
© 2019 Yu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

OncoTargets and Therapy 2019:12 2311–2322

OncoTargets and Therapy

This article was published in the following Dove Medical Press journal: 
OncoTargets and Therapy

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
2311

O r i g i n a l  r e s e a r c h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/OTT.s193808

Molecular subtype classification of papillary renal 
cell cancer using mirna expression

changwen Yu*
Danjing Dai*
Juan Xie
Department of Oncology, 
The People’s hospital of hanchuan 
city, hanchuan 431600, hubei, 
People’s republic of china

*These authors contributed equally 
to this work

Background: Renal papillary cell carcinoma (KIRP) is a relatively rare renal malignancy. 

Although KIRP subtyping about clinical relevance has been defined, there have been scarce 

number of studies on the molecular characteristics of KIRP subtypes.

Method: In this study, a independent samples t-test was used to identify differentially expressed 

(DE) miRNAs between tumor and normal samples of KIRP. Meanwhile, we performed unsu-

pervised clustering using DE miRNA expression data to analyze molecular characteristics of 

KIRP. The Partitioning Around Medoids clustering approach was used to identify molecular 

subtypes. The cumulative distribution function (CDF), proportion of ambiguously clustered pairs 

(PAC), principal component analysis (PCA) and consensus heatmaps were used to assess the 

optimal subtypes. In the differential molecular subtypes, we performed an integrated analysis of 

survival, DE genes, biological function and somatic mutations on the cohort of KIRP patients 

from The Cancer Genome Atlas.

Results: From solutions with 2, 3, 4, 5, 6 and 7 clusters we selected three KIRP molecular 

subtypes after assessing PCA, PAC, CDF and consensus heatmaps. We found that the three 

subtypes are associated with different overall survival and molecular characteristics. Compared 

with subtype1 and subtype3, subtype2 had a better prognosis in KIRP patients. After explor-

ing their signaling pathways and biological characteristics, we identified the significantly 

enriched KEGG pathways and Gene Ontology terms for the three subtypes. The distribution 

of PARD6B, SETD2, STAG2, CUL3, TNRC18, LRBA, IGSF9B and DUNC1H1 mutations 

differed between the subtypes.

Conclusion: We performed unsupervised clustering using differentially expressed miRNA 

expression data and described the three KIRP molecular subtypes. The three subtypes differed 

in overall survival, molecular characteristics and gene mutation frequency.

Keywords: renal papillary cell carcinoma, unsupervised clustering, molecular subtype, prognosis

Introduction
Renal papillary cell carcinoma (KIRP) is regarded as the second histological type renal 

cell carcinoma (RCC) with a frequency of about 10%–14%.1 It was first recognized 

in 1976.2 Delahunt and Eble3 further divided KIRP into two histological subtypes, 

namely type 1 and type 2. Clinically and biologically speaking, there were differences 

in type 1 and type 2 subtypes of KIRP. Compared with type 2, the type 1 tumors pre-

sented higher Robson stage and lower Fuhrman grade.4 Prognosis analysis suggested 

that KIRP patients of type 2 had a worse clinical outcome than those of type 1.5 Type 1 

was closely linked to alterations of the MET pathway and type 2 was associated with 

nuclear erythroid 2-related factor 2–antioxidant responsive element pathway activation.6

miRNAs, a type of small non-coding RNAs, became important biological 

biomarkers in cancer research. Dysregulated expression of miRNAs in RCC plays 
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important roles in tumor development.7–9 For example, 

some studies demonstrated that overexpression of miR-203 

may suppress the development of RCC.10 Some studies 

also revealed that miRNAs can act as good biomarkers 

in the diagnosis and prognosis of RCC.11,12 Heinemann et 

al13 demonstrated that serum miR-122-5p and miR-206 

were novel non-invasive prognostic biomarkers for RCC 

patients.

However, the roles of miRNAs in constructing new 

subtypes of KIRP remain to be explored. In the present 

study, we performed unsupervised clustering using aberrant 

miRNA expression data to analyze molecular characteristics 

of KIRP and described three KIRP molecular subtypes. We 

found that the prognosis for each of the three subtypes was 

different. Meanwhile, we also identified the significantly 

enriched KEGG pathways and Gene Ontology (GO) terms 

for the three subtypes. Furthermore, we showed that the 

distribution of PARD6B, SETD2, STAG2, CUL3, TNRC18, 

LRBA, IGSF9B and DUNC1H1 mutations differed between 

the subtypes.

