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Objective: The present study aimed to investigate the expression of Numb in ovarian cancer 

tissues and to assess the effect of Numb on cell proliferation, invasion, and EMT in ovarian 

cancer.

Methods: Real-time PCR and Western blotting were used to detect the mRNA and protein 

expression of Numb, PAK1, β-catenin, and epithelial–mesenchymal transition (EMT)-related 

proteins. MTT was employed to check the effect of Numb on proliferation of ovarian cancer 

cells. Transwell assay was performed to examine the functions of Numb and PAK1 on migra-

tion and invasion of ovarian cancer cells.

Results: The Numb expression was significantly downregulated while PAK1 and β-catenin 

were significantly upregulated in both ovarian cancer tissues and cell lines. Silencing of Numb 

promoted cell proliferation, migration, invasion, and EMT in ovarian cancer cell lines while 

overexpressed Numb reversed the above effects. Moreover, the EMT process induced by the 

inhibition of Numb was regulated through Numb-mediated PAK1/β-catenin signaling pathway.

Conclusion: Numb was downregulated and associated with cell proliferation, invasion, and 

EMT in ovarian cancer through regulating PAK1/β-catenin signaling, providing a novel potential 

biomarker and potential therapeutic target for ovarian cancer.
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Introduction
Ovarian cancer is one of the leading causes of lethal gynecological malignancy-related 

morbidity and mortality among women worldwide.1 According to relevant statistics 

in 2018, ~22,240 new cases were diagnosed and 14,070 deaths were estimated in 

the United States.2 Although advanced progress in therapeutic approaches includ-

ing surgery, radiotherapy, and neoadjuvant chemotherapy as the primary methods 

for treating ovarian cancer, the long-term prognosis of patients is still poor, mainly 

due to infinite proliferation and strong metastatic ability of tumor cells.2,3 Evidence 

suggests that invasiveness and migration capability in ovarian cancer cells are 

enhanced by loss of epithelial features and gain of mesenchymal phenotype, known 

as epithelial–mesenchymal transition (EMT).4–6 Therefore, it is critical to uncover 

molecular mechanisms underlying proliferation, invasion, and EMT in ovarian cancer 

and develop more effective therapeutic strategies accordingly.

Numb is an endocytic adaptor protein that localizes to the basement layer of 

polarized epithelial cells and mediates endocytosis and endocytic transport of cell 

membrane proteins.7 Numb has been implicated in diverse array of cellular processes 
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that contributes to cell polarity maintenance, cell migration, 

and EMT.8–12 It is widely considered to be a tumor sup-

pressor and is involved in a variety of cancer progressions, 

including lung cancer,13 head and neck squamous cell carci-

noma,14 prostatic cancer,15 breast cancer,16 cervical cancer,17 

and so on. Colaluca et al indicated that Numb functions as 

a suppressor by inhibiting notch signaling and stabilizing 

p53 in breast cancer.16 However, the role and underlying 

mechanism of Numb in the tumorigenesis and progression 

of ovarian cancer are rarely investigated.

The p21-activated kinases (PAKs) family of serine/

threonine protein kinases has been found to be associ-

ated with cellular morphology, cytoskeletal organiza-

tion, and survival, and the members of PAKs have 

significant effect on various diseases including cancers 

and neurological disorders. The PAK1 is a downstream 

effector of Rac/Cdc42 GTPases that has been implicated 

in the process of cellular processes such as cytoskeletal 

reorganization, cell growth, motility, morphogenesis, and 

gene regulation.18,19 Mounting evidence reveals that migra-

tion potential and abnormal mitotic activity are increased 

by overexpression of PAK1 in many malignancies, such as 

carcinomas of breast, ovary, thyroid, and colon.20 In addi-

tion, Pak1 and p-Pak1 expression levels were associated 

with poor overall prognosis and enhanced ovarian cancer 

cell migration and invasion.21 Nevertheless, whether PAK1 

is able to interact with Numb in ovarian cancer remains to  

be explored.

Aberrant activation of the Wnt/β-catenin signaling path-

way has been reported to be involved in the initiation and 

progression of human cancer22 and has been proven to regu-

late a variety of biological processes, including cell prolif-

eration, apoptosis, invasion, and EMT in ovarian cancer.23,24 

Moreover, β-catenin is a key protein in the Wnt/β-catenin 

pathway that forms adherens junctions to affect EMT together 

with N-cadherin, E-cadherin, and Snail-1.25 Furthermore, 

given the established role of β-catenin binding to the Numb 

promoter and accelerated Numb expression in breast cancer 

cells,16 we examined the unknown relationship between 

Numb and β-catenin in ovarian cancer.

