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Abstract: Therapies targeting mutant huntingtin DNA, mRNA, and protein have a chance at 

becoming the first disease-modifying treatments for Huntington’s disease, a fatal inherited neuro-

degenerative disorder for which only symptom management treatments are available today. This 

review focuses on evidence addressing several key questions pertinent to huntingtin-lowering, 

ranging from the functions of wild-type huntingtin (wtHTT) that may be disrupted by huntingtin-

lowering treatments through the various ways huntingtin can be lowered, the tolerability of wtHTT-

lowering in mice and primates, what has been found in the Ionis Pharmaceutical safety trial of a 

huntingtin-lowering therapy, and to the question of how much mutant huntingtin may need to be 

lowered for a therapy to be clinically effective. We conclude that adverse consequences of lowering 

wtHTT in animals appear to be brain region-specific, and/or dependent upon the animal’s stage 

of development and the amount by which huntingtin is lowered. Therefore, safe approaches to 

huntingtin-lowering in patients may be to lower huntingtin only moderately, or lower huntingtin 

only in the most affected brain regions, or lower huntingtin allele-selectively, or all of the above. 

Many additional questions about huntingtin-lowering remain open, and will only be answered 

by upcoming clinical trials, such as whether the delivery approaches currently planned will be 

adequate to get the treatment to the necessary brain regions, and whether non-allele-selective 

huntingtin-lowering will be safe in the long run. Meantime, there is a role for preclinical research 

to address key knowledge gaps, including the effects of non-allele-selective huntingtin-lowering 

on protein trafficking and viability at the cellular level, the tolerability of wtHTT-lowering in the 

corticostriatal connections of the primate brain, and the effects of this lowering on the functioning 

of neurotransmitter systems and the transport of neurotrophic factors to the striatum.

Keywords: Huntington’s disease, huntingtin-lowering, gene therapy, cortex, striatum, CAG 

repeat disorder

Introduction
Huntington’s disease (HD) is an inherited, fatal disorder in which the primary pathology 

is neurodegeneration, particularly cortical thinning and atrophy of the caudate nucleus 

and putamen. The disease is caused by the expansion of a CAG repeat region in exon 

1 of the HTT gene, resulting in the expression of an expanded, mutant huntingtin 

protein (mHTT). Individuals with just one HTT allele containing more than 40 CAG 

repeats are invariably affected by the disease, while individuals with fewer than 36 

CAG repeats on both alleles do not manifest the disease.1,2 The age of symptom onset 

is inversely related to the number of CAG repeats and influenced by genetic modifier 

loci on chromosomes 8 and 15.3,4 No disease-modifying treatment yet exists.
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Studies in cells and animal models of HD have found 

mHTT to have a myriad of disruptive effects, including tran-

scriptional dysregulation, impairment of protein degradation 

systems, mitochondrial dysfunction, and altered synaptic 

plasticity.5 Some treatments targeting downstream effects 

of mHTT have shown efficacy in animal models of HD, 

but none have shown efficacy in the human disease today. 

Consequently, the best approach to treatment appears to be 

the targeting of huntingtin itself, seeking to eliminate or at 

least lower the expression of mHTT. In principle, this can be 

accomplished by various technologies, including intrabodies 

targeting the huntingtin protein, antisense oligonucleotides 

(ASOs) or RNAi agents targeting the mRNA transcripts, 

zinc-finger repressors to prevent mRNA transcription, or gene 

editing of HTT DNA itself. With the exception of the latter 

approach, these techniques will reduce but not completely 

eliminate the production of mHTT. Therefore, the term 

“huntingtin-lowering” is the preferred term for this class of 

potential therapies. As discussed later in this review, the first 

trial of a huntingtin-lowering agent in patients has recently 

been completed by Ionis Pharmaceuticals, showing via an 

assay for mHTT in the cerebrospinal fluid (CSF) that lower-

ing of HTT was achieved and there were no adverse events 

attributable to the agent.

Although many questions will only be answered by clini-

cal trials, it is of interest to review what has been learned 

about the effects of huntingtin-lowering since the discovery 

of the HTT gene in 1993. This review focuses on key ques-

tions regarding the rationale, safety, possible efficacy, and 

possible side-effects of huntingtin-lowering as a treatment 

for HD, surveying the empirical evidence that bears on these 

questions.

is lowering the expression of mHTT 
protein the right objective?
HD is due to toxic properties of mHTT rather than just loss 

of wild-type huntingtin (wtHTT) function. While wtHTT is 

necessary in early life (knockout of the mouse homologue 

of huntingtin is embryonically lethal6–8), individuals lacking 

wtHTT because both their alleles contain an expanded CAG 

repeat region can be healthy for decades.

Could provision of “extra” wtHTT to a patient be a thera-

peutic option? In neuronal and non-neuronal cells transfected 

with mHTT, co-transfection of wtHTT significantly reduces 

cell death.9 In mice with a yeast artificial chromosome (YAC) 

for mutant human huntingtin, a pro-apoptotic effect of mHTT 

on cells in the testes is completely inhibited in mice that are 

hemizygous or homozygous for wild-type murine huntingtin 

(Htt).10 YAC18 mice overexpressing a normal repeat length 

transgene (18 CAGs) are protected against neurodegen-

eration induced by striatal injection of quinolinic acid.11 

However, other evidence indicates that a treatment based on 

supplementing wtHTT expression would be insufficient. A 

genetic cross of YAC128 mice (128 CAGs) and YAC18 mice 

produces offspring that overexpress wtHTT in the context 

of mHTT. Though these offspring have mild improvement 

in striatal cross-sectional area compared to YAC128 mice, 

they show no significant improvement in motor coordina-

tion, striatal volume, striatal neuronal numbers, or striatal 

DARPP-32 expression.12

Is the mHTT protein the only pathogen in HD? Some loss 

of wtHTT function and possible effects of protein products 

produced by repeat-associated non-ATG (RAN) translation 

of the expanded mRNA have been hypothesized to also play 

a role in the disease. Products of RAN translation from mHTT 

mRNA have been found in HD human brains, and the toxic-

ity of expanded HTT exon1 mRNA in human neuroblastoma 

cells can be blocked by anti-CAG small RNA.13 Intrastriatal 

injection of a locked nucleic acid consisting of CTG repeats 

(complementary to CAGs) induces rapid motor improvement 

in the R6/2 mouse model of HD without lowering either 

mHTT or wild-type protein levels in these mice.14 Therefore, 

while lowering of mHTT is essential, huntingtin-lowering 

therapies utilizing agents that target HTT at the mRNA level 

(ASOs and RNAi agents) might be more advantageous than 

those that act only on the protein product (eg, anti-huntingtin 

intrabodies). However, for these agents, consideration must 

be given to the potential for the agent to target other genes 

and transcripts besides HTT, producing “off-target” effects. 