Method
Datasets
RNA-seq, miRNA and phenotype data of KIRP samples 

from The Cancer Genome Atlas (TCGA) were downloaded 

from UCSC Xena (http://xena.ucsc.edu/). A summary of 

clinical features of patients is shown in Table S1. All miRNA 

expression data used were log2(RPKM+1)-transformed and 

all RNA-seq data used were log2(FPKM+1)-transformed. 

TCGA mutation data of 281 KIRP patients were downloaded 

from Genomic Data Common (https://portal.gdc.cancer.

gov/). All mutation data were stored in Mutation Annotation 

Format (MAF).

Differentially expressed mirna analysis 
and unsupervised clustering
An independent samples t-test was used to identify differ-

entially expressed (DE) miRNAs of 292 tumor samples and 

34 normal samples of KIRP (|log2FC|.1, P,0.05). Unsu-

pervised clustering was performed using R package “Con-

sensusClusterPlus” with Partitioning Around Medoids.14 

We selected 80% item resampling, a maximum evaluated 

K of 7, 50 resamplings and 1-Pearson correlation distances. 

Cluster counts of 2, 3, 4, 5, 6 and 7 are evaluated. The cumula-

tive distribution function (CDF), proportion of ambiguously 

clustered pairs (PAC), principal component analysis (PCA) 

and consensus heatmaps were used to assess the optimal K.

Identification of differentially expressed 
genes and enriched gene Ontology and 
pathway in subtypes
To identify DE genes (DEGs) in subtypes, differential 

expression analysis of subtypes was performed. The DEGs 

were identified by independent samples t-test (|log2FC|.0.5, 

P,0.05). GO and the KEGG signaling pathway analyses 

were performed with the R package “clusterProfiler”.15 Bio-

logical process (BP), cellular component (CC) and molecular 

function (MF) are the three parts of GO analysis.

Mutation analysis
Mutation data in MAF available for 281 KIRP patients 

were used in the analysis. The mutation profiles in subtypes 

were shown with the R package “maftools”.16 We also used 

maftools to calculate the mutation rate of each gene. The 

significant mutation genes in different subtypes were identi-

fied by maftools (P,0.05).

statistical analysis
All statistical analysis was performed using R-3.5.1. Survival 

analysis was performed with the R packages “survival” and 

“survminer”.17 Statistical significance of survival analysis 

was assessed by log-rank test. Three-dimensional PCA 

analysis was used with the R package “factoextra”. A heatmap 

was produced with the R package “ComplexHeatmap”.18 

PAC was calculated with the R package “diceR”.19 P,0.05 

was considered significant.

Results
Unsupervised clustering of differentially 
expressed mirnas revealed three 
subtypes of KirP
A total of 132 DE miRNAs were identified, among which 

20 were upregulated and 112 were downregulated. The DE 

miRNAs were shown with a heatmap plot and a volcano plot 

(Figure 1A and B). PCA analysis of DE miRNAs revealed 

a significant differentiation between the normal and tumor 

samples (Figure 1C). Consensus unsupervised clustering 

of 288 samples from KIRP patients revealed 2–7 clusters. 

Compared with 2, 4 and 5 clusters, 3 clusters had a lower 

value for PAC, which reflected a near-perfect stable partition-

ing of the samples at the correct K value (Figure 2C). The 

relative change in the area under the CDF curve revealed a 

near-perfect stable partitioning of the samples beginning with 

the 4 clusters (Figure 2A and B). The PCA and consensus 

heatmaps also showed a relatively stable partitioning of the 
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samples in the 3 clusters (Figures 2D–I and 3A–F). After 

assessing the relative change in the area under the CDF curve, 

PAC value, PCA and consensus heatmaps, we selected a 

three-cluster solution.

Prognostic value of the different subtypes
Survival analysis was performed for 2–7 clusters and 

revealed that overall survival differed significantly in each 

cluster (Figure 4A–F, P,0.0001, log-rank test). However, 

the prognosis for each of the three subtypes was different. 