In the present study, we found that Numb was decreased 

and acted as a tumor suppressor by interaction with PAK1/ 

β-catenin in ovarian cancer. Furthermore, we explored the 

biological roles of Numb in ovarian cancer cells to participate 

in various pathological processes, including cell proliferation, 

migration, invasion, and EMT. Based on the above discus-

sion, our study elaborated a novel Numb/PAK1/β-catenin 

regulatory network in the development and progression of 

ovarian cancer, providing a potential biomarker and thera-

peutic target for ovarian cancer.

Materials and methods
Tissue samples
In the present study, specimens of 60 epithelial ovarian 

cancer tissues and 60 matched adjacent normal tissues were 

obtained from patients (age range 32–68 years) at the Luoy-

ang Central Hospital Affiliated to Zhengzhou University 

during March 2013 to August 2014. The ovarian cancer 

tissues were surgically resected, and the matched adjacent 

normal tissues were normal tissues from distance .2 cm 

from the cancer tissues. Tissue samples were collected and 

immediately snap-frozen in liquid nitrogen and stored at 

-80°C for further analysis. Tissues were divided according 

to TNM stage I–II and III–IV. All tissues were confirmed as 

ovarian cancer by pathological analysis, and the pathological 

types were also recorded. No patients had received chemo-

therapy or radiotherapy before the surgery. All patients gave 

their informed written consent for the use of these clinical 

materials for research purposes. The study was approved 

by the Luoyang Central Hospital Affiliated to Zhengzhou 

University Research Ethical Committee. All experiments 

were in accordance with the Declaration of Helsinki.

cell lines and culture
The human ovarian cancer cell lines 3AO, HEY, HO8910, 

SKOV3, and OVCAR3 cells, as well as normal ovarian 

ISOE80 cells, were purchased from American Type Cul-

ture Collection (Manassas, VA, USA). Ovarian cancer 

lines were maintained in RPMI-1640 medium (Thermo 

Fisher Scientific, Waltham, MA, USA) supplemented with 

10% FBS (Thermo Fisher Scientific) and 1% penicillin/

streptomycin (Thermo Fisher Scientific). Cells were cultured 

in a humidified atmosphere containing 5% CO
2
 at 37°C.

cell transfection
SKOV3 and OVCAR3 were transiently transfected with 

pcDNA3.1-Numb, pcDNA3.1-PAK1 plasmids using 

lipofectamine 2000 (Thermo Fisher Scientific) according 

to the manufacturer’s instructions. Numb siRNA26 and 

PAK1 siRNA27 were used as described previously. All 

siRNAs and plasmids were synthesized by GenePharma 

(Shanghai, China). siRNA sequences for Numb and 

PAK1 were as follows: si-Numb: 5′-CAGCCACUGAA 

CAAGCAGA-3′; si-PAK1: 5′-GAGTGTGGGCGATCC 

TAAGAAGAAA-3′.
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Quantitative reverse transcription-Pcr 
(qrT-Pcr)
Total RNA was extracted from clinical tissues or cultured 

cells using TRIzol reagent (Thermo Fisher Scientific) 

according to the manufacturer’s protocol. First-strand 

cDNA was obtained using reverse transcriptase kit (Takara, 

Otsu, Japan). qRT-PCR was performed using SYBR Green 

Real-time PCR Kit (TOYOBO Co. Ltd., Osaka, Japan) on 

a Bio-Rad Real-Time PCR instrument. The mRNA expres-

sion of Numb, PAK1, and β-catenin was standardized to 

control values of β-actin. The PCR primer sequences used 

for analyses were as follows: Numb: forward: 5′-AGGCC 

AGTCGTCCACATCA-3′ and reverse: 5′-GGTACTTAA 

CCGGGAAGCTACAT-3′; PAK1: forward: 5′-AGCA 

AAAGAGGCAACCAAGA-3′ and reverse: 5′-GACGGT 

TTCCAAGGATCAAA-3′; β-catenin: forward: 5′-GGAAG 

GGACAGTATCGTTTGTT-3′ and reverse: 5′-GCCTC 

AGCATCTACCAGCATAG-3′; E-cadherin: forward: 

5′-CTCCCAATACATCTCCCTTCAC-3′ and reverse: 

5′-CGCCTCCTTCTTCATCATAGTAA-3′; N-cadherin: 

forward: 5′-GGCATACACCATGCCATCTT-3′ and 

reverse :  5 ′ -GTGCATGAAGGACAGCCTCT-3 ′ ; 
Snail 1: forward: 5′-CAAGGAATACCTCAGCCTGG-3′ 
and reverse: 5′-ATTCACATCCAGCACATCCA-3′; β-actin: 

forward: 5′-TGGTATCGTGGAAGGACTCAT-3′ and 

reverse: 5′-TGGGTGTCGCTGTTGAAGTC-3′. The relative 

change in expression of mRNA was calculated by the 2-ΔΔCT 

method. All qRT-PCR experiments were replicated at least 

three times.