Although recommended by the Oligonucleotide Safety Work-

ing Group,15 in silico approaches to predicting the off-target 

effects and toxicity of ASOs based on their sequence16 are 

not perfect. Therefore, ASO developers utilize a combination 

of in silico screening, in vivo screens for liver toxicity, and 

transcriptome-wide evaluations of gene suppression to identify 

lead candidates.17 Developers of RNAi agents expressed from 

DNA delivered by a viral vector rely heavily on in vitro and 

in vivo screening of candidate sequences, because chemical 

modification is not available as a way to improve any inad-

equate specificity of a chosen candidate.

Different types of huntingtin-lowering therapies also 

differ in their advantages and disadvantages with regards to 

route of delivery, longevity of effect, reversibility, control of 

dosing, etc. See Wild and Tabrizi18 for a review.
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Can HTT-lowering be accomplished allele 
specifically if necessary?
Ever since it was determined that huntingtin protein is 

required for embryogenesis6–8 and early development,19 

consideration has been given to the possibility of lowering 

expression of the mutant huntingtin allele while preserving 

expression of wtHTT in heterozygous individuals. Many 

approaches have proven feasible in cell and animal models 

of HD. Because a single nucleotide mismatch between an 

siRNA and a complementary mRNA can substantially reduce 

its RNAi activity, an siRNA targeting a single-nucleotide 

polymorphism (SNP) site in HTT in a heterozygous cell can 

reduce expression of the allele with the matching nucleotide 

of the SNP while leaving expression of the other allele much 

less affected. van Bilsen et al20 designed siRNA targeting 

SNPs in the HD gene and identified siRNA that are allele-

selective in reducing HTT in fibroblasts from heterozygous 

HD patients. They also developed a simple method for 

identifying which SNP variant is on the same allele as the 

expanded CAG repeat allele using SNP variant-specific 

primers for the reverse transcription step of an RT-PCR assay. 

Subsequently, Zhang et al21 demonstrated allele specificity 

using an siRNA targeting a polymorphic deletion (Δ2642) 

linked to the CAG repeat allele in HD fibroblasts. Carroll et 

al22 identified numerous ASOs that are potent and selective 

for their respective SNP target in vitro and in vivo when 

injected into the brains of transgenic mouse models of HD.

A disadvantage of leveraging SNPs to achieve allele 

specificity in huntingtin-lowering is that there is currently no 

known single SNP that can be used as the basis for an allele-

specific therapy in all HD patients. Genotyping followed by 

combinatorial analysis of the frequency and co-occurrence 

of 26 SNP sites on the alleles of 327 unrelated European 

Caucasian HD patients showed that a repertoire of seven 

allele-specific siRNAs would be needed for 85.6% of those 

patients to be treatable by at least one of the siRNA.23 A simi-

lar analysis sequencing 22 SNP sites in 225 HD samples led 

to the estimate that 5 siRNAs targeting 3 SNPs could provide 

therapy for 75% of the US and European HD populations.24 

Although encouraging, these findings are still daunting with 

regards to the cost of developing and achieving regulatory 

approval for multiple agents.

Could an allele-specific agent be found that would apply 

to all patients? Initial attempts to use ASOs to target the 

expanded CAG repeat itself achieved only modest allele 

selectivity.25 However, advances in chemically modified oli-

gonucleotides and the use of multiple mismatches within an 

agent’s sequence has led to the identification of ss-RNAs that 

can inhibit the translation of mHTT with high potency and 

selectivity.26 The ss-RNAs can distinguish between 44 CAG 

repeats and 15 CAG repeats on the alleles of patient-derived 

cells (GM04719); however, many patients have a difference 

between the repeat lengths of their alleles that is smaller 

than this (44 CAGs is the median number found in patient 

samples).2 Also, these agents might have off-target effects, 

lowering expression of other genes that contain CAG repeats.

Another option for targeting the CAG repeat region is 

the use of zinc-finger proteins (ZFPs).27 Using a repressor 

element targeted to the CAG repeat region of the HD gene 

with ZFPs that bind CAGs, Zhang et al28 achieved about 

90% repression of mHTT expression with minimal effect 

on normal CAG length alleles in fibroblasts derived from 

HD patients. In another approach, Garriga-Canut et al29 

screened long ZFP chains designed to bind both the CAG 

and complementary GTC strand of long HD repeat regions 

more strongly than shorter repeat regions. In a cell line from 

a knockin model of HD (STHdhQ7/Q111), these ZFPs fused with 

a Kox-1 repressor element reduced mutant huntingtin mRNA 

by almost 80% and mutant protein expression by 95% while 

reducing neither protein nor RNA produced from the wild-

type allele (Q7). Both investigators found their ZFPs function 

in vivo to improve the phenotype of the R6/2 mouse model 

of HD.28,29 However, further development of these entities 

toward clinical trials has not yet been reported.

Finally, another way to lower huntingtin allele specifically 

may be to use CRISPR/Cas9 editing to delete DNA from the 

mutant allele. Allele-specific gene editing can occur if the 

single-stranded guide RNA used with Cas9 targets a SNP 

site whereby one of the SNP variants either eliminates a 

protospacer-adjacent motif (PAM) sequence (on the allele 

to be preserved) or creates a PAM sequence (on the allele to 

be edited). Monteys et al30 found that appropriately designed 

sgRNA applied in pairs can result in allele-specific deletion 

of genomic DNA spanning the 5′UTR and exon-1 of HTT in 

heterozygous patient-derived fibroblasts in vitro and reduce 

human mHTT expression in a BACHD mouse model of HD 

to 40% in vivo. Similarly, Shin et al31 used sgRNA to selec-

tively excise 44 kilobases of DNA spanning the promoter 

region, transcription start site, and first three exons of HTT. 

However, both approaches have the disadvantage that the 

allele specificity depends upon SNPs in the HD gene, so no 

single therapeutic agent would be applicable to all patients. 

Of greater concern is the recent finding that gene editing 

based on the dsDNA breaks produced by Streptococcus 

pyrogenes Cas9 (SpCas9) can result in a wide variety of 

unintended editing events, including large deletions that 
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are non-contiguous with the targeted cut site.32 This safety 

issue might be avoided using variants of Cas9 (nickases) that 

produce single-stranded cuts in the DNA rather than dsDNA 

breaks. Using such nickases, Dabrowska et al33 demonstrated 

that the CAG repeat region can be precisely excised from 

the HTT gene by targeting two sites, one at the 5′ end of the 

CAG repeat and the other about 40 bases downstream of the 

3′ end of the repeat. However, the excision is independent on 

CAG repeat length, and thus is not allele specific. Substantial 

additional research will be needed to develop a CRISPR/Cas9 

agent that is allele specific and safe for in vivo human use.

