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Background: Dual-task actions challenge cognitive processing. The usefulness of objective 

methods based on dual-task actions to identify the cognitive status of older adults has been 

previously demonstrated. However, the properties of select motor and cognitive tasks are still 

debatable. We investigated the effect of cognitive task difficulty and motor task type (walking 

versus an upper-extremity function [UEF]) in identifying cognitive impairment in older adults.

Methods: Older adults ($65 years) were recruited, and cognitive ability was measured using 

the Montreal Cognitive Assessment (MoCA). Participants performed repetitive elbow flexion 

under three conditions: 1) at maximum pace alone (Single-task); and 2) while counting back-

ward by ones (Dual-task 1); and 3) threes (Dual-task 2). Similar single- and dual-task gait 

were performed at normal speed. Three-dimensional kinematics were measured for both motor 

functions using wearable sensors.

Results: One-hundred older adults participated in this study. Based on MoCA score ,20, 

21 (21%) of the participants were considered cognitively impaired (mean age =86±10 and 85±5 

for cognitively impaired and intact participants, respectively). Within ANOVA models adjusted 

with demographic information, UEF dual-task parameters, including speed and range-of-motion 

variability were significantly higher by 52% on average, among cognitively impaired participant 

(p,0.01). Logistic models with these UEF parameters plus age predicted cognitive status with 

sensitivity, specificity, and area under curve (AUC) of 71%, 81% and 0.77 for Dual-task 1. The 

corresponding values for UEF Dual-task 2 were 91%, 73% and 0.81, respectively. ANOVA 

results were non-significant for gait parameters within both dual-task conditions (p.0.26).

Conclusion: This study demonstrated that counting backward by threes within a UEF dual-task 

experiment was a pertinent and challenging enough task to detect cognitive impairment in older 

adults. Additionally, UEF was superior to gait as the motor task component of the dual-task. 

The UEF dual-task could be applied as a quick memory screen in a clinical setting.

Keywords: wearable motion sensor, gait, upper-extremity function, biomechanics, MCI, 

Alzheimer’s disease

Introduction
The need to coordinate concurrent tasks presents itself constantly in our daily life. 

Simultaneous performance of motor and cognitive tasks (dual-tasking) places demands 

on attentional resources and reflects an increasing cognitive challenge for older adults 

and those with cognitive impairment. Performing dual-task actions may be accom-

panied with a decline in the motor task performance when compared to single task 

performance.1 As this decline becomes more evident with increasing age, and with 

cognitive decline,1–3 researchers have tried to find meaningful associations between 
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the state of cognition in older adults and their dual-task 

performance.4–7 For instance, worsened gait performances 

(slower walking speed and higher gait variability) were found 

during dual tasking in patients with dementia.4,5,7,8 Nonethe-

less, the properties of select motor and cognitive tasks, and 

their impact on dual-task outcomes remain debatable.9–14

Previous studies have reported the potential of gait-

based dual-task assessments to reveal cognitive impairment 

in elderly.4,5,7,8 However, many older adults have mobility 

impairments and high risk of falling.15,16 In addition, there 

is a lack of space and time in busy clinical settings, which 

can affect the execution of gait testing. To resolve these 

issues, we previously proposed a dual-task function, based 

exclusively on an upper-extremity motion.6,17,18 In this 

method, participants performed elbow flexion/extension as 

quickly as possible for 20 seconds. The data obtained from 

this method, which is called upper-extremity function (UEF) 

dual-task, was employed to develop a logistic regression 

model to identify cognition state of participants.6 This model 

showed high sensitivity and specificity when compared to 

the Montreal Cognitive Assessment (MoCA). While gait is 

a daily routine activity, UEF is an uncommon motor activity 

and may require skill learning. Therefore, in addition to the 

clinical benefits of UEF over gait as the motor component 

of a dual-task challenge, the novelty of UEF for participants 

may be an additional stressor, thus more beneficial in the 

measurement of cognition.

Cognitive task selection is also influential in dual-task 

performance.9,13 The reasoning for the selection of counting 

numbers backward was twofold. Firstly, counting involves 

working memory,19 and in contrast to some other popular 

tasks such as naming objects/animals, is more directly 

related to executive function.20,21 Secondly, since counting is 

a rhythmic task, it may substantially interfere with rhythmic 

tasks of a different frequency such as walking or repetitive 

elbow flexion.22,23 Previous studies have reported that in 

gait-based dual-task functions, the more demanding the 

cognitive task, the greater the decline in the motor task 

performance;13,22,24,25 however, the effect of cognitive task 

difficulty on UEF has not been previously investigated.