MTT assay
Cells were harvested and seeded at a density of 1×104 cells/

well into 96-well flat-bottomed plates in 100 μL of complete 

medium. The cells were then incubated overnight to allow 

cell attachment and recovery, after they were transfected with 

si-negative control or si-Numb as for 12, 24, 48, and 72 hours. 

Then, 30 μL MTT solution (5 mg/mL; Sigma-Aldrich Co., 

St Louis, MO, USA) was added into each well, and the cells 

were incubated for 4 hours at 37°C. Next, 150 μL DMSO was 

added into each well to dissolve the formazan crystal. The 

optical density was measured at 490 nm by spectrophotom-

etry using microplate reader (Bio-Tek, Winooski, VT, USA). 

Three independent experiments were performed in triplicate.

Transwell assay
The migratory and invasive abilities of ovarian cancer 

were evaluated by using transwell chambers (Corning 

Incorporated, Corning, NY, USA). For cell invasion assay, 

the membrane was coated with Matrigel (BD, Franklin 

Lakes, NJ, USA) to form a matrix barrier. Transfected cells 

were suspended in serum-free medium and added to the 

upper chamber. The matched lower chamber was filled with 

complete medium containing 10% FBS as a chemoattractant. 

After incubation for 24 hours, cells on the upper surface were 

removed with a cotton swab, and cells that had migrated to 

the bottom surface of the filter membrane were fixed with 

4% formaldehyde, then stained with 0.1% crystal violet 

(Cat # C-3886; Sigma-Aldrich Co.). The number of migration 

and invasion cells were photographed and counted in five 

randomly selected fields using a light microscope (Olympus 

BX61; Olympus Corporation, Tokyo, Japan) at a magnifi-

cation of ×100. Experiments were performed in triplicate.

Western blotting
Cells were harvested and lysed in RIPA buffer supplemented 

with protease inhibitors (50 mM Tris-HCl pH8, 50 mM NaCl, 

0.5% NP-40). The protein concentrations were determined by 

the Bio-Rad (Bradford) protein assay (Bio-Rad Laboratories 

Inc., Hercules, CA, USA), and a total of 50 μg of protein was 

separated by denaturing 12% SDS-PAGE and transferred 

to a PVDF membrane (EMD Millipore, Billerica, MA, 

USA). After blocking with 5% nonfat milk in a 0.1% TBST 

solution for 1 hour at room temperature, membranes were 

then incubated with rabbit polyclonal anti-Numb (1:1,000; 

Abcam, Cambridge, UK), anti-E-cadherin (1:1,000; Cell 

Signaling Technology Inc., Danvers, MA, USA), anti-N-

cadherin (1:1,000; Cell Signaling Technology), anti-Snail 

1 (1:1,000; Abcam), anti-β-catenin (1:1,000; Abcam), and 

anti-β-actin (1:10,000; Abcam) overnight at 4°C. After 

washing, blots were incubated with HRP-conjugated goat 

anti-rabbit secondary antibodies (1:2,000; Abcam) for 

1 hour. The immunoreactive proteins were visualized using 

ECL detection system (Pierce Biotechnology, Rockford, 

IL, USA). Protein levels were determined by normalization 

against β-actin. All experiments were conducted in triplicate.

immunohistochemistry assay
The clinical tissues were collected and fixed overnight in 4% 

paraformaldehyde, embedded in paraffin, and then sectioned 

at a width of 4 μm. The sections mounted on the glass slides 

were deparaffinized and rehydrated. For immunofluores-

cence assay, the sections were incubated with antibodies for 

anti-Numb antibody (1:500; Abcam), anti-PAK1 antibody 

(1:100; Abcam), and anti-β-catenin (1:500; Abcam) at 4°C 

overnight and then washed in PBS and incubated with the 

secondary HRP-conjugated anti-rabbit antibody was incubated 
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for 1 hour at room temperature, then stained with a DAB 

staining solution and counterstained with hematoxylin for 

2 minutes. The stained images were captured using an Olym-

pus IX73 microscope (Olympus Corporation, Tokyo, Japan). 

Immunohistochemistry scores were calculated by the product 

of staining intensity 0 (no staining), 1 (weak staining), 2 

(moderate staining), and 3 (strong staining) and the percentage 

scores of the stained area, 0 (none); 1 (,10%); 2 (10%–25%); 

3 (26%–50%); 4 (51%–75%); and 5 (.75%).

statistical analysis
The data were exhibited as mean ± SD of three independent 

experiments and processed using the Statistical Package 

for Social Sciences version 17.0 (SPSS 17.0; SPSS, Inc., 

Chicago, IL, USA). Student’s t-test was used to compare 

differences between the two groups. A value of P,0.05 was 

considered to be statistically significant. All experiments 

were performed at least three times.

