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Pim-1 inhibitor SMI-4a suppresses tumor growth

in non-small cell lung cancer via PI3K/AKT/mTOR

pathway
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Background: In the present study, we aimed to investigate the effect of proviral integration

site for moloney murine leukemia virus-1 (Pim-1) inhibitor (SMI-4a) on the progression of

non-small cell lung cancer (NSCLC).

Materials and methods: The effects of SMI-4a on proliferation, apoptosis, and cell cycle

of NSCLC cells were examined by in vitro experiments using human NSCLC cell lines

(A549 and Ltep-a-2). The pathway regulated by SMI-4a was detected using Western blot.

Furthermore, we performed in vivo experiments to assess the effects of SMI-4a on tumor

growth using mouse models with NSCLC.

Results: Our data demonstrated that SMI-4a could inhibit the proliferation of A549 and

Ltep-a-2 cells markedly in a dose-dependent manner (P<0.05). Treatment with 80 μmol/L of

SMI-4a for 48 h significantly induced the apoptosis rate of NSCLC cells (P<0.05), and

blocked the cell cycle of NSCLC cells in G2/M phase (P<0.05). The phosphorylation levels

of PI3K, AKT, and mTOR in NSCLC cells were significantly downregulated by SMI-4a

(P<0.05). Result from in vivo experiments demonstrated that SMI-4a could suppress the

tumor growth in mouse models with NSCLC (P<0.05).

Conclusions: SMI-4a suppresses the progression of NSCLC by blocking the PI3K/AKT/mTOR

pathway.

Keywords: Pim-1, SMI-4a, NSCLC, tumor progression

Introduction
In recent years, lung cancer has become the leading cause of cancer-related death in

the world.1 Non-small cell lung cancer (NSCLC) comprises 80% of all lung cancer

cases.2 Surgical resection is the most effective treatment of NSCLC. However,

because of the lack of early and effective diagnostic methods, most NSCLC patients

are diagnosed at an advanced stage and loss the opportunities of radical surgery for

the early stage.3 In addition, the development and clinical application of platinum-

based chemotherapy regimens have gradually entered a plateau.4

With the discovery of multiple oncogenes, more and more molecular targeted drugs

showed satisfactory effects in NSCLC.5 The treatment of NSCLC has entered a new

era of precision medicine. Among molecular targeted drugs, epithelial growth factor

receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used in NSCLC

patients.6 Studies have shown that EGFR-TKIs are more effective than conventional

chemotherapy drugs in NSCLC patients with EGFR sensitive mutation.7–10 However,

with the widespread use of EGFR-TKIs, resistance has emerged inevitably. Therefore,
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it is necessary to develop more molecular drugs targeting

different oncogenes of NSCLC.

Proviral integration site for moloney murine leukemia

virus-1 (Pim-1), as a kind of serine threonine kinase, functions

in signal transduction.11 Pim-1 regulates the activities and

subcellular localizations of certain proteins by phosphorylating

their serine and threonine sites.12 For example, downregulated

expression level of Pim-1 induced by specific monoclonal

antibody (mAb) led to decreased phosphorylation of AKT at

Ser473 and increased cleavage of caspase-9, that activated the

mitochondrial cell death pathway.13 Previous studies showed

that Pim-1, acting as an oncogene, is highly expressed in

various tumors and promotes their progression, and that over-

expression of Pim-1 in NSCLC tissues is associated with

advanced clinical parameters.14–16 However, the therapeutic

effect of Pim-1 inhibitor in NSCLC remains unclear.

The aim of the present study is to investigate the effects of

Pim-1 inhibitor (SMI-4a) on the progression of NSCLC

in vitro and in vivo. We found that SMI-4a significantly

suppressed the proliferation and cell cycle, and induced the

apoptosis of NSCLC cells in vitro. Besides, SMI-4a could also

suppress the tumor growth in mouse models with NSCLC.

PI3K/AKT/mTOR pathway was involved in the anti-tumor

process induced by SMI-4a. Pim-1 inhibitor may serve as

a new molecular targeted drug for NSCLC patients.