The purpose of the current study is to assess the impact 

of select motor and cognitive tasks in a dual-task challenge 

to test for cognitive status among older adults. To this end, 

we specifically examined the effect of cognitive task dif-

ficulty by comparing counting backward by ones and threes 

in both UEF and gait dual-tasks. Moreover, we compared 

the impact of motor task selection, UEF versus gait, in 

identifying cognition.

Methods
Participants
Community-dwelling older adults ($65 years) were recruited 

from the Banner University Medical Center in Tucson and 

from the Banner Sun Health Research Institute (BSHRI) in 

Sun City, Arizona. Participants with the following disorders 

were excluded: known disorders associated with severe motor 

deficits including stroke, diagnosed Parkinson’s disease, 

and amputation; major mobility disorders (eg, who were 

unable to walk a distance of ~10 m); and, upper-extremity 

disorders (including severe bilateral shoulder or elbow rheu-

matoid arthritis or osteoarthritis). Assistive devices includ-

ing canes and walkers were allowed, although wheelchairs 

were excluded. The study was approved by the University 

of Arizona and BSHRI Institutional Review Boards. Prior 

to experiments, all participants were informed about the 

procedure and they signed the consent form which was 

prepared based on the principles expressed in the Declara-

tion of Helsinki.26 In the case of lack of clinically assessed 

capacity for informed consent, consent was obtained from 

an authorized surrogate with the assent of the participant.

Clinical measurements
Clinical measurements included: MoCA27 for cognitive 

impairment, the Center for Epidemiologic Studies Depres-

sion (CES-D) scale28 for depression, and the Fried index 

for frailty.29 As suggested by previous work, MoCA was 

adjusted with normative age and education level.30,31 Cogni-

tive impairment was defined as a MoCA score less than 20 

out of 30.32,33 Since depression is closely associated with 

cognitive impairment, we used the CES-D scale to control 

this variable. Finally, since a strong association between 

functional frailty and cognitive impairment was previously 

reported,34 we employed the Fried index to measure frailty 

among participants. The implemented Fried index was 

based on the following five criteria: unintentional weight 

loss, self-reported exhaustion, self-reported low physical 

activity, weakness (grip strength), and slow walking speed. 

Individuals with more than three positive criteria were 

considered frail, and those with one or two positive crite-

ria were pre-frail, and those with no positive criteria were 

non-frail.

UeF measurements
According to our previously validated UEF method,6 wear-

able motion sensors (tri-axial gyroscope sensors, sample 

frequency =100 Hz, BioSensics LLC, Cambridge, MA) 

were employed to measure forearm and upper-arm motion, 
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and ultimately the elbow angular velocity (Figure 1). For the 

UEF test, while wearing motion sensors, each participant 

performed a 20-second trial of elbow flexion in a seated 

position. During the test, participants repetitively and fully 

flexed and extended their dominant elbow as quickly as pos-

sible. The protocol was explained to participants, and they 

were encouraged to perform the task as fast as possible only 

once before each test, and no further encouragements were 

given to them while performing the task. Participants became 

familiar with the protocol by performing a short practice on 

their non-dominant arm prior to the actual experiment. All 

assessments were conducted by trained coordinators, and to 

assure consistency, all participants were instructed exactly 

the same.

Employing sensor results (Figure 1) and anthropometric 

information, the following UEF measures were computed: 

1) speed; 2) range of motion; 3) power; 4) rise time; 5) speed 

reduction; 6) flexion number; 7) speed variability; and 

8) range of motion variability (see Table 1 for definitions). 