Of note, one allele-specific approach to lowering hunting-

tin using oligonucleotides targeting SNP sites has advanced 

to clinical trials. Patients are being recruited for two trials 

(NCT03225833 and NCT03225846, Wave Life Sciences, 

Ltd.) each using an oligonucleotide targeting one of the more 

prevalent SNPs in the HD gene. However, other companies 

investing in HD therapy development have opted for non-

allele-specific approaches.

what functions of wtHTT may be 
disrupted by non-allele-specific 
huntingtin-lowering?
Concerns that lowering wtHTT in patients may have undesir-

able consequences have arisen from studies identifying many 

functions of the normal protein. These have roles not only in 

development but also in regulation of intracellular traffick-

ing processes, formation of cortical and striatal excitatory 

synapses, and in transcriptional regulation (for a review, see 

Jimenez-Sanchez et al5). In vitro, wtHTT protects striatal-

derived cells from mitochondrial toxins.34 Both in vivo and 

in vitro, wtHTT is phosphorylated in response to DNA dam-

age, suggesting a role in the DNA damage response signal.35 

Proteomic analyses have identified hundreds of proteins 

that interact with wtHTT,36 supporting a view of HTT as a 

scaffolding protein involved in numerous protein–protein 

interactions. 

wtHTT is also involved in many types of trafficking in 

cells, including bidirectional transport of vesicles in neu-

rons,37 trafficking between Golgi and extracellular space,38 

transport via endocytic and secretory pathways,39 and secre-

tory vesicle fusion at the plasma membrane40 where loss of 

wtHTT results in ~50% decrease in the number of vesicle 

fusion events per unit time. Investigations of wtHTT interac-

tion with dynein and dydactin41 have led to the proposal of 

models whereby wtHTT plays a global role in vesicle and 

organelle transport throughout the cytoskeletal network.42

The wide variety and apparent centrality of the functions 

of wtHTT (see Liu and Zeitlin43 for a detailed review) have 

led to the question of whether HTT could be indispensable 

in the adult brain. If so, excessive non-allele-specific lower-

ing of huntingtin may not be safe. What evidence exists to 

inform this issue?

what evidence is there concerning the 
safety of lowering wtHTT?
wtHTT-lowering may not be safe in the developing 
brain
In a study of mice with one null copy of Hdh and one copy 

altered to express Htt at a greatly reduced level (~15% of 

endogenous levels), the mice were small from birth and 

had movement abnormalities and variable increases in 

cerebroventricular volume.44 Studies using Cre-mediated 

conditional knockout of Hdh in mice have shown that 

knockout of Hdh at various stages of embryonic and post-

natal development results in deficiencies in cortical neuron 

migration,45 abnormalities in cortical and striatal synaptic 

development,46 and behavioral and neurological abnormali-

ties that are not reversed by later restoration of ~50% Htt 

expression (at P21).47

in vitro evidence related to the safety of wtHTT-
lowering
Much evidence giving rise to safety concerns about hun-

tingtin-lowering comes from in vitro studies, particularly 

those identifying a role wtHTT plays in the production and 

transport of brain-derived neurotrophic factor (BDNF) and 

BDNF mRNA.48 Wild type but not mHTT promotes cortical 

BDNF gene transcription by inhibiting the BDNF silencing 

activity of the neuron restrictive silencer element.49 Hunting-

tin interacts indirectly with the REST/NRSF-interacting LIM 

domain protein through dynactin;50 in the case of mHTT, this 

interaction is weaker. This is consistent with the finding that 

BDNF mRNA and protein levels are reduced in HD.51 Fur-

ther reduction due to non-allele-specific huntingtin-lowering 

could jeopardize the survival of medium spiny neurons of 

the striatum, which are dependent upon cortically derived 

BDNF52and particularly vulnerable in HD. In neuroblastoma 

cells, reduction of HTT by siRNAs reduces the velocity of 

vesicle transport and increases the time vesicles spend with-

out moving.53 Her et al54 studied primary cortical neurons 

from Hdh floxed mice and found that complete knockout of 

Htt from these cortical neurons did not affect their viability, 

but reduced both anterograde and retrograde transport of 
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particles in their axons. Interestingly, they also found that 

axonal transport of BDNF was not affected in primary corti-

cal neurons transfected with mHTT.54

Caviston et al41 have found that reduction of HTT pro-

tein by 83% in HeLa cells results in the Golgi becoming 

stretched out or vesicular in these cells, disrupting protein 

transport particularly of proteins destined for the extracel-

lular compartment. This consequence may not arise in 

huntingtin-lowering treatments using agents that do not 

achieve this extent of HTT reduction, but could arise in 

treatments involving gene editing. The clinical relevance of 

this effect may depend upon whether, in the long-term, there 

are compensatory adaptations in cells that would mitigate 

this disruption of the Golgi.

in vivo evidence regarding the safety of wtHTT-
lowering in adults: mouse studies
At least three studies have investigated the consequences 

of complete knockout of Htt in adult mice at various 

ages, with conflicting conclusions. Wang et al55 crossed 

conditional Hdh knockout mice56 with mice that express a 

tamoxifen-inducible Cre, producing inducible Htt knockout 

mice. Depletion of Htt in mice by tamoxifen injection at 

2 months of age resulted in 95% mortality due to acute 

pancreatitis. In contrast, 95% of mice in which Htt was 

depleted at 8 months of age survived long term (studied 

for 10–11 more months) with no significant differences in 

rotarod performance, body weight, or the expression of 

various proteins (LC3I/II, P62, caspase-3, NfκB, FAT10) 

in the brain and peripheral tissues. They also crossed floxed 

Hdh mice with transgenic mice expressing Nestin-CreER, 

producing mice in which tamoxifen injection eliminated 

Htt expression in neurons and not peripheral tissues. These 

mice, injected with tamoxifen at 2, 4, or 8 months of age, 

showed no differences in brain volume or histology, and 

no differences over 7–8 months time in post-injection body 

weight, rotarod performance, or gripping ability compared 

to heterozygous Hdh knockout controls. These results sug-

gest that lowering and even elimination of wtHTT may be 

safe if depletion of wtHTT occurs only in the brain or only 

in older individuals.