Materials and methods
Cell culture
Human NSCLC cell lines (A549 and Ltep-a-2) obtained

from the Shanghai Institutes of Biological Sciences Cell

Bank were cultured in DMEM (Thermo Fisher Scientific,

USA) supplemented with 10% fetal bovine serum (FBS;

Gibco, USA) and 1% penicillin/streptomycin (Gibco) at

37 °C in a humidified incubator of 5% CO2.

Proliferation assays
A549 and Ltep-a-2 cells (2×103 in 100 μL/well) were

seeded in 96-well plates and treated with Pim-1 inhibitor

(SMI-4a; Sigma, USA) at different concentrations (0, 5,

10, 20, 40, and 80 μmol/L) for 48 h. Then 10 μL of CCK8

solution was added to each well for 4 h incubation. The

absorbance at 450 nm was measured using Multiscan Plate

Reader (Thermo Fisher Scientific).

Apoptosis assay
Cells were washed with phosphate buffered saline (PBS)

twice, centrifuged at 1,000 r/min for 5 min, and then

resuspended in 500 μL of binding buffer. Then 5 μL of

Annexin V-FITC and 5 μL of PI were added. After incuba-

tion in dark at 37 °C for 15 min, the apoptosis of cells was

analyzed by flow cytometry (BD Biosciences, San Diego,

CA, USA) according to the manufacturer’s instructions.

Cell cycle assay
The synchronized cells were washed with PBS twice, fixed

with cold 75% ethanol, and then cultured at 4 °C over-

night. The cells were again washed with PBS, followed by

staining with propidium iodide (PI; 50 µg/ml, Sigma-

Aldrich®, St. Louis, MO, USA) in the presence of

RNase A (100 µg/ml; Fermentas®, Shanghai, China).

After incubation in dark at 37 °C for 30 min, the cell

cycle was measured by flow cytometry according to the

manufacturer’s instructions.

Western blotting analysis
Mammalian protein extraction agent (Thermo Fisher

Scientific) mixed with alt protease inhibitor cocktail

(Thermo Fisher Scientific) (100:1) was used to lyse cells.

Equal amounts of proteins were loaded onto the 10%

sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE).

Then interest proteins were transferred from the gels onto

the polyvinylidene fluoride (PVDF) membranes (Millipore,

USA). Membranes were blocked with 5% bovine serum

albumin (BSA) for 1 h at 37 °C. Then membranes were

incubated in primary antibodies overnight at 4 °C and

subsequently in horseradish peroxidase-conjugated second-

ary antibodies for 2 h at 37 °C. Protein bands were visua-

lized with electrochemiluminescence assay (Millipore).

ImageJ (National Institutes of Health, USA) was used to

quantify the protein bands.17

In vivo study
Approved by Animal Ethics Committee of Soochow

University, animal experiments were performed following

the Guide for the Care and Use of Laboratory Animals

(National Institutes of Health publication). Male C57BL/6

mice (6 weeks old) were purchased from Shanghai

Experimental Animal Center (Shanghai, China). A549 or

Ltep-a-2 cells (1×107) resuspended in PBS were subcuta-

neously inoculated into the armpit. After one week, mice

were randomly divided into five groups treated with 5/10/

20/40 mg/kg of SMI-4a or vehicle control (0 mg/kg) (5 mice

per group). Every three days, the length and width of the

tumors were measured. Tumor volume was calculated using

the following formula: (width2 × height)/2. After the last
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measurement of the volume, the tumors of mice were imme-

diately removed, weighed, and then lysed for Western blot-

ting analysis.

Statistical analysis
Statistical analysis was performed using SPSS v21.0

(SPSS Inc., USA). Difference between two groups was

assessed using Independent sample t-test. When compar-

ing more than two groups, one-way analysis of variance

(ANOVA) followed by Dunnett’s test was used. Each

experiment was repeated three times. Data were presented

as the means ± standard deviation (SD). A P<0.05 was

considered as statistically significant.