Readers are referred to previous work for more details regard-

ing UEF parameter descriptions.17,35

As shown in previous studies, the variability of a mea-

sured parameter (eg, speed) could better reflect motor perfor-

mance alterations due to dual-tasking in comparison to the 

measured parameter itself.4–6 This variability is embodied 

in the coefficient of variation (CoV), which is defined as 

the ratio of standard deviation of the parameter to its mean, 

during the dual-task time interval. Similarly, in this study the 

coefficient of variation was computed for the UEF speed and 

range of motion parameters.

gait measurements
An objective assessment of gait based on validated wearable 

sensors was employed in this study. The same sensors used 

to measure UEF were attached to both shins (right above 

the ankles) to measure three-dimensional acceleration and 

angular velocity of shins during gait. Participants were asked 

to walk at least 25 steps with their desired normal pace with 

which they perform everyday activities. We eliminated 

transient intervals of gait data (ie, initiation and termination 

periods), and fed the steady state part to a previously estab-

lished algorithm36,37 to determine the following gait outcome 

measures: 1) stride velocity; 2) stride time; 3) stride length; 

4) double support; 5) stride time variability; and 6) stride 

length variability (see Table 1 for definitions). As explained 

earlier for UEF, stride time and stride length variabilities 

were defined as CoV of these parameters.

Dual-task protocol
The UEF and gait tests explained in the previous sections 

were considered as motor task components for the dual-task 

experiments. Both of these single-task function tests were 

followed by two dual-task trials involving counting back-

ward by either ones or threes, respectively. The motor task 

component of each dual-task experiment was similar to the 

single-task experiments; participants were asked to perform 

Figure 1 UeF experimental setup, sensor outputs and parameters: (left) Wearable motion sensors were used to capture forearm and upper-arm motion, and ultimately the 
elbow angular velocity during rapid elbow flexion/extension. While performing this motor task, participants counted backward by ones (Dual-task 1) and threes (Dual-task 2) 
in separate experiments. (right) relative elbow angular velocity was obtained by subtracting sensor outputs. results for one cognitively impaired and one cognitively intact 
participant during performing dual-tasks are presented.
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the arm flexion/extension as quickly as possible and the gait 

test in the normal desired speed. Participants rested enough 

for about 5 minutes between the trials. To minimize falling 

risk among participants, they only performed normal paced 

walking, rather than fast walking tests. On the other hand, 

since UEF is an established protocol for frailty measurement, 

the rapid elbow flexion/extension procedure was not altered 

in this study. Of note, to better represent the natural environ-

ment in performing daily activities, no instruction was given 

to prioritize either the motor task or counting task.

Counting backward by ones is simple enough for older 

adults to perform, and when combined with a specific motor 

task (ie, UEF or gait), it has been proven effective to identify 

older adults with impaired cognition.6 Within the current 

experimental setup, participants were asked to combine 

counting backward by three with both UEF and walking. 

Of note, we previously asked healthy young participants to 

perform the UEF while counting backward by sevens, and 

found the dual-task so arduous that the UEF motion was 

replete with pauses; hence, counting backward by sevens 

was not considered here.

For all dual-task trials, we calculated the UEF and gait 

parameters (see above). Using the corresponding values 

obtained from the single-task trials, we also computed dual-

task cost as the percentage change in each UEF and gait 

parameter between dual-task and single-task conditions. 

Moreover, we computed the number of correctly counted 

numbers by subtracting the number of mistakes in reverse 

counting from the total counted numbers. This parameter 

is an indication of the speed and accuracy of the secondary 

task (ie, counting backward) within the dual-task condition.

Henceforth, the combination of UEF with counting 

backward by ones and threes has been designated as “UEF 

Dual-task 1” and “UEF Dual-task 2”, respectively. Similarly, 

we have used “Gait Dual-task 1” and “Gait Dual-task 2” for 

the walking task while counting backward by ones and threes.

statistical analysis
Based on MoCA scores participants were divided into 

two groups of cognitively intact and cognitively impaired. 

Performing separate multivariable analysis of variance 

(ANOVA) models, we compared UEF parameters (dependent 

variable) among these two groups (independent variable), 

in both dual-task trials. As frailty and cognitive status could 

have a strong association, in addition to age, body mass 

index (BMI), and sex, frailty status of the participants was 

considered as a covariate in these analyses. Cohen’s effect 

size (d) was calculated in each analysis.