However, a study by Dietrich et al57 produced distinctly 

different results. In their study, CAG-CreER mice were 

first crossed with heterozygous knockout mice (Hdh+/-) and 

offspring were subsequently crossed with Hdhflox/flox mice, 

producing CreER;Hdhflox/- mice, termed cKO mice. These 

cKO mice express ~50% of the level of endogenous Htt 

compared to wild-type mice from conception. Administra-

tion of tamoxifen to cKO mice results in nearly complete 

elimination of Htt expression (evaluated by Western blot), 

reduction in Htt mRNA in total brain extracts to <15% of 

wild-type levels (evaluated by RT-PCR), and reduction 

of Htt expression in the cortex and striatum to <20% of 

wild-type levels (evaluated by electrochemiluminescence 

assay). Regardless of when tamoxifen was administered 

to these mice (at age 3, 6, or 9 months), the mice devel-

oped progressive gait abnormalities, resting tremors, and 

substantially reduced rotarod performance within 1–3 

months after huntingtin-lowering. They also had a short-

ened life span compared to cKO mice not administered 

tamoxifen. No pancreatitis was reported in this study in 

mice administered tamoxifen at 3 months of age, although 

other adverse effects of huntingtin-lowering were observed 

in peripheral tissues, including thickening of the cornea 

observed in about one-third of tamoxifen-treated cKO mice 

and testicular atrophy seen in tamoxifen-treated males. 

Histologically, the most pronounced findings were early 

development of reactive gliosis in the cerebellum and 

thalamus within 3 months of huntingtin-lowering and later 

development of calcification in the thalamus (seen as early 

as 13 months of age and confined to the thalamus). Ferric 

iron levels were significantly reduced throughout the brains 

of tamoxifen-treated cKO mice, including in the striatum 

and cortical neuronal cells. Conversely, although reactive 

gliosis was seen in the striatum 9 months after huntingtin-

lowering, no overt loss of cells was observed in the cortex 

even 14 months after huntingtin-lowering, and no change 

in DARPP-32 expression or overt cell loss was seen in the 

striatum 12 months after huntingtin-lowering. Overall, 

these observations suggest that huntingtin-lowering may 

be tolerated in the striatum and cortex more than in other 

regions of the brain.

A third study of huntingtin-lowering in the adult mouse was 

performed by Pla et al58 These investigators crossed CaMK-

CreER mice (in which tamoxifen activation of Cre recombinase 

occurs only in mature cortical and hippocampal neurons) with 

Hdhflox/flox mice to obtain offspring in which Hdh was inactivated 

in these neurons by administering tamoxifen to the mice at 2 

months of age. Six months later, investigation of hippocampal 

neurogenesis in the dentate gyrus of the mice showed impaired 

maturation and differentiation of newborn neurons (assessed by 

dendritic arborization) and reduced survival of newborn neu-

rons. These mice showed no obvious motor deficits in rotarod 

tests, but spent significantly less time than controls in the center 
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of an open field and less time in open arms of an elevated plus 

maze, indicative of an anxious phenotype. Western blotting 

of protein extracts from the hippocampi of the mice indicated 

that although BDNF levels were no different from controls, 

Erk and Akt (kinases involved in intracellular signaling upon 

BDNF binding to cell surface receptors) were less extensively 

phosphorylated in the tamoxifen-treated mice than in controls. 

This suggests that BDNF signaling was impaired due to a 

reduction in BDNF transport or release. The investigators sug-

gest that some of the anxiety disorders prevalent among HD 

patients may be caused by loss of normal HTT function in the 

hippocampus and cortex, particularly with regards to BDNF 

transport, due to a dominant negative effect of mHTT (although 

Her and Goldstein54 did not find a dominant negative effect of 

mHTT in BDNF transport in primary cortical neurons). 

It is difficult to reconcile the results of these three stud-

ies. Wang et al did not report testing their mice for behavior 

indicative of an anxious phenotype; Dietrich et al did not 

find pancreatitis or dramatically early mortality in their 

conditional cKO mice treated with tamoxifen at 3 months 

of age in contrast to the findings of Wang et al in mice 

treated at 2 months of age; Wang et al did not observe the 

progressive behavioral deficits, thalamic calcifications, or 

other adverse effects of huntingtin elimination or lowering 

reported by Dietrich et al. Barring procedural, environmen-

tal, or genetic background differences, the best explanation 

might be that, as noted by Dietrich et al, the effects of Htt 

elimination may be more deleterious in a mouse that has 

had only 50% of normal endogenous levels of Htt in its life 

prior to Htt elimination (in their study) than in a mouse with 

normal levels of Htt prior to tamoxifen administration (in 

the Wang et al study). 

in vivo evidence that wtHTT-lowering in adulthood is 
tolerated: non-human primate studies
We and others have studied the effects of lowering wild-type 

Htt in non-human primates whose neurophysiology, basal 

ganglia anatomy, and behavioral repertoire more closely 

resembles that of humans. McBride et al59 stereotactically 

injected 10–12 µL of 1E12 vg/mL AAV2/1 encoding a 

huntingtin-lowering miRNA (miHDS1) into each of three 

sites in the putamen in one hemisphere of adult male rhesus 

macaques (n=4). Animals were assessed pre- and post-

operatively on general behavior and motor skill assays and 

euthanized 6 weeks post-AAV administration for molecular 

and histological analyses. AAV-miHDS1-injected recipients 

showed a significant 45% reduction in wild-type Htt mRNA 

expression in the putamen compared to animals that received 

a control miRNA. Compared to controls, AAV-miHDS1-

injected animals showed no motor skill deficits, no significant 

decrease in the mRNA for DARPP-32 (a marker for medium 

spiny neurons), and no loss of NeuN-positive neurons in the 

putamen.

We conducted a much longer study in rhesus macaques60 

using bilateral injections of a larger quantity and higher titer 

of AAV. Adult females were injected bilaterally with 2E12 

vg/mL of either AAV2-HD5 (a huntingtin-lowering shRNA, 

n=4) or AAV2-CTRL5 (a scrambled shRNA, n=4) into 

three sites per hemisphere, one in the caudate (30 µL) and 

two in the putamen (60 µL each). Six months later, shRNA 

transcripts were detected in the targeted brain regions, and 

HD5 vector recipients showed a 30% reduction in wtHtt 

mRNA and an average wtHtt protein reduction of 45% 

(range 32%–67% reduction) relative to controls. Home-cage 

activity levels and motor performance on an automated 

hand-retrieval task were not adversely affected by either 

AAV2-HD5 or CTRL5 delivery. Motor memory was also 

preserved as all animals recalled and performed the retrieval 

task without intervening practice between the monthly test 

sessions. There was no significant effect on immunostaining 

for DARPP-32, and no discernible neuronal loss or abnor-

mal astrocytosis noted in any of the animals upon blinded 

microscopic evaluation by a board-certified pathologist. Our 

study therefore showed that 32%–67% reduction of wtHtt is 

safe and well-tolerated in the primate caudate and putamen 

for at least 6 months.