Compared with subtype1 (S1) (n=77) and subtype3 (S3) 

(n=120), the patients who were classified as subtype2 (S2) 

(n=91) had a better outcome (Figure 4B, P,0.0001, log-rank 

test). Multivariate Cox regression analysis was performed to 

assess the independent prognosis value of subtypes. Taking 

multiple factors including age, gender, therapy and tumor 

stage into consideration, patients classified as S1 and S3 

still always had a worse prognosis than those classified as 

S2 (S1 vs S2: HR=9.469, P=0.003; S3 vs S2: HR=11.248, 

P=0.002) (Figure S1).

Differentially expressed genes of s1, s2 
and s3 subtypes
In order to explore the molecular characterization of the 

transcriptome of S1, S2 and S3 subtypes, DEGs (S1 vs S2, S1 

vs S3 and S2 vs S3) were identified by independent samples 

t-test. A total of 347 DEGs were identified between S1 and 

S2, among which 76 were upregulated (S2.S1) and 271 

were downregulated (S2,S1). We also identified 417 DEGs 

between S1 and S3, among which 139 were upregulated 

(S3.S1) and 278 were downregulated (S3,S1). Compared 

with S1 vs S2 and S1 vs S3, S2 vs S3 revealed fewer DEGs. 

Only 105 DEGs were identified between S2 and S3, among 

which 56 were upregulated (S3.S2) and 49 were down-

regulated (S3,S2). The DEGs were depicted on heatmap 

plots and volcano plots (Figure 5A, D, G and B, E, H). PCA 

Figure 1 De mirna analysis. (A) 132 De mirnas are shown as a heatmap. (B) Significantly highly regulated genes are marked with red dots and downregulated genes are 
marked with blue dots in a volcano plot. (C) PC analysis of DE miRNAs gave a significant differentiation between the normal and tumor samples.
Abbreviations: DE, differentially expressed; Down, downregulated; NoDiff, no difference; PC, principal component; Up, upregulated; Sig, significance.
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analysis of DEGs showed a significant differentiation of S1, 

S2 and S3 samples (Figure 5C, F and I).

Pathways and biological functions 
differentially enriched KirP subtypes
Enriched KEGG pathways and GO terms for 347 DEGs 

(S1 vs S2), 417 DEGs (S1 vs S3) and 105 DEGs (S2 vs S3) 

were identified. For 347 DEGs of S1 vs S2, there were 19 

enriched KEGG pathways (P,0.05) (Table S2). On CC, 

BP and MF levels, significantly enriched GO terms were 

22, 118 and 25, respectively ( P-adjust,0.05) (Table S3). 

The top 10 enriched GO terms and KEGG pathways of 

DEGs of S1 vs S2 are shown in Figure 6A and D. For 417 

DEGs of S1 vs S3, there were 26 enriched KEGG pathways 

Figure 2 cluster counts evaluated. (A) cDF curve of K=2–7. (B) The relative change in area under the cDF curve of K=2–7. (C) The Pac values for K=2–7 were 0.91, 
0.60, 0.62, 0.62, 0.59 and 0.56, respectively. (D–I) Pc analysis for K=2–7 are shown.
Abbreviations: cDF, cumulative distribution function; Pac, proportion of ambiguously clustered pairs; Pc, principal component; s, subtype.
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(P,0.05) (Table S4). On CC, BP and MF levels, signifi-

cantly enriched GO terms were 14, 137 and 25, respectively 

( P-adjust,0.05) (Table S5). The top 10 enriched GO 

terms and KEGG pathways of DEGs S1 vs S3 are shown 

in Figure 6B and E. For 105 DEGs of S2 vs S3, there were 

17 enriched KEGG pathways (P,0.05) (Table S6). On CC, 

BP and MF levels, significantly enriched GO terms were 

4, 44 and 15, respectively ( P-adjust,0.05) (Table S7). 

The top 10 enriched GO terms and KEGG pathways of 

DEGs S2 vs S3 are shown in Figure 6C and F. In S1 and 

S2 subtypes, the association of DEGs belonging to multiple 

annotation categories of GO terms on BP, CC and MF levels 

are shown in Figure 7A–C. The results suggested that most 

GO terms were focused on immune response. In S1 and S3, 

most annotation categories of GO terms, such as “humoral 

immune response mediated by circulating immunoglobulin” 

and “immunoglobulin-mediated immune response”, were 

also related to immune response (Figure 7D–F). In S2 and 

S3, few genes were enriched in the annotation categories 

of GO terms on BP, CC and MF levels (Figure 7G–I). The 

enrichment results for DEGs of S1, S2 and S3 were con-

structed with an enrichment network which depicted the 

gene size and P-adjust of GO terms on BP, CC and MF 

levels (Figure 8).