Results
SMI-4a inhibits the proliferation of

NSCLC cells
CCK-8 assay was used to examine the cell proliferation.

The results showed that SMI-4a inhibited the proliferation

of A549 and Ltep-a-2 cells in a dose-dependent manner

(P<0.05; Figure 1). Because 80 μmol/L of SMI-4a showed

a strongest inhibitory effect on the proliferation of both

cell lines, 80 μmol/L was chosen as the SMI-4a concen-

tration in the following in vitro experiments.

SMI-4a induces the apoptosis of NSCLC

cells
Flow cytometry assay was used to examine the cell apop-

tosis. The results showed that treatment with 80 μmol/L of

SMI-4a for 48 h significantly induced the apoptosis rate of

NSCLC cells (Figure 2). The apoptosis rate of A549 cells

increased from 1.1±0.8 to 17.0±0.9 (P<0.001). The apop-

tosis rate of Ltep-a-2 cells increased from 1.3±0.7 to 10.0

±0.8 (P=0.001).

SMI-4a blocks the cell cycle of NSCLC

cells
The effect of SMI-4a on the cycle distribution of NSCLC

cells was also detected by flow cytometry assay. The

results showed that SMI-4a blocked the cell cycle of

NSCLC cells in G2/M phase (Figure 3). After 48h treat-

ment of 80 μmol/L of SMI-4a, the portion of A549 cells in

G2/M phase increased from 19.2±2.3 to 28.3±3.7

(P=0.021); the portion of Ltep-a-2 cells in G2/M phase

increased from 19.6±3.2 to 32.0±5.5 (P=0.037).

SMI-4a blocks the phosphorylation of

PI3K/AKT/mTOR pathway
Given the complex relationship between Pim-1 and PI3K/

AKT/mTOR pathway, we further investigated the role of

Pim-1 inhibitor in the activation of this pathway. By

Western blotting analysis, we found that the total expression

of PI3K, AKT and mTOR was not altered by SMI-4a

(P>0.05; Figure 4). However, the phosphorylation of PI3K,

AKTand mTORwas significantly downregulated by SMI-4a

(P<0.05; Figure 4).

SMI-4a suppresses tumor growth in vivo
Mouse models with NSCLC were established to validate

the suppressive effect of SMI-4a on tumor growth. The

mice were grouped according to the dose of SMI-4a.

Compared with the control group (0 mg/kg), groups trea-

ted with 5/10/20/40 mg/kg of SMI-4a had lower tumor

growth rates and lighter tumor weight (P<0.05, Figure 5).

The tumor suppressive effect of SMI-4a in vivo was also

in a dose-dependent manner.

To further confirm the role of PI3K/AKT/mTOR pathway

in the anti-tumor process induced by SMI-4a, we collected

the mouse tumor tissues to detect the expression levels of

associated proteins in the pathway. The results showed that

the phosphorylation of PI3K, AKT and mTOR was down-

regulated by SMI-4a in a dose-dependent manner (P<0.05,

Figure 6), while the total expression of PI3K, AKT and

mTOR was still not altered by SMI-4a (P>0.05, Figure 6).

Discussion
Previous studies have confirmed the anti-tumor effects of SMI-

4a in a variety of tumors, including osteosarcoma, melanoma
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Figure 1 SMI-4a inhibits the proliferation of NSCLC cells. The inhibition ratios of

A549 and Ltep-a-2 cells were detected at 48h after treatment with various con-

centrations of SMI-4a (0, 5, 10, 20, 40, or 80 μmol/L). Each value represents the

mean of triplicate experiments; bars, SD. ANOVA; *P<0.05, vs 0 μmol/L, A549

group; #P<0.05, vs 0 μmol/L, Ltep-a-2 group.
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and leukemia.18–20 Liao et al found that SMI-4a significantly