In addition to using viral vectors, our group has also 

evaluated the use of programmable pumps and intraparen-

chymal catheters to chronically deliver huntingtin-lowering 

siRNA directly into the rhesus striatum.61,62 Intraparenchy-

mal catheters were implanted unilaterally into the right puta-

men of adult, female rhesus monkeys and connected to an 

abdominally implanted pump from which siRNA (or PBS, 

in controls) was delivered. Continuous infusion of siRNA 

for 28 days was well-tolerated and resulted in up to 75% 

lowering of Htt mRNA in individual brain tissue samples, 

and ~45% suppression of Htt mRNA on average throughout 

most of the rhesus striatum. Decreased neuronal levels of 

Htt protein were indicated by a pronounced attenuation of 

immunostaining intensity in the putamen of siRNA recipi-

ents. No behavioral changes were observed. Microscopic 

evaluations conducted on Fluoro-Jade B-stained brain sec-

tions did not reveal any continuing neuronal necrosis in any 

of the control or siRNA-treated animals. Normal patterns 

of Nissl-stained neurons were retained in corresponding 

brain regions.
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Together, these results support the feasibility and safety 

of wtHtt reduction in the primate brain. In addition, Ambrose 

et al63 have noted a case in humans of a phenotypically normal 

female in whom the HD locus was bisected by a balanced 

translocation, indicating that heterozygous disruption of HTT 

from conception onward was fully tolerated in this individual. 

It should be noted, however, that it is possible that the toler- 

ability of wtHTT reduction may be different in patients in 

the context of mHTT expression, and that the time required 

for a reduction in wtHtt to have ill effects in primates may 

be longer than the primate studies reported so far. 

what has been learned about huntingtin-lowering in 
large animal models of HD?
Because of the inherent limitations of rodent models of HD, 

including but not limited to basal ganglia anatomy, brain size, 

and lifespan, there has been interest in developing transgenic 

models of HD in sheep, minipigs, and non-human primates. 

These larger animals have a longer pubertal age and gesta-

tion time, so breeding can be a slow and expensive process, 

especially in primates. Data from only five male and three 

female transgenic HD monkeys have been reported to date.64 

The three females had a severe motor phenotype necessitating 

euthanasia within a month of birth.65 A longitudinal study of 

four males showed deterioration of motor and cognitive skills 

with age and enlargement of lateral ventricles as seen in the 

human disease.66 However, the small numbers of these ani-

mals has precluded extensive studies of huntingtin-lowering 

in these transgenic primates.

Conversely, a limitation for the use of transgenic sheep 

and minipigs so far is that they have been slow in develop-

ing a clear disease-related phenotype.67–69 For example, only 

sparse cortical mHTT aggregates were found in 18-month-old 

transgenic sheep along with nuclear inclusions in these sheep 

at 36 months of age.70 At the age of 24 months, transgenic 

minipigs have modest neuropathological changes, including 

moderate microglial activation in the caudate and mHTT 

fragments (but not aggregates) in the cytoplasm of striatal 

and cortical cells, but remain asymptomatic.71 A recently 

developed CRISPR/Cas9 knockin pig model may more 

closely recapitulate HD features including gait abnormali-

ties, enlarged lateral ventricles, and degeneration of striatal 

medium spiny neurons.72

To date, few studies of huntingtin-lowering in these larger 

transgenic models of HD have been reported. Pfister et al73 

stereotactically injected the striatum of 8- to 14-month-old 

transgenic sheep expressing full-length human HTT with 

AAV9 encoding an artificial miRNA targeting the transgene. 

The treatment reduced human mHTT mRNA and protein by 

50%–80% in the striatum at 1 and 6 months post-injection, 

but not endogenous levels of sheep Htt protein. There was no 

significant loss of striatal neurons at 6 months after treatment, 

and Iba1-positive microglia levels were comparable to con-

trols suggesting that safe and sustained silencing of human 

mHTT protein can be achieved in a large animal’s brain by 

direct delivery of an AAV carrying an artificial miRNA. 

Similarly, bilateral administration of AAV5-miHTT in 20- 

to 39-month-old transgenic minipigs significantly reduced 

human mHTT mRNA and protein in the putamen (by 47.5% 

and 53.0%, respectively), caudate nucleus (by 44.2% and 

50.5%, respectively), and thalamus (by 72.8% and 53.5%, 

respectively) 3 months following a single injection into both 

the putamen and thalamus.74 The AAV5-miHTT treatment 

did not significantly increase microglial expression or alter 

DARPP-32 staining of medium spiny neurons. These studies 

support the translation of AAV-delivered huntingtin-lowering 

therapies to the clinic, but neither one was informative with 

regards to the effect of the treatment on any disease pheno-

type of the animal. Also, since endogenous huntingtin was 

not targeted by these therapeutic agents, additional studies 

will be needed to address the tolerability of total huntingtin-

lowering in these larger transgenic models of HD.

A summary of animal studies regarding the tolerability of 

the lowering of wtHTT protein by genetic means vs adminis-

tration of a huntingtin-targeting agent, at different ages, and 

by various amounts, is provided in Table 1.

The apparent tolerability of wtHTT-lowering in adult 

animals, particularly primates, has led many organizations 

to develop therapies for clinical use to focus on total hun-

tingtin-lowering with non-allele-specific agents. Compared 

to allele-specific approaches requiring multiple agents and 

associated diagnostic kits for selecting the appropriate agent 

for a given patient, a non-allele-specific approach may cost 

less to develop and be easier to deploy.

Non-allele-specific therapy development efforts include 

those by Ionis Pharmaceuticals in collaboration with Hoff-

man-La Roche to develop a huntingtin-lowering therapy 

using ASOs, as well as efforts by uniQure, Inc., and by 

Voyager Therapeutics in collaboration with Genzyme to 

develop AAV-delivered RNAi agents. The Ionis Pharmaceu-

ticals’ first clinical trial of a non-allele-specific huntingtin-

lowering agent has been completed. Despite the potential 

safety concerns that could be raised based on preclinical 

studies of the function of wtHTT and the effects of non-

allele-specific lowering in animals, this trial was successful. 

What was learned?

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Degenerative Neurological and Neuromuscular Disease 2019:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

10

Kaemmerer and Grondin

What has the first trial of a non-allele-
specific HTT-lowering treatment shown 
in patients?
The Phase I/IIa trial of IONIS-HTT

RX
 (NCT02519036), 

completed in November 2017, was a randomized, placebo-

controlled, dose-escalation trial of the safety and tolerability 

of IONIS-HTT
RX

 delivered by intrathecal injections via 

lumbar puncture to patients with early HD.75 Five patient 

cohorts were enrolled, with treated patients receiving four 

monthly doses of 10, 30, 60, 90, or 120 mg of ASO per 

injection, respectively. Patients were followed for 4 months 

after their last injection. The treatment was found to be 

safe and well-tolerated at all doses tested, with no serious 

adverse events in patients receiving the ASOs. Importantly, 

a dose-dependent reduction in mHTT in the patient’s CSF 

was observed in CSF samples taken just prior to the drug 

Table 1 Tolerability studies of huntingtin-lowering in animals

Investigators/
reference

Species/
model

Mode of 
reduction

Amount of wtHtt 
lowering

Age at time of 
wtHtt lowering

Was wtHtt lowering 
well-tolerated?