subtype-associated gene mutations
The 17 genes that are highly mutated were identified by 

maftools after three comparisons: S1 vs S2, S1 vs S3 and 

S2 vs S3. The comparison results are clearly shown in forest 

plots (Figure 9A–C). Gene mutation profiles of these highly 

mutated genes (ATP1B1, CSMD1, CUL3, DYNC1H1, 

IGSF9B, LRBA, NEB, PARD6B, PBRM1, PKHD1, RERE, 

SETD2, SF3B1, STAG2, TNRC18, UBR4, WDR81) are 

shown in Figure 9D.

Figure 3 consensus heatmap. (A–F) consensus heatmaps for K=2–7 are shown. a relative stable partitioning of the samples is seen at K=3.
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Figure 4 survival analysis. (A–F) Overall survival analysis of each cluster (K=2–7) (P,0.001). in K=3, the patients who were classified as S2 (n=91) have a better outcome 
than those of s1 (n=77) and s3 (n=120) (P,0.0001).
Abbreviation: s, subtype.

Discussion
Recently, some large sequencing studies, such as TCGA, 

comprehensively characterized the genomic land-

scape and pathogenesis of KIRP.6 Our understanding 

about the molecular characteristics and genetic architecture 

of KIRP was enhanced. Several studies demonstrated that the 

molecular subtype using sequencing data played important 

roles in a full comprehension of malignant diseases and per-

sonalized therapeutics.20,21 Chen et al22 classified RCCs into 

nine major genomic subtypes and explored comprehensive 

molecular characterization of the nine subtypes. In KIRP, 

two histological subtypes type 1 and type 2 have guided the 

disease therapy and management.3–6 However, molecular 

subtypes using sequencing data, such as miRNAs, are still 

not available.

To enhance our understanding of the biological subtypes 

and molecular characteristics of KIRP and to help us con-

struct relatively robust personalized therapeutics systems, we 

performed unsupervised clustering using the most aberrant 

expressed data of miRNAs to analyze molecular characteris-

tics of KIRP and described three KIRP molecular subtypes. 

A better understanding of the biomarkers predicting clinical 

outcomes and the determinants of cancer progression was in 

urgent need for clinical benefits. In this study, we performed 

survival analysis and demonstrated that three subtype clas-

sifications were significantly associated with patients’ sur-

vival. Compared with patients classified as S1 (n=77) and S3 

(n=120), the patients who were classified as S2 (n=91) had a 

better outcome (P,0.0001). Patients with the same cancer 

were classified into finer taxa and had differential prognosis. 

The differential clinical outcomes of S1, S2 and S3 pointed 

out that different clinical management should be adopted for 

different subtypes. Compared with S2, the patients classified 

as S1 or S3 who had a worse prognosis should receive more 

aggressive treatment.

We also explored the molecular characterization of the 

transcriptome of S1, S2 and S3 subtypes and identified DEGs 

(S1 vs S2, S1 vs S3 and S2 vs S3). Compared with S1 vs S2 
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Figure 5 Degs of s1, s2 and s3. (A, D, G) Heatmap plots showing the expression profiles of DEGs among S1, S2 and S3. (B, E, H) Volcano plots showing Degs; red dots 
represent upregulated genes and blue dots represent downregulated genes. (C, F, I) PC analysis of DEGs gave a significant differentiation of S1, S2 and S3 samples. Red, blue 
and green represent s1, s2 and s3, respectively.
Abbreviations: DEG, differentially expressed gene; Down, downregulated; NoDiff, no difference; PC, principal component; S, subtype; Up, upregulated; Sig, significance. 

and S1 vs S3, fewer DEGs for S2 vs S3 were identified, 

indicating that S2 and S3 may be similar in the molecular 

characterization of transcriptome (Figure 5). In order to 

further investigate the different characteristics of S1, S2 and 

S3, enriched KEGG pathways and GO terms for the DEGs 

of S1, S2 and S3 were identified. Compared with the results 

of DEGs, few genes for S2 vs S3 in the annotation catego-

ries of KEGG pathways and GO terms on BP, CC and MF 
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levels were identified (Figures 6–8). In S1 vs S2 or S1 vs 

S3, we found that most annotation categories of GO terms, 

such as “humoral immune response mediated by circulating 

immunoglobulin” and “immunoglobulin-mediated immune 

response”, were related to immune response (Figures 6–8). 