Using the same procedure explained previously,18 within 

each dual-task condition a logistic regression model was 

Table 1 UEF and gait parameter definition

UEF parameters Definition

speed Mean value of elbow angular velocity range (maximum minus minimum speed)

range of motion Mean value of elbow flexion range 

Power Mean value of the product of the angular acceleration range and the range of angular velocity

rise time Mean value of the required time to reach the maximum angular velocity

speed reduction Difference in angular velocity range between the last and the first 5 s of elbow flexion as a percentage of the initial 
angular velocity range

Flexion number Number of flexion/extensions during 20 s

speed variability CoV of angular velocity range during 20 s

range of motion variability CoV of range of motion during 20 s

Gait parameters

stride velocity Average of gait speed (horizontal distance traveled divided by duration of walking) among strides

stride time Time interval starts when one foot makes contact with the ground and ends when that same foot contacts the 
ground again

stride length Distance traveled by the same limb between two successive heel contacts

Double support Duration of the initial and terminal double support when both feet are in contact with the ground as a percentage 
of the stride time

stride velocity variability CoV of gait stride velocity among strides

stride time variability CoV of gait stride time among strides

stride length variability CoV of gait stride length among strides

Note: Definitions for UEF parameters adapted from Toosizadeh et al;18 definitions for gait parameters adapted from Najafi et al.37

Abbreviation: CoV, coefficient of variation.
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developed to predict cognitive status via the select demo-

graphic and UEF parameters. Briefly, the following steps 

were taken to construct logistic models: 1) descriptive 

analysis of UEF parameters: outliers detection within each 

cognition group using box plots and histograms and test-

ing of distribution normality using Shapiro-Wilk W test; 

2) univariate analysis for UEF parameters as independent 

variables: UEF parameters with significant association 

with MoCA were selected for subsequent steps; 3) testing 

of collinearity between UEF parameters: using variance 

inflation factor (VIF) values. A VIF cutoff value larger 

than 10 was considered an indication of collinearity;38 and 

4) stepwise parameter selection: UEF and demographic 

parameters were selected based on Akaike information 

criterion (AIC) values.

The same statistical analysis was employed for the data 

obtained from gait experiments. For all models, sensitivity, 

specificity, and area under curve (AUC) were estimated using 

receiver operator characteristic (ROC) curves for identifying 

cognitively impaired participants. The summary of the results 

is presented as mean (standard deviation – Std. Dev.). All 

analyses were done using JMP (Version 11; SAS Institute 

Inc., Cary, NC, USA), and statistical significance was con-

cluded when p,0.05.

Results
Participants
A total of 100 older adults participated in this study. Based on 

MoCA; 21 (21%) participants were diagnosed with cognitive 

impairment with a mean age and BMI of 86 (10) years and 

26.32 (4.57) kg/m2, respectively; corresponding values were 

85 (5) years and 26.01 (4.16) kg/m2 for the cognitively intact 

group. Neither age nor the depression score was associated 

with the cognitive status of the participants (p.0.13). How-

ever, frailty was significantly associated with the cognition 

status (p=0.03). Further, none of the recruited participants 

had difficulty understanding questions and counting numbers 

in English, as all of them were English speakers. All socio-

demographic data and clinical information are reported in 

Table 2. Although all participants managed to perform both 

UEF dual-task trials, 8 (6 cognitively impaired) of them could 

not finish gait dual-tasks successfully, due to decondition-

ing or instability. These participants were excluded in the 

ANOVA models corresponding to gait.

AnOVA results
As shown in Table 3, when adjusted for age, BMI, sex, and 

frailty status, none of the UEF parameters were significantly 

different between the groups for the single task function 

( p.0.12). Within both UEF dual-task functions, speed 

variability and range of motion variability were significantly 

associated with the cognitive status of the participants 

(p,0.01, Figure 2); among dual-task conditions on average, 

the maximum effect sizes were also observed within these 

two parameters (d$0.36 for speed variability and d$0.34 

for range of motion variability). All other UEF parameters, 

except for speed reduction and power (p$0.06), were sig-

nificantly different between the groups within both dual-task 

functions (Table 3). Within both UEF dual-tasks, the cost 

of all parameters, except the range of motion variability 

Table 2 sociodemographic and clinical measures

Male Female Total Cognitively intact 
(MoCA $20)

Cognitively impaired 
(MoCA ,20)

p-value†

number (% of the group) 39 (39) 61 (61) 100 79 (79) 21 (21) 0.26††

Age, year (std. Dev.) 84.31 (5.93) 86.03 (6.24) 85.36 (6.15) 85.07 (4.84) 86.43 (9.72) 0.37

stature, cm (std. Dev.) 173.93 (8.61) 160.32 (7.16) 165.62 (10.20) 166.17 (10.40) 163.58 (9.37) 0.31

