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Objective: To construct and optimize a neural network that is capable of predicting the 

 occurrence of recurrent aphthous ulceration (RAU) based on a set of appropriate input data.

Participants and methods: Artificial neural networks (ANN) software employing genetic 

algorithms to optimize the architecture neural networks was used. Input and output data of 

86 participants (predisposing factors and status of the participants with regards to recurrent 

aphthous ulceration) were used to construct and train the neural networks. The optimized neural 

networks were then tested using untrained data of a further 10 participants.

Results: The optimized neural network, which produced the most accurate predictions for the 

presence or absence of recurrent aphthous ulceration was found to employ: gender, hematological 

(with or without ferritin) and mycological data of the participants, frequency of tooth brushing, 

and consumption of vegetables and fruits.

Conclusions: Factors appearing to be related to recurrent aphthous ulceration and appropriate 

for use as input data to construct ANNs that predict recurrent aphthous ulceration were found 

to include the following: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell 

folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits 

or vegetables consumed daily.
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Recurrent aphthous ulceration
Recurrent aphthous ulceration (RAU) affects healthy as well as medically-compromised 

people. Aphthous ulcers are painful, shallow, and usually covered with a grayish white 

pseudomembrane that is surrounded by an erythematous margin.1

Although the clinical characteristics of RAU are well defined, the precise etiology 

remains unclear, and therefore the term “idiopathic” is widely used.2 Nevertheless, 

a number of predisposing factors have been linked to a minority of patients. A genetic 

background has been found for some RAU patients; those having positive family 

history for oral ulcerations have shown an increased frequency of human leukocyte 

antigen (HLA) types A2, A11, B12, and DR2.2

Dietary patterns could be playing a role in the pathogenesis, either by causing hyper-

sensitivity or by deficiency of some vitamins, proteins, or minerals.3 Results of recent 

studies implicate cows milk in the etiology of RAU.4–6 Recurrent aphthous-like ulcers 

are seen as oral manifestations of hematinic deficiencies of vitamin B1, B2, B6, B12, 

folic acid, or iron.2 While some researchers found a significant relationship between 

vitamin B12 deficiency and RAU, it was also found that hemoglobin level and serum 

levels of folic acid and ferritin did not have a statistically significant effect on RAU.1 
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Some researchers noticed that RAU patients ate acidic foods 

like oranges and lemons more frequently than participants in 

a control group.3 Food allergies including chocolate, cheese, 

gluten, cinnamaldehyde, methyl methacrylate, mercury, 

wheat flour, tomatoes, peanuts, and strawberries might be 

responsible for the onset of oral ulcers.2,7–9

A minority of patients may be predisposed to aphthous-

like ulcers by systemic conditions or diseases.10 Gender seems 

to be unrelated to the occurrence of RAU,1 however, patients 

affected by RAU are usually nonsmokers.2

Based on knowledge of the aforementioned predisposing 

factors, the diagnosis of RAU can be established by obtain-

ing a proper history that confirms recurrence and excludes 

trauma as a predisposing factor. The clinical features of 

RAU are also important tools in establishing the diagnosis. 

RAU can appear in one of three forms: minor, major, and 

herpetiform.11,12

Artificial neural networks (ANN) is an example of an 

intelligent data analysis tool and is claimed to be superior 

to classic regression.13,14 ANNs function in much the same 

way as neurons in the brain, which have the capability of 

acquiring, storing, and utilizing experiential knowledge.15,16 

An ANN consists of an interconnected group of artificial 

neurons that process information using a connectionist 

approach to computation. It is an adaptive system that 

changes the values of some constants related to certain input 

data based on their effect on the output data.15,16

Genetic algorithms (GAs) are based on the triangle of 

genetic reproduction, evaluation, and selection.17 Genetic 

reproduction is performed by means of two basic genetic 

operators: crossover and mutation. Evaluation is performed 

by means of the fitness function, which is dependent on the 

specific problem. Selection is the mechanism that selects 

parent individuals with probability proportional to their 

relative fitness. Some genetic algorithms (like the one used 

in this work) consist of the following steps: Initialization. 

