inhibits TIGAR, thereby enhancing glycolysis, 

and it correlates with poor prognosis.59,60

effect of noncoding RNAs on metabolic 
reprogramming in GC
Noncoding RNAs, including microRNAs and long noncod-

ing RNAs (lncRNAs), mediate complex regulatory effects 

on the structure, function, and processes of cells.61 It has 

been reported that microRNAs and lncRNAs regulate key 

molecules involved in the metabolism of glucose to influence 

the proliferation, invasion, and metastasis of GC.62,63

effect of microRNAs on metabolic reprogramming 
in GC
Various microRNAs have been shown to regulate gly-

colysis in GC. For example, Mir-22 upregulates ENO1.26 

Mir-186 inhibits the activity of HIF-1α, thereby leading to 

an increase in glucose uptake, lactate production, ATP/ADP, 

and a decrease in NAD+/NADH.64 Mir-let-7a inhibits GC 

progression by inhibiting PKM2,65 while Mir-133b inhibits 

polypyrimidine tract-binding protein 1 to reduce levels of 

PKM2.66 Mir-181b reduces glucose intake and increases ATP 

production via inhibition of HKII expression.67 Furthermore, 

Mir-448 maintains glycolysis levels by inhibiting KDM2B,68 

Mir-148 enhances glycolysis by upregulating GLUT1,69 Mir-

375 inhibits expression of PDK1,70 and Mir-128b binds the 

3′ UTR of PDK1 to inhibit expression of PDK1.71

effects of lncRNAs on metabolic reprogramming 
in GC
Various lncRNAs have also been shown to regulate gly-

colysis in GC. For example, the lncRNA, MACC1-AS1, has 

been shown to enhance MET-related transcription factor 1 

(MACC1), activate the AMPK-LIN28 pathway, enhance 

glycolysis and the antioxidant capacity of GC cells, and 

play a cancer-promoting role in GC.72 Correspondingly, 

MACC1 is associated with poor prognosis in GC. Recent 

studies have further shown that MACC1 contributes to 

resistance to trastuzumab in GC via activation of the PI3K/

AKT signaling pathway.73 Under conditions of nutritional 

deprivation, AMPK upregulates levels of MCAA1, while 

levels of HKII, PDK1, and LDH are also upregulated under 

these conditions.74 Lnc00152 promotes GC by inhibiting 

miR-139-5p, although miR-139-5p is able to inhibit gly-

colysis by upregulating AMP-activated protein kinase 1α 

(PRKAA1).75 Finally, lncTINCR is a molecular sponge of 

miR-375, and it promotes expression of PDK1 and prolifera-

tion and metastasis in GC.76

The effects of lipid metabolism 
and amino acid metabolism on 
metabolic reprogramming in GC
Intracellular pathways for the metabolism of lipids, amino 

acids, and glucose are needed for life, and they are closely 

linked with each other. Correspondingly, in cancer cells, 

abnormal glucose metabolism is often accompanied by 

changes in the metabolism of lipids and amino acids.

effect of lipid metabolism on metabolic 
reprogramming in GC
In GC, levels of lipids and triglycerides generally increase.77 

In a metabolomic analysis of GC cells, low levels of 

3-hydroxybutanoic acid (the end product of fatty acid 

β-oxidation) and inhibition of cholesterol synthesis were 

detected.28 A metabolic analysis of a rat GC model also 

showed that oxidative stress-related pathways, fatty acid 

degradation, and amino acid metabolism were all blocked.78

Endoscopic explorations have revealed a novel ultra-

structure for GC, which includes a white opaque substance 

(WOS). Histology studies further revealed that the interior 

of this WOS consists of a large number of lipid drops. This 

novel structure is considered to be a hallmark of GC, and 

its formation is consistent with observations that lipid deg-

radation is inhibited and lipid synthesis is enhanced in GC. 

The latter processes also contribute to an accumulation of 

lipids intracellularly.79,80 Meanwhile, if lipid metabolism is 

compromised, low levels of mitochondrial oxidative phos-

phorylation are observed, and this may be related to poor 

prognosis in GC.81 Correspondingly, when a ketogenic diet 

consisting of average protein content, low levels of carbohy-

drates, and enriched omega-3 fatty acid and medium-chain 

triglyceride content was fed to a nude mouse GC metastasis 

model, reduced glucose uptake and significant inhibition of 

GC growth were observed.82

The effect of amino acid metabolism on 
metabolic reprogramming in GC
Metabolomic analyses have shown that the concentration 

of leucine, a ketogenic amino acid, is significantly reduced 

in GC, while levels of glycine, phenylalanine, and arginine 

are significantly increased.28 In addition, the amino acid 
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transporter gene, LAT1, has been shown to be upregulated 

in GC cell membranes.83 In GC cells subjected to glucose 

deprivation, nonessential amino acids can prevent activa-

tion of the mitochondrial apoptosis pathway by maintain-

ing mitochondrial homeostasis and a stable mtDNA copy 

number.84,85 The ability of PKM2 to act as a sensor of amino 

acids has also recently been demonstrated. In particular, 

phenylalanine, alanine, tryptophan, methionine, valine, and 

proline are able to inhibit it, and histidine and serine are able 

to activate PKM2.86,87 These findings suggest that amino 

acids can influence glucose metabolism in a more complex 

manner than previously anticipated, and a further study of 

this relationship is needed.

