
© 2010 Heider et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

Advances and Applications in Bioinformatics and Chemistry 2010:3 15–24

 Advances and Applications in Bioinformatics and Chemistry Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
15

 O r i g i n A L  r e s e A r C H

open access to scientific and medical research

Open Access Full Text Article

8891

Insights into the classification of small GTPases

Abstract: In this study we used a Random Forest-based approach for an assignment of small 

guanosine triphosphate proteins (GTPases) to specific subgroups. Small GTPases represent 

an important functional group of proteins that serve as molecular switches in a wide range 

of fundamental cellular processes, including intracellular transport, movement and signaling 

events. These proteins have further gained a special emphasis in cancer research, because 

within the last decades a huge variety of small GTPases from different subgroups could be 

related to the development of all types of tumors. Using a random forest approach, we were 

able to identify the most important amino acid positions for the classification process within 

the small GTPases superfamily and its subgroups. These positions are in line with the results 

of earlier studies and have been shown to be the essential elements for the different function-

alities of the GTPase families. Furthermore, we provide an accurate and reliable software 

tool (GTPasePred) to identify potential novel GTPases and demonstrate its application to 

genome sequences.
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Introduction
Functional classification of proteins
The assignment of proteins to functional classes is an important principle in the under-

standing of complex cellular processes. The function of a protein is defined by its three 

dimensional structure, which in turn is determined by its amino acid sequence. How-

ever, different amino acid compositions can fold into similar or nearly identical three 

dimensional structures that can fulfill analog functions. After the detection of a novel 

amino acid sequence, the corresponding protein has to be assigned to existing functional 

classes by either homology search of protein sequences or functional classification 

using descriptors. For functional classification, different machine learning approaches 

exist, such as artificial neural networks (ANNs),1 support vector machines (SVMs),2 

Random Forests (RFs) or hidden Markov models (HMMs). Additionally, different 

descriptors can be used that vary from elementary descriptors like physicochemical 

attributes to very complex and computationally overcharged properties. The classifica-

tion accuracy depends heavily on the selected descriptor sets, and thus, the composition 

of the descriptor set is the most critical part in classifier development.3,4

The main objective of the work presented here is to analyze and classify pro-

tein sequences from the superfamily of small guanosine triphosphate proteins 

(GTPases).
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The ras superfamily of small gTPases
The small GTPases, also termed the “Ras” (rat sarcoma) 

superfamily of GTPases, consists of small monomeric 

proteins that can act as “molecular switches”. The basis for 

this switch function is their ability to bind and hydrolyze 

GTP: when GTP is bound, the switch is turned “on” and 

downstream effectors are activated; hydrolysis of GTP to 

guanosine diphosphate (GDP) converts the protein into its 

inactive conformation, the switch is turned “off  ”.5

The Ras superfamily of small GTPases is typically divided 

into five families: Ras related in brain (Rab), Rho, Ras related 

nuclear protein (Ran), adenosine diphosphate (ADP) robo-

sylation factors (Arf)/secretion associated and Ras related 

(Sar),and the eponymous Ras proteins.6 These families share 

a common core structure, the G-domain that consists of five 

alpha helices and six beta sheets. Here, binding of GTP and 

cofactor magnesium takes place. A conserved structural 

feature within the G domain of all small GTPases are the 

switch I and switch II regions, where the major conformational 

changes upon GTP binding and hydrolysis take place.5

One important feature of most small GTPases are lipid 

modifications that are posttranslationally attached and facili-

tate the specific targeting and attachment of the GTPase to 

intracellular membranes. Ras, Rho and Rab carry farnesyl 

or geranylgeranyl isoprenoids that are attached to specific 

cysteincontaining recognition motifs at the C- terminus. 