downregulated the expression of anti-apoptotic protein Bcl-2,

and inhibited the cell proliferation, migration, and invasion in

osteosarcoma.18 Lv et al confirmed that SMI-4a inhibited

tumor growth by inducing autophagy via AKT/mTOR path-

way in melanoma.19 Fan et al proved that SMI-4a induced the

apoptosis and inhibited the colony formation of leukemia

cells.20 There findings indicated the potential of SMI-4a as

a new molecular targeted drug for the treatment of tumor. The

present study is the first to demonstrate the anti-tumor effects

of SMI-4a in NSCLC. We found that SMI-4a inhibited the

proliferation and cell cycle, and induced the apoptosis of

NSCLC cells in vitro. SMI-4a also had an inhibitory effect

on tumor growth in vivo in a dose-dependent manner.
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There are many other Pim-1 inhibitors besides SMI-4a.

Lee et al proved that the combination of Pim-1 inhibitor

AZD1208 and AKT inhibitor had synergism inhibitory

effects on the progression of gastric cancer cells.21 Hu

et al produced an anti-Pim-1 mAb and demonstrated that

it suppressed the tumor growth by inhibiting the phosphor-

ylation of AKT in prostate cancer.13 Kim et al found that

Pim-1 inhibitors (SGI-1776, ETP-45299, and tryptanthrin)

enhanced the radiosensitization of tumor cells by inhibit-

ing radioresistant signaling pathway in mouse models with

NSCLC.22 However, more studies are needed to compare

the safety and effectiveness of different Pim-1 inhibitors.

Our results indicated that PI3K/AKT/mTOR pathway

was significantly inhibited by SMI-4a in NSCLC, which is

consistent with previous studies.13,19 In malignant tumors,

the activation of PI3K/AKT/mTOR pathway breaks the

balance between pro-apoptotic and anti-apoptotic proteins

to exert an anti-apoptotic effect. Briefly, AKT increases the

dissociative anti-apoptotic protein Bcl-2 and blocks the

activation of pro-apoptotic proteins caspase-9 and

caspase-3.23,24 The activation of PI3K/AKT/mTOR path-

way can also promote cell proliferation. For example,

AKT directly phosphorylates glucose synthase kinase-3β
(GSK3β) and increases the accumulation of cyclin D1 that

accelerates the G1-S phase.25 Besides, AKT inhibits the

expression of p27Kip1, a cell cycle-dependent protein that

blocks cell cycle in G1 phase.26 However, our study

showed that SMI-4a blocked the cell cycle of NSCLC

cells in G2/M phase rather than G1 phase. Fan et al also

revealed that SMI-4a blocked the cell cycle of chronic

myeloid leukemia cells in S-phase rather than G1

phase.20 Based on these inconsistent results, we hypothe-

sized that in addition to D1 and p27Kip1, there are several

other cell cycle regulatory factors involved in the SMI-4a-

induced NSCLC cell cycle arrest. Further studies are

needed to verify this hypothesis.
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In recent years, EGFR-TKIs have been widely used in

NSCLC patients with EGFR sensitive mutation.27

Although the clinical effect was significant in these

patients, they will ultimately develop resistance to EGFR-

TKIs after about 10–14 months.28 Moreover, targeted

therapy with EGFR-TKIs can improve the quality of life

in NSCLC patients, but its impact on overall prognosis is

still not satisfactory.29 Therefore, new drugs targeting
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other molecules may be better choices for patients without

EGFR sensitive mutation or resistant to EGFR-TKIs. SMI-

4a selectively inhibiting Pim-1 kinase significantly inhib-

ited tumor growth and was well tolerated in vivo in our

study, so we surmised that SMI-4a has the potential to be

the ideal alternative to EGFR-TKIs for NSCLC patients.

More clinical trials are needed to prove the safety and

effectiveness of SMI-4a.

In conclusion, the present study is the first research

evaluating the therapeutic effect of Pim-1 inhibitor SMI-4a

in NSCLC. The in vitro and in vivo experimental results

showed that SMI-4a significantly suppresses the progres-

sion of NSCLC by blocking the PI3K/AKT/mTOR path-

way. Pim-1 inhibitors may become new targeted drugs for

NSCSL patients in the future.
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