Auerbach et al44 Mouse Genetic >85% knockout Conception No
Arteaga-Bracho 
et al47

Mouse Genetic (via Cre) Knockout During development 
(< P21)

No

wang et al55 Mouse Genetic (via Cre) Knockout
Knockout
Neuronal knockout
Neuronal knockout
Neuronal knockout

2 months age
8 months age
2 months age
4 months age
8 months age

No 
Yes 
Yes 
Yes 
Yes

Dietrich et al57 Mouse Genetic (via Cre) 50% reduction then 
knockout at:
or knockout at:
or knockout at:

From conception
3 months age
6 months age
9 months age

Yes 
No 
No 
No

Pla et al58 Mouse Genetic (via Cre) Knockout in cortical and 
hippocampal neurons

2 months age No

McBride et al59 Male rhesus miRNA 45% wtHtt reduction 
(striatum)

Adult Yes (for at least 6 weeks)

Grondin et al60 Female 
rhesus

shRNA 45% wtHtt reduction 
(striatum)

Adult Yes (for at least 6 months)

Stiles et al61 Female 
rhesus

siRNA 45% wtHtt reduction 
(striatum)

Adult Yes (for at least 28 days)

Pfister et al73 Sheep miRNA No wtHtt reduction Adult Not applicable
evers et al74 Minipig miRNA No wtHtt reduction Adult Not applicable
Kordasiewicz 
et al81

BACHD MoHuASO 83% wt mRNA reduction 2 months age Yes (for at least 16 weeks)

 BACHD MoHuASO 25% wtHtt reduction 2 months age Yes (for at least 10 
months)

 wild-type 
mouse

MoHuASO 75% wtHtt reduction 2 months age Yes (for at least 4 months)

 Rhesus MkHuASO 53% mRNA reduction
(frontal cortex)

Adult Not reported

Stanek et al82 YAC128 ASO 55% wtHtt reduction 
(striatum)

2 months age Yes (for at least 3 months)

 Abbreviations: wt, wild type; ASO, antisense oligonucleotide.

administration at each month, and again in a follow-up 

lumbar puncture. The extent of wtHTT-lowering was not 

determined, because so far there is no assay available for 

measuring total HTT protein in human CSF. In the highest 

dose cohort, mHTT was lowered by an average of just under 

40% relative to the patient’s baseline level. In a majority of 

the patients receiving IONIS-HTT
RX

, the amount of mHTT 

in the CSF was continuing to decline at the time of the last 

treatment, suggesting that further monthly treatments could 

lead to further reduction in mHTT.

However, there are limitations to the conclusions that can 

be drawn from the trial. As a trial primarily concerned with 

safety, it involved a small number of patients and a short dura-

tion (4 months) of therapy administration. Strictly speaking, 

the main conclusions afforded by the trial are that the treat-

ment was safe for the duration of the study and follow-up, and 
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the treatment produces a reduction of mHTT in the CSF. How-

ever, as a double-blind, placebo-controlled trial in patients, 

the data from the trial merit considerable weight among the 

body of evidence about huntingtin-lowering available so far. 

Potential challenges for this therapy going forward are the 

long-term tolerability of the monthly intrathecal deliveries 

(over half of the patients experienced pain and/or post-lumbar 

puncture syndrome due to the procedure), and patient-to-

patient variability in the effect of the treatment delivery with 

regards to mHTT-lowering. Although the mean lowering of 

mHTT in the CSF of the patients in the highest dose cohort 

was ~40% reduction from baseline, the range was extensive, 

including a paradoxical ~20% increase in mHTT over baseline 

in one patient. Nevertheless, an average reduction of 40% is 

encouraging, and Roche is currently planning for a larger and 

longer pivotal trial to determine the efficacy and continued 

safety of IONIS-HTT
RX

 (RG6042) in HD patients. All par-

ticipants who took part in the Phase I/IIa study are continuing 

to receive RG6042 as part of an “open-label extension” study 

run by Ionis. This study assesses the safety and tolerability of 

longer term dosing of RG6042. A randomized, double-blind, 

Phase III trial to evaluate the efficacy and safety of RG6042 

treatment given once per month or once every 2 months (bi-

monthly) over a period of 25 months (~2 years) is expected 

to start enrolling patients in 2019.76

Ionis Pharmaceutical investigators and their partner, 

Roche, are hypothesizing that a 40% reduction of protein in 

the CSF is indicative of sufficient huntingtin-lowering in the 

brain for clinical efficacy, as indicated by their proceeding to 

invest in further trials aimed at efficacy. What is known from 

animal models regarding the amount of mutant huntingtin-

lowering needed for efficacy?

By how much must mutant huntingtin 
be lowered for a treatment to be 
efficacious?
Numerous studies in rodent models of HD support the 

efficacy of reducing mutant huntingtin mRNA and protein 

levels in the brain for improving the disease phenotype, 

whether using ASOs, siRNAs, shRNAs, miRNAs, or other 

approaches. Partial reversal of disease progression and 

delayed motor dysfunction was achieved in the severely 

affected R6/1 transgenic mice by intrastriatal AAV5-medi-

ated delivery of anti-Htt shRNA which lowered levels of 

mHTT mRNA in the striatum by 78% and protein levels by 

28%.77 Also, using AAV to deliver RNAi constructs to the 

striatum, Boudreau et al78 showed that a 75%  reduction of 

human mHTT and endogenous wild-type mouse Htt mRNA 

levels was well-tolerated and prevented motor and neuro-

pathological deficits in HDN171-82Q mice. Harper et al79 

found that a more modest 51%–55% reduction in mHTT 

mRNA in these HDN171-82Q mice was also sufficient for 

phenotypic benefit, resulting in significant improvements 

in gait deficits and rotarod performance. Along the same 

lines, lentiviral delivery of inhibitory RNAs in a rat model 

of HD that conferred just a 35% knockdown of huntingtin 

gene expression of both mutant and wild-type alleles was 

shown to be safe and provided both neuroanatomical and 

behavioral benefits up to to 9 months after injection.80 

Using ASOs, Kordasiewicz et al81 report that reduction of 

the expression of human mutant exon1 mRNA in the R6/2 

mouse brain by 43% (±5%) was sufficient to prevent further 

brain weight loss and significantly extend the lifespan of 

these severely affected mice. They also reported that reduc-

tion in mHTT mRNA and protein levels in 6-month-old 

YAC128 mice by 58% and 56% (ie, to 42% and 44% of 

controls, respectively) restored their motor deficits to the 

performance level of nontransgenic controls.81 Similarly, 

Stanek et al82 found that reduction of both wild-type and 

mutant huntingtin by ~40% in YAC128 mice resulted in 

significant improvements in behavioral deficits, with no 

notable overt neurotoxicity.