Body mass, kg (std. Dev.) 78.14 (14.67) 67.73 (12.90) 71.79 (14.48) 72.09 (14.49) 70.66 (14.73) 0.70

BMI, kg/m2 (std. Dev.) 25.79 (4.24) 26.26 (4.25) 26.07 (4.23) 26.01 (4.16) 26.32 (4.57) 0.76

MoCA score, 0–30 (std. Dev.) 23.72 (3.22) 23.85 (3.61) 23.8 (3.45) 25.23 (2.25) 18.43 (0.87) ,0.0001*

Ces-D score, 0–30 (std. Dev.) 3.22 (4.01) 3.38 (3.65) 3.32 (3.77) 3.16 (3.77) 4.69 (3.65) 0.13

Frailty††† 0.03*

non-frail, n (% of group) 12 (31) 7 (11) 19 (19) 18 (23) 1 (4) –

Pre-frail, n (% of group) 16 (41) 44 (72) 60 (60) 50 (63) 10 (48) –

Frail, n (% of group) 11 (28) 10 (17) 21 (21) 11 (14) 10 (48) –

Notes: †p-values are reported for differences between cognitively intact and cognitively impaired groups. ††sex was considered as the independent variable. †††Frailty was 
considered as an ordinal variable. *Significant difference.
Abbreviations: BMI, body mass index; MoCA, Montreal Cognitive Assessment; Ces-D, Center for epidemiologic studies depression.
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( p,0.04), were non-significant ( p.0.05) between the 

groups. On the contrary to UEF, as shown in Table 4, gait 

parameters were not significantly different in Dual-task 1 

(p.0.41) and Dual-task 2 (p.0.26) trials. Also, none of 

the cost variables corresponding to the gait parameters were 

significantly different between the groups.

Importantly, differences in UEF parameters in both UEF 

dual-tasks among cognitively intact and cognitively impaired 

Table 3 Mean (standard deviation) of UeF parameters, by cognition status

Single task Cognitively intact
(MoCA $20)

Cognitively impaired 
(MoCA ,20)

p-value† Effect size

speed (deg/s) 827.34 (289.05) 620.87 (216.28) 0.12 0.31
Power (deg2/s3×107) 123.85 (111.11) 69.53 (55.87) 0.42 0.22
range of motion (deg) 98.17 (27.02) 83.91 (25.90) 0.13 0.22
rise time (s) 0.55 (2.54) 0.34 (0.09) 0.64 0.04
speed reduction (%) 1.53 (12.95) 3.74 (11.57) 0.40 0.07
speed variability (%) 11.12 (6.34) 12.03 (4.81) 0.95 0.06
range of motion variability (%) 11.55 (8.12) 12.73 (6.29) 0.98 0.06
Flexion number (n) 23.09 (8.86) 17.43 (5.50) 0.16 0.28

Dual-task 1

speed (deg/s) 762.23 (250.5) 549.90 (202.07) 0.03* 0.36
Power (deg2/s3×107) 99.50 (90.25) 51.22 (41.45) 0.18 0.24
range of motion (deg) 99.06 (25.85) 76.28 (28.82) 0.003* 0.35
rise time (s) 0.29 (0.10) 0.38 (0.17) 0.05* 0.31
speed reduction (%) 5.47 (8.57) 6.54 (8.36) 0.06 0.05
speed variability (%) 11.05 (3.33) 14.93 (5.62) ,0.001* 0.4
range of motion variability (%) 9.99 (5.03) 15.28 (9.68) ,0.01* 0.34
Flexion number (n) 20.73 (6.38) 16.57 (5.92) 0.24 0.27

Dual-task 2

speed (deg/s) 646.79 (241.15) 485.87 (186.43) 0.05* 0.28
Power (deg2/s3×107) 71.59 (70.67) 42.61 (44.17) 0.32 0.18
range of motion (deg) 96.02 (30.26) 70.67 (24.40) 0.006* 0.35
rise time (s) 0.38 (0.15) 0.52 (0.30) 0.04* 0.30
speed reduction (%) 7.63 (10.27) 10.46 (20.2) 0.26 0.09
speed variability (%) 13.51 (4.90) 19.62 (12.04) ,0.001* 0.36
range of motion variability (%) 10.13 (7.25) 17.64 (8.21) ,0.01* 0.41
Flexion number (n) 16.24 (6.41) 13.10 (6.10) 0.44 0.20

Notes: †Models were adjusted with age, BMI, sex, and frailty status. *Significant difference.
Abbreviation: MoCA, Montreal Cognitive Assessment.