Arf/Sar proteins are modified at their N-terminus by 

 myristoylation, whereas Ran is not lipid modified at all and 

thus not membrane bound.6,7

Due to differences in structure, posttranslational modi-

fications and subcellular localization, the small GTPase 

families fulfill different functions within the cell. The Ras 

family proteins are major regulators in signal transduction 

events and have been shown to play important roles in the 

development of a variety of human carcinomas.6,8 Rho 

GTPases are involved in processes linked to the cytoskeleton 

like cell morphology and mobility.9–11 The small GTPase Ran 

facilitates transport into and out of the nucleus.12 Members 

of the Arf/Sar family regulate different steps in intracellular 

membrane transport.13 Proteins from the Rab family, the 

largest family of small GTPases, are important factors in 

membrane trafficking events and in the definition of organ-

elle identity.14,15

The involvement of a variety of Ras superfamily proteins 

in human tumorigenesis makes these proteins interesting 

subjects in cancer research, and hence, the identification and 

functional characterization of novel GTPases is an important 

topic in molecular cell biology.8,10,16

Preliminary studies
In a recent study we developed a neural network cluster (NNC) 

for the identification and classification of small GTPases.17 

Using this NNC we were able to distinguish between small 

GTPases and nonGTPases from primary sequence data, and to 

assign the small GTPase sequences to one of the specific fami-

lies. In this new study, we use another type of machine learning 

algorithm, namely random forests (RFs),18 for this task.

ANNs, as used in our earlier study,17 are universal 

approximators that can be used to solve nonlinear classifica-

tion problems, but are prone to overtraining.19,20 In contrast to 

ANNs, RFs are also excellent nonlinear models and highly 

stable, and in general – due to the fact that they belong to 

the classifier ensembles – perform better than single decision 

trees (DTs).21 They are less easily interpretable than DTs, but 

provide variable importance measures.18

From this importance analysis we were able to identify 

the most important positions within the protein sequences for 

the classification process, and thus, get more detailed insights 

into the molecular differences of those proteins belonging to 

the family of small GTPases.

Materials and methods
Data
The data set of this study was taken from Heider et al.17 It 

consists of 399 Rab GTPases, 134 Rho GTPases, 78 Arf/

Sar GTPases, 52 Ran GTPases and 772 protein sequences 

not belonging to the superfamily of small GTPases. These 

sequences represent a wide range of different organisms.

The 772 nonGTPases have a similar sequence length 

compared to the small GTPases and are used as negative 

samples in the classification process. First, GTPases are 

differed from nonGTPases. Then, a protein once being 

assigned as a small GTPase is subsequently classified by four 

independent random forests trained on either the Rab, Rho, 

Arf/Sar or Ran family as positive and all other families as 

negative samples. Proteins that can be identified as a small 

GTPase but cannot further be classified by one of the RFs are 

grouped into “Ras or not further specified small GTPase”.

Descriptor set composition
We analyzed 544 descriptors derived from the amino acid 

(AA) index database22 for our study. Thirteen descriptors 

were incomplete, and thus, not investigated further.

Linear interpolation
Due to the fact that protein sequences differ in their primary 

sequence length, all sequences were normalized to 300. 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2010:3 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

17

 Classification of small GTPases

For this normalization procedure we used a linear interpola-

tion as previously described.17

random forests
We trained random forests (RFs)18 for the identification of 

small GTPases and their assignment to specific GTPase 

families, using the implementation in the RF package of R 

[http://www.R-project.org]. In our application each RF con-

sisted of 2000 randomly grown decision trees. The decision 

is made on a majority vote, where at least 50% of the trees 

assign the specified class.

The importance of each variable, ie, the normalized 

sequence position, for the correct classification can be 

assessed by determining the increase in misclassification rate 

due to leaving this variable.18

Cross validation
For our study we performed a 30-fold leave-one-out validation 

procedure in order to assess the ability to generalize to unseen 

sequences for each classifier. Thus, we calculate the mean sen-

sitivity (SN), specificity (SP) and accuracy (AC) as follows:

 
SN

TP

TP FN
=

+  
(1)

 
SP

TN

TN FP
=

+
 (2)

 
AC

TP TN

TP FP TN FN
=

+
+ + +

 (3)

with TP: true positives, FP: false positives, FN: false 

 negatives and TN: true negatives.