The immune-related annotation categories may hold promise 

for finding new molecular targets and providing new ideas for 

the management of patients in immunotherapy.23 Meanwhile, 

KEGG analysis for S1 vs S2 and S1 vs S3 showed that metab-

olism-related pathways, such as “phenylalanine metabolism” 

and “glycine serine and threonine metabolism”, played differ-

ent roles in S1, S2 and S3 (Figure 6). Except for metabolism-

related pathways, cancer development and therapy-related 

pathways such as the “phosphoinositide-3-kinase (PI3K)–Akt 

signaling pathway” and the “Wnt signaling pathway” were 

also identified. The PI3K–Akt signaling pathway has been 

Figure 6 (Continued)
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Figure 7 The multiple annotation categories of gO terms. The association of Degs belonging to multiple annotation categories of gO terms on BP, cc and MF levels is 
shown. (A–C) s1 vs s2 of gO terms on BP, cc and MF levels. (D–F) s1 vs s3 of gO terms on BP, cc and MF levels. (G–I) s2 vs s3 of gO terms on BP, cc and MF levels.
Abbreviations: BP, biological process; cc, cellular component; Deg, differentially expressed gene; gO, gene Ontology; MF, molecular function; s, subtype.

Figure 6 Kegg and gO analysis of s1, s2 and s3. (A–C) Top 10 Kegg pathways enriched for the Degs of s1, s2 and s3. (D–F) Top 10 gO terms on BP, cc and MF 
levels enriched for the Degs of s1, s2 and s3.
Abbreviations: age, advanced glycation end product; BP, biological process; cc, cellular component; Deg, differentially expressed gene; ecM, extracellular matrix; 
gO, gene Ontology; MF, molecular function; Pi3K, phosphoinositide-3-kinase; rage, receptor for advanced glycation end product; s, subtype; coa, coenzyme a; 
UDP, uridine phosphorylase.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2019:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2320

Yu et al

demonstrated to be involved in many of the mechanisms of 

targeted therapy and cancer progression.24–27 The aberrant 

regulation of the Wnt pathway has been indicated as the 

central mechanism in cancer biology.28–30

More importantly, molecular alteration of the three 

different subtypes and the genes with significant muta-

tions between those three subtypes were both investigated 

(Figure 9). Compared with S1 and S3, PARD6B showed 

a higher mutation rate in S2 (S1 vs S2 vs S31: 0% vs 8% 

vs 0%). Marques et al demonstrated that PARD6B played a 

critical role in the suppression of epithelial cell proliferation.31 

SETD2 recurrently mutated in KIRP was of higher mutation 

frequency in S1 and S2 than in S3 (S1 vs S2 vs S3: 10% vs 

9% vs 2%).6 Our results provided a comprehensive basis for 

understanding the molecular basis of three subtypes of KIRP 

and may lead to more appropriate clinical management and 

more effective forms of personalized therapy.

Disclosure
The authors report no conflicts of interest in this work.

Figure 8 enrichment map of gO terms. The enrichment results of Degs of s1, s2 and s3 were constructed with enrichment network which showed the gene size and 
P-adjust of gO terms on BP, cc and MF levels. (A–C) s1 vs s2 of gO terms on BP, cc and MF levels. (D–F) s1 vs s3 of gO terms on BP, cc and MF levels. (G–I) s2 vs 
s3 of gO terms on BP, cc and MF levels.
Abbreviations: BP, biological process; cc, cellular component; Deg, differentially expressed gene; gO, gene Ontology; MF, molecular function; s, subtype; MaP, mitogen-
activated protein; UDP, uridine phosphorylase.
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Figure 9 Mutation analysis of s1, s2 and s3. (A–C) The forest plots show the comparison results of gene mutations among s1, s2 and s3 (*P,0.1, **P,0.05, ns: not 
significant). (D) Gene mutation profiles of the following highly mutated genes among the three subtypes: ATP1B1, CSMD1, CUL3, DYNC1H1, IGSF9B, LRBA, NEB, PARD6B, 
PBrM1, PKhD1, rere, seTD2, sF3B1, sTag2, Tnrc18, UBr4 and WDr81.
Abbreviation: s, subtype.
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