Unfortunately, because the various rodent models differ 

in the nature of their mutant allele (number of CAGs, full 

length or exon1 only, transgenic or knockin, etc), the number 

of wtHTT alleles in their genotype, the level of expres-

sion of mHTT, and the severity of their phenotype, any 

numerical extrapolation from these findings to the human 

case is fraught with uncertainty even ignoring the species 

difference between rodents and humans. For example, the 

YAC128 mouse expresses its full-length 128 CAG-repeat 

mHTT transgene at about 75% of endogenous mouse Htt 

levels and manifests a disease phenotype,83 suggesting that 

a 25% reduction in mHTT mRNA might not be sufficient as 

a therapy. However, a lowering of mHTT by an intervention 

may have different effects than the lowering due to a genetic 

difference. On the other hand, even in a mouse model with 

a severe phenotype (R6/2), reduction of mRNA expression 

by 43% extended the animal’s lifespan. Therefore, there is 

reason to be hopeful that the level of huntingtin-lowering 

attainable by the ASOs, RNAi agents, and other approaches 

progressing toward or in clinical trials will be sufficient 

for therapeutic benefit, if the delivery of the agent to key 

regions of the brain is adequate.
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Timing of huntingtin-lowering: how early 
to start treatment?
Because HD is a progressive disease and individuals needing 

treatment can be positively identified, it would seem desir-

able to start treatment as early in life as can be safely done. 

However, some animal data suggest a need for caution with 

regards to huntingtin-lowering treatments. For example, 

a knockout of wtHTT in mice at 2 months of age (early 

adulthood) produced acute pancreatitis.55 This may not pose 

an issue for treatments in which wtHTT is lowered but not 

eliminated, particularly for treatments delivered directly to 

the central nervous system (CNS) with minimal “spill over” 

and persistence systemically. Other studies in mice have 

found that wtHtt is important for brain development,19,84 and 

if wtHtt levels have been low during a developmental period, 

restoration of wtHtt levels at a later age does not compensate 

for the ill effects of an earlier deficiency.47 These findings 

suggest that except in the case of juvenile HD (in which the 

benefit may outweigh the risks), perhaps treatment should not 

be initiated in people before they are in their early twenties. In 

most cases, this precaution would still allow treatment to be 

initiated many years before predicted clinical symptom onset.

Timing of huntingtin-lowering: how long 
is long enough?
Because HD is a chronic and progressive neurodegenera-

tive disease, it is unrealistic to expect that a short course of 

huntingtin-lowering treatment will be curative – a successful 

huntingtin-lowering treatment will be a life-long endeavor. 

However, preclinical studies of huntingtin-lowering using 

siRNA or ASOs support the conclusion that the administra-

tion of the treatment need not be continuous. The lowering 

of HTT mRNA in primate brain has been found to persist for 

weeks beyond the cessation of delivery of “naked” siRNA 

into the tissue, even though the siRNA itself was not specially 

synthesized or encapsulated to prevent its degradation.62 

More importantly, Kordasiewicz et al81 showed that transient 

administration of ASOs in HD transgenic mice was able to 

degrade HTT mRNA and elicit phenotypic improvements that 

persisted beyond the period of not only ASO administration 

but also mRNA lowering. This has led to the interpretation 

that cells can benefit from a “huntingtin holiday”, whereby 

transient lowering of huntingtin expression enables com-

pensatory mechanisms (yet to be fully delineated) to “catch 

up” so cells can better handle the re-expressed huntingtin.85 

This observation has supported the use of periodic rather 

than continuous administration of ASOs in the trials of 

IONIS-HTT
RX

. In the case of huntingtin-lowering agents 

that can be delivered using viral vectors (shRNA, miRNA, 

intrabodies), continuous and perhaps lifelong delivery of the 

treatment will be a function of the persistence of expression 

of the delivered transgene. Finally, despite the other hurdles 

faced by DNA editing approaches (eg, CRISPR-based gene 

editing), the treatment is expected to be permanent, at least 

in the cells transduced by the agent.

when both wtHTT and mHTT are 
lowered, will the net result be beneficial?
Development of therapies involving non-allele-specific 

huntingtin-lowering is based on the hypothesis that the net 

result of lowering both wtHTT and mHTT in a patient will be 

beneficial. If either an allele-specific or a non-allele-specific 

agent results in lowering of mHTT protein to a greater extent 

than it lowers wtHTT protein, there is reason to believe this 

would be beneficial. Becanovic et al86 have studied samples 

of patients with very early or very late age of disease onset 

relative to the age of onset expected from their CAG repeat 

numbers, and identified a SNP in the promoter region of HTT 

that results in the lowering of expression of the huntingtin 

protein on the cis-allele. If that allele is the mutant allele, 

mHTT protein is lowered relative to wtHTT, and this lowering 

is associated with a delayed age of onset. Conversely, if the 

SNP variant is on the non-expanded allele, wtHTT protein 

is lowered relative to mHTT protein, and the lowering is 

associated with an earlier age of onset.

In a study identifying allele-selective ASOs in a human-

ized mouse model of HD, Southwell et al87 reported that a 

non-allele-selective ASO resulted in reduced levels of HTT 

with maintenance of the basal wild type to mutant protein 

ratios in all areas of the CNS examined. Over the long term, 

what if mHTT might accumulate disproportionately to 

wtHTT due to differences in the efficiency of proteosome 

degradation of the expanded repeat protein? A study of adult-

onset HD brain samples88 found that even though there was a 

small but significantly lower expression of mutant huntingtin 

mRNA compared to wild-type mRNA, wild type and mutant 

protein levels did not differ significantly. In contrast, Liu et 

al89 reported finding that mutant huntingtin mRNA exceeds 

wild-type mRNA in post-mortem HD brains. An assay for 

total HTT in CSF, if available for use in the next human trial 

of IONIS-HTTRX, will answer the question about propor-

tionate huntingtin-lowering. 