Novel metabolic inhibitors for 
treatment of GC
There are many new drugs that have been designed to target 

the glycolysis pathway, and many of these induce cell 

apoptosis. Below, we describe various metabolic inhibitors 

that have been developed to target four of the six glycolysis 

targets listed in Section “Molecular factors that affect meta-

bolic reprogramming in GC cells”, as well as HIF-1α.

Targeting of key glycolysis enzymes
Targeting HKii
HKII binds to VDACs or Bcl-2 in combination with Bax 

on the outer membrane of mitochondria to obtain ATP for 

glycolysis, or to inhibit apoptosis, respectively. Both 3-BrPA, 

an inhibitor of HKII, and SCT, an inhibitor of phosphate 

fructose kinase,13,88 downregulate Bcl-2 and upregulate Bax, 

to inhibit glycolysis and enhance mitochondria-associated 

apoptosis.89,90 Meanwhile, 2-deoxy-D-glucose has been 

shown to competitively combine with HKII to block glucose 

flux.91 Glycolysis activity is also reduced when baicalein 

inhibits HKII, PDK1, and LDHA, and baicalein has been 

shown to reduce the resistance of stomach adenocarcinoma 

cells to fluorouracil.92 Furthermore, licorice chalcone A is 

a novel HKII inhibitor, as well as an inhibitor of the AKT 

pathway,93 which has been shown to reduce glucose con-

sumption and lactate production in GC cells, with the latter 

condition inducing apoptosis.

Targeting PKM2
As described above, PKM2 has various roles in a cell. Thus, 

inhibitors that target this protein exhibit various effects. For 

example, inhibition of PKM2 in GC cells by LY294002 

induces apoptosis.94 Meanwhile, pantoprazole (PPZ), a third-

generation proton pump inhibitor and a newly identified 

PKM2 inhibitor, inhibits the Akt/GSK-β/β-catenin pathway 

and reverses sensitivity to chemotherapy in GC cells.95,96 PPZ 

has also been shown to reverse chemotherapy resistance 

in SGC7901 cells by downregulating V-ATPases/mTOR/

HIF-1α/P-gp and MRP1 signaling pathways.97 Furthermore, 

inhibition of PKM2 by resveratrol induces endoplasmic 

reticulum stress in tumor cells, promotes mitochondrial 

division, and leads to apoptosis in tumor cells. Accordingly, 

overexpression of PKM2 has been shown to relieve the effect 

of resveratrol.98

Targeting of PDK1 and LDH
Dichloroacetate has been shown to inhibit PDK1 and acti-

vate mitochondrial oxidative phosphorylation in GC cells, 

thereby resulting in an accumulation of mitochondrial ROS 

and apoptosis.99 Meanwhile, oxamate is an LDH inhibitor, 

which inhibits mTOR activity, increases levels of ROS, and 

induces apoptosis in GC cells.100

Targeting of HiF-1α
YC-1 is an inhibitor of HIF-1α, which reduces glycolysis and 

increases oxidative phosphorylation and intracellular ROS 

levels in GC cells. Under hypoxic conditions in vitro, treat-

ment of GC cells with YC-1 has led to apoptosis.101 Similarly, 

rosmarinic acid is another inhibitor of HIF-1α, which reduces 

glycolysis and induces apoptosis in GC cells.102

While none of these drugs are currently available for 

clinical use, they have the potential to facilitate in vitro and/or 

in vivo studies of glycolysis to elucidate mechanistic details.

Conclusion
It is clear that a complex relationship exists among the path-

ways responsible for the metabolism of lipids, amino acids, 

and glucose, although the components, interactions, and 

regulatory mechanisms associated with these fundamental 

pathways remain to be fully characterized. In addition, it has 

been demonstrated that mitochondria play an important role 

in metabolic reprogramming in GC, not only by regulating 

oxidative phosphorylation, but also by regulating the metabo-

lism of lipids and amino acids (Figure 2). An important 

observation regarding the studies conducted to date involves 

differences in the results of in vitro vs in vivo studies. For 

example, in vitro studies involving low-glucose media have 

exhibited higher degrees of malignancy and drug resistance 

than in vivo studies.103 Therefore, it is important for future 

studies to identify and optimize in vitro experimental condi-

tions so that they are consistent with in vivo conditions. As a 

result, effects that are cell-specific and/or pathology-specific 
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could be distinguished from those that represent fundamental 

aspects of glycolysis.

We hypothesize that alterations in mitochondrial func-

tions may initiate metabolic reprogramming that can occur 

in GC, despite this aspect being largely unexplored in studies 

of GC to date. Thus, we would advocate that future research 

of GC should include investigations of mitochondria and 

their functions in order to obtain a better understanding of 

the genesis and development of GC. In addition, the signifi-

cance of changes observed in various metabolites remains to 

be clarified beyond the identification that these changes are 

manifestations of metabolic reprogramming. It is anticipated 

that further studies of these metabolites and their roles could 

facilitate the development of effective biomarkers for the 

diagnosis of GC, as well as for prognosis assessments and 

evaluation of treatment response.
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