An initial population comprising a number of individuals is 

randomly generated in this phase. Evaluation. The fitness, 

a positive measure of quality used as a measure to reflect 

the degree of goodness of the individual, is calculated for 

each individual in the population. Selection. Individuals 

are chosen from the current population to enter a mating 

pool devoted to the creation of new individuals for the 

next generation such that the chance of a given individual 

to be selected to mate is proportional to its relative fitness. 

This means that best individuals produce more copies in 

subsequent generations so that their desirable traits may be 

passed onto their offspring. This step ensures that the overall 

quality of the population increases from one generation to 

the next. Crossover. Provides the means by which valuable 

information is shared among the population. It combines 

the features of two parent individuals to form two children 

individuals who may have new patterns compared to those 

of their parents. Crossover also plays a central role in GAs. 

Mutation. Often introduced to guard against premature con-

vergence. Generally, over a period of several generations, the 

gene pool tends to become more and more homogeneous. The 

purpose of mutation is to introduce occasional perturbations 

to the parameters to maintain genetic diversity within the 

population. Replacement. After generating the offspring’s 

population through the application of the genetic operators 

to the parents’ population, the parents’ population is totally 

replaced by the offspring’s population. This is known as 

non-overlapping, generational replacement. This completes 

the “life cycle” of the population. Termination. The GA is 

terminated when some convergence criterion is met. Possible 

convergence criteria are: the fitness of the best individual so 

far found exceeds a threshold value, or the maximum number 

of generations is reached. After terminating the algorithm, 

the optimal solution of the problem is the best individual 

so far found. The block diagram of the genetic algorithm is 

given in Figure 1.

The parameters that are optimized using the genetic 

algorithm are the number of layers, the number of neurons, 

and the corresponding weights during the training phase. The 

network’s output for each individual is compared with the 
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Figure 1 Diagram of the steps of genetic algorithms.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2010:3 �

Predicting recurrent aphthous ulcerationDovepress

submit your manuscript | www.dovepress.com

Dovepress 

desired output and the overall error rate is minimized through-

out the evolution process of the genetic algorithm.18

ANN was originally used in medicine to investigate 

the causality of a number of diseases and it was found to 

have relatively high accuracy.19–23 Some researchers used 

ANN to diagnose celiac disease based on the occurrence 

of oral lesions including RAU.24 Others used it to predict 

survival rates of cancer patients undergoing esophagus and 

esophagogastric junction resections,25 to predict relapse in 

breast cancer patients,26 to predict lymph node metastasis 

in gastric cancer,27 to diagnose and predict survival of 

patients with colon cancer,28 to predict radiation-induced 

liver disease,29 and to study pancreatic cancer.21 Despite 

the promising medical applications of ANN, its use in oral 

medicine is still limited and is mainly focused on oral cancer 

and precancer.30–35

The aim in this study was to find the predisposing factors 

suitable for constructing artificial neural networks capable 

of predicting the occurrence of RAU.

Participants and method
Participants
All ninety six participants included in this study were patients 

attending the Orthodontics clinic in the Dental Department 

at The University of Jordan Hospital. Patients were first-time 

attendees seeking orthodontic treatment for mild to moderate 

malocclusion. Participants included in this study reported 

a medical history free of any disease except for common 

infectious diseases like flu or common colds and had no 

oral or dental pathologies. The 96 patients in this study were 

divided into two groups. Group 1 consisted of 86 patients for 

the construction phase of the ANNs and group 2 consisted 

of 10 patients for the reproduction (prediction) phase of the 

study.

Method
Patients were asked to fill out a questionnaire containing 

items concerning: oral hygiene habits (tooth brushing, use of 

mouth wash, and use of dental floss), nutritional habits (daily 

consumption of fresh fruits and vegetables), and history of 

recurrent nontraumatic oral ulceration.