Figure 2 Comparison of speed variability and range of motion variability among cognitively intact and cognitively impaired participants, within UeF Dual-task 1 and Dual-task 2.
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groups based on MoCA. Mean (Std. Dev.) values are presented 

in Table 3. The effect size is presented for each variable.

Differences in gait parameters in both dual-tasks among 

cognitively intact and cognitively impaired groups based on 

MoCA. Mean (Std. Dev.) values are presented in Table 4. 

The effect size is presented for each variable.

logistic models
For the logistic models corresponding to the UEF dual-tasks, 

speed variability and range of motion variability, in addition 

to age, were selected as independent variables. Results 

from UEF Dual-task 1 logistic regression model identified 

cognitive impairment (based on MoCA) with a sensitivity 

and specificity of 71% and 81% (AUC =0.77). Similarly, 

the logistic model based on the UEF Dual-task 2 demon-

strated 91% and 73% sensitivity and specificity, respectively 

(AUC =0.81, Table 5). The corresponding ROC curves are 

depicted in Figure 3.

To compare gait and UEF, we only considered those 

participants who could perform both motor functions and 

Table 4 Mean (standard deviation) of gait parameters, by cognition status

Single task Cognitively intact
(MoCA $20)

Cognitively impaired 
(MoCA ,20)

p-value† Effect size

stride velocity (m/s) 0.91 (0.33) 0.94 (0.31) 0.31 0.03
stride time (s) 1.17 (0.21) 1.26 (0.38) 0.24 0.14
stride length (m) 1.02 (0.31) 1.02 (0.24) 0.38 0.01
Double support (%) 23.28 (7.73) 25.21 (7.77) 0.94 0.10
stride velocity variability (%) 12.51 (8.41) 17.07 (14.49) 0.14 0.19
stride time variability (%) 0.072 (0.079) 0.20 (0.32) 0.06 0.32
stride length variability (%) 0.10 (0.083) 0.13 (0.13) 0.35 0.13

Dual-task 1

stride velocity (m/s) 0.82 (0.36) 0.83 (0.34) 0.86 0.01
stride time (s) 1.28 (0.30) 1.44 (0.59) 0.41 0.17
stride length (m) 0.97 (0.32) 0.98 (0.29) 0.41 0.01
Double support (%) 25.96 (9.26) 28.27 (9.95) 0.82 0.09
stride velocity variability (%) 14.37 (9.40) 17.14 (12.41) 0.82 0.10
stride time variability (%) 0.09 (0.13) 0.19 (0.33) 0.48 0.21
stride length variability (%) 0.10 (0.081) 0.12 (0.10) 0.70 0.09

Dual-task 2

stride velocity (m/s) 0.77 (0.38) 0.76 (0.34) 0.64 0.01
stride time (s) 1.44 (0.54) 1.39 (0.30) 0.39 0.04
stride length (m) 0.95 (0.34) 0.94 (0.32) 0.54 0.01
Double support (%) 28.10 (11.07) 29.03 (8.85) 0.47 0.03
stride velocity variability (%) 14.93 (10.42) 16.13 (9.79) 0.65 0.04
stride time variability (%) 0.12 (0.21) 0.11 (0.17) 0.26 0.02
stride length variability (%) 0.10 (0.085) 0.12 (0.075) 0.82 0.09

Notes: †Models were adjusted with age, BMI, sex and frailty status. 
Abbreviation: MoCA, Montreal Cognitive Assessment.