Moreover, we used Receiver Operating Characteristics 

curves (ROC) (Fawcett, 2006) to visualize and the mean 

area under the curve (AUC), standard deviation (sd) and 

coefficient of variation (cv) to compare the classifiers. Fur-

thermore, we report the out-of-bag error (OOB) for the best 

random forest.18

statistical comparison
We used the Wilcoxon Signed-Rank test24 on the AUC distri-

butions from the 30-fold leave-one-out cross validation runs25 

to compare the different descriptors with each other.

Results and discussion
All descriptors gave good prediction results with mean AUCs 

ranging from 0.9535 to 0.9934 (Figure 1). In contrast to the 
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Figure 1 Boxplot of descriptor performances (mean AUC). On the y-axis the AUC values for all descriptors analyzed are shown as a boxplot.
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 classification results obtained from the ANN classification in 

our earlier study,17 these RF classifications are highly stable with 

sds of the AUC distributions of about 0.0004 (cv = 0.0004).

The best results for the prediction of small GTPases were 

obtained with RFs using “Normalized positional residue 

frequency at helix termini N1”26 as a descriptor (Table 1).

In Figure 2, the interval for the descriptor for each posi-

tion and each family is shown. Rab proteins seem to have very 

compact descriptor values within the sequences, whereas all 

other families exhibit high diversity in descriptor values.

The sensitivity, specificity and accuracy are comparable to 

those published in our earlier study,17 but nevertheless, the RFs 

use only one descriptor instead of two (hydrophobicity and sec-

ondary structure). The sensitivity is 94% with a corresponding 

specificity of 98.94%, and thus, an accuracy of 96.49%. 

The OOB-error for the best RF is 3.51%. The best cutoff 

is found at 0.4568, which is slightly smaller compared to the 

results obtained from the classification with artificial neural 

networks in our earlier study.17 The ROC curve is shown in 

Figure 3. The mean AUC of the RF is 0.9934 with a stan-

dard deviation of 0.0004 (cv = 0.0004). The most important 

normalized sequence positions for the classification process 

are shown in Figure 4.

By applying a retransformation to the real sequence 

lengths, the 30 most important positions for discriminating 

between small GTPases and other proteins (.4% increase 

in misclassification when left) can be reassigned to the 

sequence. The most important positions for the definition of 

a small GTPase (.15%) are displayed using the  structure of 

Rab6A as a representative small GTPase27 (Figure 5). The 

C-terminal region is unstructured, and thus, is not shown 

within the Figure. The most important positions near the 

N-terminus are at position 20 and 21 (G and E). These amino 

acids are located within the highly conserved switch I region, 

a common structural feature of all small GTPases, and are 

involved in nucleotide binding.

The results for the assignment of the small GTPases to 

the specific families are shown in Table 2.

The RFs identified the most important positions (.4% 

increase in misclassification) within the protein families as 

followed:

1. Rab family (Rab6A): 11 (L), 31 (T), 186–188 (D,M,I)

2. Rho family (Rho6 = RND1): 6 (A), 9 (P), 12 (A), 16 (L), 

18 (L), 20 (G), 32 (Q), 75 (N), 162 (E), 194 (L)

3. Arf/Sar family (Arf1): 1 (M), 2 (G), 16 (K), 68 (V)

4. Ran family (Ran): 212–214 (E,D,D)

In the alignment in Figure 6, the respective positions in 

representative human proteins are shown for all families. 

For Rab, Rho and Arf/Sar families, representative struc-

tures are shown in Figure 7 and the important positions are 

highlighted.

The important residues for Rab family assignment are con-

centrated within the so called Rab subfamily (RabSF) regions. 

These RabSF regions were defined by Pereira-Leal and Seabra 

and represent conserved sequence motifs within the Rab family 

that allow a specific subclassification of the family.28

The relevant amino acids for the assignment of the Arf/

Sar family are located mainly within the N-terminal region. 