The observations that wtHTT stimulates BDNF transcrip-

tion49 and modulates anxiety and depression-like behaviors in 

mice,90 among other observations, suggest that loss of wtHTT 

function could be part of the pathogenesis of the disease. If 
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both mHTT and wtHTT are lowered by an amount sufficient 

for efficacy, will the net result be beneficial? Studies showing 

the tolerability of huntingtin-lowering by ~45% in wild-type 

animals do not address this question, because this result is 

not in the context of a co-expressed mutant protein. Studies 

showing benefit of non-allele-specific huntingtin-lowering in 

mouse models of HD (eg, Boudreau et al78) also do not address 

this question to the extent that in these models the mutant 

transgene is overexpressed, or expressed in the presence of two 

copies of the wild-type murine Hdh. The humanized Hu97/18 

mouse expresses full-length human and mutant huntingtin 

at similar endogenous levels,91 but to our knowledge the net 

effect of long-term non-allele-specific huntingtin-lowering on 

the phenotype of this mouse has not been reported.) Induced 

pluripotent cell lines (iPS cells) derived from HD patients 

and stably transduced with shRNA non-allele specifically 

lowering HTT have been generated and are viable, but the 

benefit of huntingtin-lowering in these cells is unclear.92 

Lowering HTT by 50%–60% in these cells has no beneficial 

effect on the level of p53 protein nor the functioning of the 

MAP kinase signaling pathway, two aspects of the abnormal 

phenotype of these cells. Conversely, Trager et al93 found that 

lowering HTT by ~50% restores normal cytokine function in 

patient-derived monocytes. However, it remains unknown as 

to whether non-allele-specific huntingtin-lowering by ~50% 

will restore cells of the CNS to normalcy.

Summary and conclusion
This review supports several conclusions about huntingtin-

lowering. It is clear that it is possible to lower huntingtin 

in vivo in rodents, sheep, pigs, and non-human primates 

using agents that could be administered to humans, such 

as shRNA, miRNA, ASOs, zinc fingers, and CRISPR/Cas9 

gene editing agents. With some agents, it is possible to 

lower mutant huntingtin in an allele-selective manner. The 

lowering of mutant huntingtin by various means is effica-

cious at improving the abnormal phenotype in many rodent 

models of HD. In rodents, genetic reduction of wtHTT by 

50% or more adversely affects the developing brain, and 

near elimination of wild-type huntingtin is detrimental 

even if not initiated until adulthood. Lowering wild-type 

huntingtin by ~45% in the adult non-human primate stria-

tum is well-tolerated for at least 6 months. Four months of 

periodic administration of a non-allele-specific ASO that 

lowers the level of mutant huntingtin detected in the CSF is 

safe and well-tolerated in patients, and longer term studies 

of the tolerability of the same ASO in primates are report-

edly underway. In mice, some adverse effects of wtHTT-

lowering (eg, thalamic calcification) take 9 months to a 

year to emerge, indicating that long-term preclinical studies 

of the safety of huntingtin-lowering are advisable, even as 

human trials are proceeding. It is notable that the adverse 

effects in mice are the result of huntingtin-lowering to the 

point of near elimination, rather than the more moderate 

lowering typically achieved with clinically relevant agents. 

Collectively, the evidence indicates that the potential adverse 

effects of wild-type huntingtin-lowering are age, amount, 

and perhaps brain region-specific (to the extent that near 

elimination of Htt in wild-type mice eventually resulted in 

calcification, specifically in the thalamus).57 For now, what 

can be concluded is that for safety, huntingtin-lowering in 

the human disease should be either limited in the amount by 

which huntingtin is lowered (eg, preserving about 50% of 

wild-type expression), limited to the most affected regions of 

the brain (ie, the striatum and cortex, and probably avoiding 

in particular the thalamus), or allele-specific, or all of the 

above. This statement is dissatisfying relative to the desire 

for parsimony in the interpretation of evidence, but it is not 

unrealistic given that the disease itself is age, region, and 

dose (CAG repeat number) specific.

Other important questions about huntingtin-lowering 

remain open. Non-allele-specific lowering of huntingtin in 

patients has been found to be safe, but whether it will be 

safe over the long term remains unknown. Also, it remains 

to be seen whether IONIS-HTT
RX

 given via a lumbar route 

of administration penetrates not only the cortex but also the 

caudate nucleus and putamen of patients sufficiently for 

clinical efficacy. It is possible that huntingtin-lowering only 

in the cortex could have some benefit – in rodents, selec-

tive expression of mHTT only in striatal neurons produces 

cell-autonomous deficits in striatal electrophysiology, but 

spares the animal locomotor deficits and striatal degenera-

tion.94 However, HD is a multi-system disease.95 Huntingtin-

lowering in at least both the cortex and the striatum may be 

necessary in the human disease. It remains to be seen whether 

miRNA against huntingtin delivered by AAV5 to the striatum 

(as planned by uniQure) will be transported retrogradely to 

the cortex sufficiently to lower huntingtin in layer V cortical 

neurons projecting to the striatum, and whether other sero-

types of AAV can deliver miRNA against huntingtin across 

the blood–brain barrier sufficiently for a systemic route of 

delivery to be feasible for clinical use in patients. Answers 

to most of these questions will only be provided by clinical 

trials over the next several years.
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What gaps in our knowledge about huntingtin-lowering 

should be pursued by preclinical research in the meantime? A 

fundamental question is whether lowering wild-type hunting-

tin in layer V cortical neurons in particular (not just generally 

in cortical tissue) and thus the corticostriatal connections to 

the striatum will be tolerated in the primate brain. Studies in 

BACHD mice96,97 have indicated that huntingtin-lowering in 

both cortical neurons and the striatum is likely to be necessary 

for optimal treatment efficacy. However, other studies have 

shown that wtHTT functions to promote the production of 

BDNF,49 and transport of BDNF to the striatum is slowed53 

when wtHTT is lowered. So far, studies in non-human pri-

mates showing that lowering of wtHTT is well-tolerated have 

not measured and demonstrated huntingtin-lowering specifi-

cally in layer V cortical neurons whose efferents form the 

corticostriatal tract. Studies using treatment delivery methods 

that achieve simultaneous lowering of huntingtin in both the 

striatum and the cortical neurons projecting to it are needed 

to establish whether reducing wtHTT by about 40%–50% 

in the corticostriatal pathway has adverse effects on BDNF 

levels or otherwise adversely effects the functioning of stria-

tal neurons. If so, this would indicate that an allele-specific 

approach will be necessary.

To our knowledge, the use of patient-derived embryonic 

stem cells or iPS cells to address the question of whether 

lowering of both wild-type and mutant huntingtin results in 

a net benefit at the cellular level has not been fully exploited, 

particularly in cells differentiated to a phenotype resembling 

cortical neurons or medium spiny neurons of the striatum. 

Also, so far, huntingtin-lowering studies in non-human pri-

mates have not been long enough or inclusive of the thalamus 

enough to cover another knowledge gap – whether lowering 

of wtHTT by a clinically relevant amount in the thalamus of 

the primate brain will eventually result in thalamic calcifica-

tion, as seen in mice.57

Although many open questions and hurdles remain, much 

progress is being made toward a huntingtin-lowering therapy 

for HD. Scientists, clinicians, patients, and their families 

can look forward with interest to further developments in 

this field.
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