Table 5 results of the multivariable logistic regression models for the UeF dual-task functions

UEF Dual-task 1 Parameter 
estimates

Standard 
errors

χ2 p-value 95% CI lower 95% CI upper

Intercept 10.04 4.18 5.76 0.02* 2.21 18.8
Age -0.068 0.047 2.07 0.15 -0.16 0.022
speed variability -0.15 0.077 3.93 0.04* -0.31 -0.0079
range of motion variability -0.085 0.0487 3.02 0.08 -0.18 0.0089

UEF Dual-task 2

Intercept 6.17 3.74 2.72 0.10 -0.95 13.90
Age -0.031 0.042 0.54 0.46 -0.12 0.051
speed variability -0.070 0.046 2.32 0.12 -0.17 0.013
range of motion variability -0.081 0.035 5.28 0.02* -0.16 -0.014

Note: *Significant difference.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Interventions in Aging 2019:14submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

666

ehsani et al

Figure 3 The rOC curves of the UeF logistic models predicting cognitive status. 
Models were developed from all participants while counting backward by ones 
(ie, Dual-task 1) and threes (ie, Dual-task 2).

Figure 4 The rOC curves of the UeF and gait logistic models predicting cognitive status. Models were developed based on the results obtained from those participants who 
were able to perform both motor functions while counting backward by ones (ie, Dual-task 1) and threes (ie, Dual-task 2).

built the corresponding logistic models for Dual-task 1 

and Dual-task 2. The gait models were constructed using 

stride time variability, stride length variability, and age as 

the independent variables. For gait models, AUC values of 

0.73 for Dual-task 1, and 0.66 for Dual-task 2 were obtained. 

The AUC for the corresponding models for UEF were 0.81 

and 0.79 for Dual-task 1 and Dual-task 2, respectively. The 

corresponding ROC curves are depicted in Figure 4.

Discussion
The usefulness of objective dual-task methods to identify the 

cognitive status of older adults has been previously demon-

strated. However, the properties of select motor and cognitive 

tasks, and their impact on predicting cognitive impairment 

were unclear. In this study, we investigated two motor tasks 

including normal walking speed and a novel UEF task, and 

two cognitive task difficulties using counting backward by 

ones and threes.

Focusing on UEF, results of this study showed that 

counting backward by threes as the cognitive component of 

the dual-task experiment is a sufficiently challenging task 

to reveal the cognitive status of older adults, and sensitive 

to those at the earlier stages of cognitive decline (Figure 3). 

Although the efficiency of counting backward by ones has 

also previously been demonstrated for this purpose,6 by 

comparing the performance indicators of the logistic models 

obtained from UEF dual-task actions, one can discern that 

the more difficult task of counting backward by threes is a 

more sensitive method to identify cognitively impaired older 

adults (91% for UEF Dual-task 2 in comparison to 71% for 

UEF Dual-task 1). Despite this improvement, increasing the 
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cognitive task difficulty caused a decrement in the specificity 

for the corresponding logistic model (81% for UEF Dual-

task 1 versus 73% for UEF Dual-task 2). For the purpose 

of early screening of cognitive impairment, high sensitivity 

is desired, and specificity (the statistical probability that 

an individual who is not cognitively impaired will be cor-

rectly identified as negative) is less critical.

Another important feature of a dual-task function that 

may help to optimize its efficacy for identifying cognitively 

impaired elderly is related to the motor task type. As we have 

previously discussed,6 using the UEF dual-task over gait 

dual-task is beneficial for clinical applications, especially in 

the case of mobility impairments and high fall risk. In this 

study, performing UEF was feasible among all the partici-

pants, while only 71% of cognitively impaired participants 

were able to finish the gait dual-task functions. In addition 

to this advantage, the UEF method provides a more sensitive 

and specific logistic model for predicting cognitive status in 

comparison to gait (Figure 4). Because walking is a routine 

daily activity, minimum skill learning is involved in its per-

formance. Whereas the UEF involves performing a novel and 

unfamiliar movement, which may require more motor cortex 

activation.39 Of note, here the role of motor cortex in perform-

ing gait is not ignored,40 and the emphasis is on the degree 

in which the motor cortex is stimulated. On the other hand, 

working memory is primarily involved in learning a new 

skill,41 and counting backward relies on working memory.42 

Consequently, results suggest that during UEF Dual-task 2 

working memory was more challenged. Previous work has 

suggested working memory decline in cognitively impaired 

elders;43 accordingly, the hypothetical explanation for our 

observations here is that combination of skill-learning (UEF) 

and counting backward by threes would create a stress test 

for the brain to reveal its impairment. Although this explana-

tion seems plausible, it requires a rigorous confirmation via 

brain imaging (eg, fMRI) and neuropsychiatric correlates 

in future studies.