This is notable because in contrast to Rab, Rho and Ras fami-

lies, that are attached to their target membrane via C-terminal 

geranylgeranylation or farnesylation, Arf is N-terminally 

associated with membranes. Therefore, the N-terminus of Arf 

is myristoylated and forms an amphipatic alpha helix.7

The respective residues for Ran classif ication are 

 concentrated close to the C-terminus of the protein. Ran is 

not membrane bound and, in contrast to Rab, Rho and Ras 

family members, does not exhibit a cystein containing lipid 

modification motif at its C-terminus.6

For the Rho family, the residues identif ied by the 

RF are located mainly within the N-terminal region and 

some amino acids spread over the sequence. Remarkably, 

those are all found within or adjacent to critical structural 

elements, as can be seen in the Rho6/Rnd1 sequence 

in Figure 6. Nobes et al29 report Rho&/Rnd1 to exhibit 

only a weak intrinsic GTPase activity and propose that it 

Table 1 normalized positional residue frequency at helix termini 
n1. The descriptor values for each amino acid (single letter code) 
are shown

Amino acid Value

A 1.10
r 1.05
n 0.72
D 1.14
C 0.26
Q 1.31
e 2.30
g 0.55
H 0.83
i 1.06
L 0.84
K 1.08
M 0.90
F 0.90
P 1.67
s 0.81
T 0.77
W 1.26
Y 0.99
V 0.76
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might thus be  constitutively GTP bound. This might be an 

explanation for an unusual dispersal of important positions 

within the Rho6/Rnd1 sequence in structural elements 

that usually play a role in GTPase  function. Hence, Rho6/

Rnd1 might not be a good representative of the family and 

it might be useful to map the important residues to other 

Rho family members. Furthermore, Rho GTPases show 

differences in their primary sequence in comparison to the 

other families, for example the “Rho insert” (which can 

also be seen in the alignment in Figure 6 between beta5 

and alpha4 within the G domain), which might interfere 

with a correct reassignment of the exact positions after 

interpolation.10

GTPasePred (see additional file 1) can be used to predict 

novel potential small GTPases. It uses the aforementioned 

“Normalized positional residue frequency at helix termini 

N1”26 descriptor to predict whether a protein sequence belongs 

to the superfamily of small GTPases, and subsequently, to 

which family it belongs. GTPasePred is implemented in Java 

[http://java.sun.com] and R [http://www.R-project.org], and 

thus, needs the Java JRE 1.6 and R (with the random forest 

package) installed.

In order to predict one or more novel potential small 

GTPases, simply copy the protein sequences in the file 

sequences and, in the case of a Linux/Unix system, start 

the classification process by typing/start in the terminal. 

The results are stored in the file Results.txt. In the case of a 

Windows system, use start bat to encode the sequences, start 

R in the current directory and type in source (“program”). 

The results of the classification process are shown on the 

screen.

First, the protein sequences are classified whether to be 

a small GTPase, and in the case of a positive classification, 

they are subsequently classified by the family RFs. The RF 

with the highest probability output (positive classification) is 

selected (Figure 8). If this RF has an output $0.5, the protein 

Figure 2 structural plot of descriptor for all families.
Notes: The x-axis represents the normalized sequence position, whereas the y-axis denotes the descriptor value. The interval of all existing values at each position is shown 
for each family. A: Arf; B: rab; C: ran; D: rho.
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Figure 3 ROC curve of the best performing random forest. (1-specificity) against sensitivity, ranging from 0 to 1 on both axes.
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Figure 5 Most important positions for the identification of small GTPases. The most important regions (.4%) for the discrimination whether a protein belongs to the 
class of small gTPases are highlighted in red within the rab6A structure.27 Furthermore, the most important positions within these (.10%), are highlighted in magenta. 
The C-terminal part is unstructured, and thus, not shown. The Mg ion is shown as a sphere.

sequences are assigned to its specific family; otherwise it is 

assigned as a GTPase in general and classified as “Ras or 

not further specified small GTPase”.

Application to newly sequenced genomes
The algorithm can also be applied, when newly sequenced 

genomes are available.