All patients were investigated for complete blood count, 

serum vitamin B12, serum ferritin, and red cell folate. Blood 

samples for complete blood count and red cell folate were 

collected in ETDA tubes. Blood samples for ferritin and 

B12 were collected in plain tubes. All tests were analyzed in 

batch samples at the University of Jordan Hospital Clinical 

Laboratories.

A sample of saliva was collected from each patient. 

Patients were instructed to expectorate all saliva in a sterile 

container for a period of 5 minutes; additionally, they were 

asked not to eat or drink for at least 1 hour prior to the 

procedure. Salivary samples were cultured within 2 hours 

of collection on Sabouraud glucose agar plates using the 

streaking method, and incubated at 35°C for 24–48 hours. All 

yeast-like colonies were recorded and identified if they were 

Candida or budding yeast cells by using wet preparations, 

ChromCandida agar, and RapID Yeast Plus Systems for Yeast 

Species (Remel, KS, USA).

The software used to construct the ANNs employed genetic 

algorithms for network optimization. The population size was 

set to 50 ie, generations were patches of 50 ANNs. When the 

fitness of a certain individual (certain ANN configuration) is 

less than 100%, the operation proceeds to the next generation 

where another patch of 50 ANNs are produced and so on until 

at least one ANN is produced with a fitness of 100%.18

Nine ANNs were constructed. For each network, 

different group of predisposing factors were used as input 

data as detailed below. Output data was always the same 

for the networks and described the presence (expressed as 

1) or absence (expressed as 2) of oral ulceration for each 

participant.

Input data (predisposing factors) for each network were 

as follows:

Network 1: Gender, hemoglobin, serum vitamin B12, 

serum ferritin, red cell folate, salivary candidal colony count, 

frequency of tooth brushing and flossing daily, frequency 

of using mouth wash weekly, and the number of fruit and 

vegetables consumed daily.

Network 2: Gender, hematological, and mycological 

results.

Network 3: Gender, hematological, and mycological 

results, tooth brushing, and consumption of fresh fruits and 

vegetables.

Network 4: Gender and hematological results.

Network 5: As network 3 but without gender.

Network 6: As network 3 but without the data for 

 hemoglobin.

Network 7: As network 3 but without the data 

for vitamin B12.

Network 8: As network 3 but without the data for 

ferritin.

Network 9: As network 3 but without the data for red 

cell folate.

All networks were designed and constructed based on 

GA optimization.
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Following the construction phase of the networks, the 

output was reproduced (network output) and the network 

was trained on input and output data until the deviation of the 

network output from the actual output was very small.

In the final phase, each network was used to obtain pre-

dictions of the RAU status of patients in group 2 using the 

input data of the patients in that group.

Network predictions that were less than 1.5 were con-

sidered equivalent to 1, indicating presence of RAU. If 

the network prediction was 1.5 or more, it was considered 

equivalent to 2, indicating absence of RAU.

Statistical tests of significance
Statistical tests of significance were used to explore statisti-

cally significant differences in: gender, hemoglobin, vitamin 

B12, ferritin, red cell folate, or candidal colonies count or 

oral hygiene and dietary habits between the group with RAU 

and the group without RAU (Table 2).

Ethical committee approval (by the University of Jordan 

Hospital) was obtained to carry out this study. All participants 

(or their guardians when required) signed a consent form to 

participate in this study.

Results
Table 1 displays the predictions of the nine networks for 

patients in group 2. Networks 3 and 8 produced the most 

accurate predictions. Networks 5 and 7 produced the least 

accurate predictions.

Accuracy of predictions with networks 3 and 8 were 90%, 

with networks 4, 6, and 9 it was 80%, with networks 1 and 7 

it was 70%, and with networks 2 and 5 it was 60%.

Table 2 displays the results of statistical tests of signifi-

cance. At a 95% confidence interval, participants with RAU 

were not significantly different when compared with those 

without RAU regarding all possible predisposing factors.