In this study, gait parameters were not significantly 

different between the groups in neither of dual-task trials. 

One potential reason for such results is the small number 

of cognitively impaired participants (15 participants) who 

could perform the gait dual-task trials. Moreover, as sug-

gested in previous works, dual-task gait trials may not detect 

cognitive impairments among frail older adults.10,12 Of note, 

in the current study, frailty (as measured based on the Fried 

phenotype) was significantly different between the groups. 

It is important to note that even by adjusting the models with 

the frailty status, UEF parameters were significantly different 

between the cognitive groups. This result further underlines 

the potential of UEF dual-tasks for assessing cognition among 

community-dwelling older adults.

In our previous study, employing the same procedure 

within a different sample of participants, we implemented 

counting backward by ones while performing the repetitive 

elbow flexion/extension, and constructed a multivariable 

regression logistic model to predict cognitive status.6 Similar 

to the findings within our previous study,6 here we observed 

that variability in the motion of elbow during flexion/

extension (ie, speed variability) was more strongly associated 

with the cognition status compared to other parameters, such 

as speed itself. Within the current sample, we also observed 

the speed and range of motion variability as the dominant 

parameters in predicting cognitive status among older adults 

(Figure 2). Of note, within our previous work implementing 

counting backward by ones, the range of motion variability 

was not calculated as a UEF outcome. In the current study, 

in which we worked with a more diverse population, speed 

variability and range of motion variability showed significant 

differences among those who were cognitively impaired 

versus intact participants and were used to develop logistic 

models. Further, the results of this study showed that under 

dual-task function, differential gait variability was better 

represented using stride time variability and stride length 

variability when compared to stride time and stride length 

itself. This observation was in agreement with previous 

studies in which dual-task gait variability has been observed 

in stride time variability instead of stride time.4,5 Considering 

a simple analogy, one may make connections between UEF 

speed variability and gait stride time variability, as well as 

UEF range of motion variability and stride length variability.

Moreover, in contrast to our previous model, the variable 

of correctly counted numbers was not included in the logistic 

model. The comparison between different motor tasks, ie, gait 

and UEF, was one of the main objectives of this study; and, 

as gait was measured within a specific distance and not a 

predefined time duration, unlike UEF we did not compute the 

correctly counted numbers during gait. Therefore, to preserve 

the uniformity in the developed logistic models, and hence in 

the following comparisons, the “correctly counted numbers” 

variables were not incorporated into the logistic models.

Some limitations within this study should be acknowl-

edged. We used MoCA, a cognitive impairment screening 

tool to assess cognitive status rather than clinically confirmed 

and neuropsychiatric and imaging determined clinically diag-

nosed mild cognitive impairment or dementia. In addition, 

we were unable to assess the type of cognitive impairment 
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(eg, amnestic [pre-Alzheimer’s] versus non-amnestic). 

In this regard, two directions should be pursued in future 

studies. Firstly, the performance of UEF dual-tasks should 

be tested among clinically confirmed groups of cognitively 

impaired and demented patients (eg, patients with amnestic 

MCI and Alzheimer’s disease); and secondly, the activity 

of different parts of the brain should be monitored (eg, with 

fMRI and/or EEG) while performing UEF dual-tasks in 

these participants. Further, computational models of the 

upper-extremity musculoskeletal system44–46 may be used 

to examine kinetic variables (eg, elbow flexion/extension 

moments47 and/or muscle forces crossing this joint48,49) within 

UEF dual-tasks.

Conclusion
Within the current study, we examined the effect of motor 

task selection and cognitive task difficulty in a dual-task func-

tion to identify the cognitive state of community-dwelling 

older adults. For the motor component, we compared a daily 

routine activity of walking with a self-selected speed, to an 

unfamiliar task of rapid elbow flexion/extension. Counting 

backward by ones and threes were chosen as the cognitive 

component of the dual-tasks. Results of this study showed 

that the combination of UEF with counting backward by 

threes was a pertinent and challenging enough dual-task 

choice to reveal the cognitive status of older adults, espe-

cially for those who are at earlier stages of cognitive decline. 

Further UEF proved more sensitive than did gait as the motor 

task components within the dual task challenges, and better 

able to be performed than was gait.
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