The work flow is as follows:

1. Identify the correct open reading frames (ORFs), 

eg, with the ORF Finder (http://www.ncbi.nlm.nih.

Table 2 Family classification. The mean AUC values, standard 
deviations (sd) and coefficient of variation (cv) are shown for 
each family of small gTPases

Family AUC sD CV

rab 0.9979 0.0001 0.0001
rho 0.9988 0.0001 0.0001
Arf/sar 0.9998 0.0001 0.0001
ran 0.9999 0.0001 0.0001

gov/projects/gorf/), incrementally for all genes within 

the newly sequenced genome.

2. The translated protein sequences have to be saved in the 

file sequences, which subsequently can be used as the 

input for GTPasePred.

3. All proteins will be encoded using the aforementioned 

descriptor and classified whether to be a small GTPase 

or not. The results of the classification process will be 

saved in Results.txt.

Thus, combining ORF Finder with GTPasePred can be 

used to identify potential novel GTPases in newly sequenced 

genomes. An example of our application to newly sequences 

genomes can be found in additional file 2.

Conclusion
Taken together, the important amino acid positions for Rab, 

Arf/Sar and Ran family assignment that we identified using 

RFs, represent motifs that have been described to be unique 

features of the respective family. Hence, we can take these 
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Figure 6 sequence alignment.
Notes: yellow: Rab subfamily specific motifs RabSF1–4; red: Rab family specific motifs RabF1–5; green: Phosphate/Magnesium and Guanine binding (PM/G) motifs; gray: 
important residues identified for  family classification; hhhh: α-helices 1–5; eeee: β-sheets 1–6; swi, swii: switch 1 and 2.The alignment was created manually to accommodate 
structural and functional sequence elements defined by Pereira-Leal and Seabra (2000) and others.28

Figure 7 Most important positions for the classification of small GTPase families. 
The most important regions (.4%) for the classification of whether a protein belongs to a specific family are highlighted in red. The most important positions within the 
ran subfamily is located in the C-terminal part of the protein, in an unstructured region, which is not shown here. Mg and Ca are shown as spheres. 
A: structure of rab6A;27 
B: structure of Arf1;30 
C: structure of rho6.31
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input
sequence

GTPase RF

assigned as 
GTPase

Rab RF Ran RF Arf RF Rho RF

probability outputs
of the family RFs

if > 0.5

Figure 8 Classification processing flow. A sequence is only forwarded as an input sequence to the subfamily RFs, if it was assigned and identified as a GTPase by the 
GTPase-RF. If the highest output value of a family of RFs exceeds 0.5 for such an input sequence, the protein sequence is assigned to this specific family.

results as a proof of reliability of our RF based classification 

approach. In this paper we developed and provide a useful 

and reliable tool (GTPasePred) for the identification of small 

GTPases, and furthermore, for the specific families. Fur-

thermore, we demonstrated the application of GTPasePred 

in genome sequences to identify potential novel GTPases 

(additional file 2).
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Additional files
Additional file 1: GTPasePred. Available from http://www.

uni-due.de/~hy0546/GTPasePred/

Additional file 2: An example of our application to newly 

sequenced genomes

Example: We used yeast chromosome XIII (http://www.

yeastgenome.org) to identify potential small GTPases. There-

fore, we downloaded chromosome XIII in FASTA format 

and subsequently uploaded it on the ORF Finder webpage 

(http://www.ncbi.nlm.nih.gov/projects/gorf/). After starting 

the ORF search, we received the potential ORFs. We selected 

all ORFs having a similar length compared to small GTPases 

(here we select only ORFs in the range of 600 to 630 nucle-

otides for demonstration purposes). We selected ten protein 

sequences and copied them to the file sequences. Now, we 

used GTPasePred to analyze the sequences. GTPasePred 

identified one Rab protein (sequence 8), all other sequences 

were classified as non-GTPases. We subsequently used 

BLAST32 in order to identify sequence 8 as Ypt7.33 Ypt7 

belongs to the family of small GTPases and is a homolog of 

mammalian Rab7.33
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