Discussion
Little work has been done on the use of artificial intelligence 

to predict diseases. This study is the first to utilize ANN for 

the prediction of this rather unclear entity of diseases termed 

RAU. Although a number of factors have been linked to 

RAU,2,3 it can be considered an idiopathic disease with an 

unknown etiology in most cases.2

While ordinary statistical tests of significance could not 

detect significant differences in the possible predisposing factors 

between participants who were affected by RAU and those who 

Table 1 Accuracy of predictions made by the different networks to the status of RAU in patients of group 2

RAU status in patients  
in group 2 (1= RAU,  
2 = no RAU)

Network predictions

Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net � Net � Net �

2 1.38 1.99 1.99 1.05 2 2 1.21 2 1

2 1.17 1 2 1.99 1 1.33 1.99 2 2

2 1 2 2 2 2 2 1.99 2 2

2 1.96 2 2 2 1 1.98 1.96 2 2

2 2 2 2 2 2 2 1.16 2 2

1 1.04 2 2 2 2 2 1.96 2 2

2 1.97 1.01 1.96 2 2 2 2 2 1.79

2 2 1 2 2 1 2 2 2 2

2 1.99 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

Accuracy of predictions 70% 60% 90% 80% 60% 80% 70% 90% 80%

Note: Errors in predictions are marked in red and underlined.
Abbreviation: RAU, recurrent aphthous ulceration.

Table 2 Results of tests of significance to differences in gender, 
hematology, and colonies counts between participants with and 
without RAU

Factor P value and significance Test

Gender 0.8 ns* Mann–Whitney

B12 0.16 ns* Unpaired t-test

Ferritin 0.92 ns* Unpaired t-test

Folate 0.73 ns* Unpaired t-test

Hemoglobin 0.2 ns* Unpaired t-test

Colony count 0.6 ns* Unpaired t-test

Brushing 0.5 ns* Unpaired t-test

Mouth wash 0.6 ns* Unpaired t-test

Flossing 0.2 ns* Unpaired t-test

Fruits 0.8 ns* Unpaired t-test

Note: *ns, nonsignificant.
Abbreviation: RAU, recurrent aphthous ulceration.
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Figure 2 Network 8 and the weights of its different neurons.

were not, some ANNs constructed in this study and trained on 

the same values could detect a pattern that incriminates some of 

the above-mentioned factors as predisposing factors to RAU.

It is important to notice that statistical tests were per-

formed at a 95% confidence interval. Some researchers 

advocate the use of different confidence intervals when test-

ing statistical significance in certain situations.36

The better performance of ANN in this study over ordinary 

statistics is in agreement with the findings of Kattan.14 The ANN 

software used in this study employed a specialized genetic algo-

rithm for the build-up and optimization of all tested networks; 

however, the performance of the different networks was not 

consistent as accuracy depended on the choice of assumed input 

data (predisposing factors) for any given network.
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For a neural network estimation of certain values, it is 

common to have a difference between the actual output and 

the estimated values. Hence, for a network output of either 

1 or 2 in this study, the network output is rounded up to the 

nearest number.

It has been noticed that the more the network is trained on 

the supplied set of data, the more accurate it becomes.

As far as the prediction of unknown data is concerned 

and depending on the aforementioned factors, the accuracy 

of the ANNs can be reach 90%. This in itself has a significant 

clinical value.

Gender, hematological and mycological data, tooth brush-

ing, and consumption of fruits and vegetables were the most 

important factors that produced networks with high accuracy. 

However, the elimination of ferritin as a predisposing factor 

did not affect the accuracy of the network. In fact, predic-

tions made with network 8 have a sum of deviation equals 

to zero. This renders network 8 the most accurate network 

in this study (Figure 2).

If trained on more input data and output data from new 

patients in the future, this network may be able to reach 

100% accuracy.

Conclusion
Gender, hematological (without ferritin) and mycological 

data, tooth brushing, and fruits and vegetables consumed 

were found to be related to the occurrence of RAU.
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