Results
numb was downregulated while PaK1 
and β-catenin were upregulated in 
ovarian cancer tissues
To elucidate the expression pattern of Numb, immunohisto-

chemistry was used to estimate the expression of Numb in 

ovarian cancer tissues and matched adjacent normal tissues. 

As shown in Figure 1A, Numb expression was obviously 

reduced in ovarian cancer tissues compared to normal tis-

sues (P,0.05). However, PAK1 and β-catenin expression 

levels in ovarian cancer tissues were dramatically upregulated 

compared to normal tissues (P,0.05). Further qRT-PCR 

and Western blotting experiments verified the above results 

(P,0.05, Figure 1B). Moreover, we used qRT-PCR to see 

if the expression of Numb, PAK1, and β-catenin was associ-

ated with the TNM stage. Results showed that expression of 

Numb was significantly lower in tissues of TNM stage III–IV 

(n=13) than in tissues of TNM stage I–II (n=47), and the 

expression of PAK1 and β-catenin showed the opposite 

trend (P,0.05). Among the tissue samples, 36 cases were 

serous type, 20 cases were mucous type, and four cases were 

endometrioid type. However, the expression of Numb, PAK1, 

and β-catenin showed no significant difference in different 

pathological types (data not shown). Expression of Numb 

in different ovarian cancer cell lines was also determined. 

Results showed that Numb was significantly downregulated 

in all cancer cell lines (P,0.05, Figure 1C). As mentioned 

above, we suspected that Numb may be associated with 

PAK1 and β-catenin and can play a regulatory role in ovar-

ian cancer.

numb inhibited cell proliferation in 
ovarian cancer cell lines
To explore the influence of Numb on ovarian cancer cell 

lines, we conducted the MTT assays to measure cell prolif-

eration in both SKOV3 and OVCAR3 cell lines with loss-

of-function and gain-of-function assays. The transfection 

efficiency was detected by qRT-PCR as shown in Figure 2A, 

and the expression of Numb was obviously increased by 

transfection with pcDNA3.1-Numb vector and conversely 

decreased with transfection of si-Numb (P,0.05). MTT 

assay demonstrated that interference of Numb promoted the 

proliferation vitality of both SKOV3 and OVCAR3 cells in 

a time-dependent manner (P,0.05, Figure 2B). Meanwhile, 

opposite results were observed in cells with overexpressed 

Numb, indicating Numb could inhibit cell proliferation in 

ovarian cancer cell lines.

numb decreased the migration and 
invasion ability of ovarian cancer cell lines
To obtain deeper insights into the potential role of Numb for 

migration and invasion ability in ovarian cancer cell lines, 

we conducted transwell assay in SKOV3 and OVCAR3 cells 

with Numb depletion and Numb overexpression. As shown 

in Figure 3A, Numb knockdown could significantly increase 

the number of migrated and invaded cells of both SKOV3 and 

OVCAR3 cell lines (P,0.05). On the contrary, overexpress-

ing Numb could remarkably suppress migration and invasion 

abilities of both SKOV3 and OVCAR3 cell lines (P,0.05, 

Figure 3B), suggesting Numb could inhibit cell invasion and 

migration of ovarian cancer cell lines.

numb suppressed eMT in ovarian cancer 
cell lines
To further explore whether Numb could regulate EMT in 

ovarian cancer cell lines, the mRNA and protein expression 

levels of EMT markers were assessed by qRT-PCR and 

Western blotting. When Numb was overexpressed in both 

SKOV3 and OVCAR3 cell lines, the expression of mesenchy-

mal markers N-cadherin and Snail 1 was significantly attenu-

ated, and the epithelial marker E-cadherin was significantly 

upregulated, both in mRNA and protein levels (P,0.05, 

Figure 4A and B). In contrast, the mRNA and protein expres-

sion level of the mesenchymal markers N-cadherin and Snail 

1 were dramatically increased, and the epithelial maker 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3227

liang et al

E-cadherin was reduced when Numb was knocked down in 

both SKOV3 and OVCAR3 cell lines (P,0.05, Figure 4A 

and B). These results indicated that Numb could reverse EMT 

to MET in ovarian cancer cell lines.

numb regulated eMT through PaK1/ 
β-catenin in ovarian cancer cell lines
As shown in the above experimental results in Figure 1, 

based on the correlation of expression differences, it is 

Figure 1 numb was downregulated in ovarian cancer tissues. (A) representative ihc staining image of numb, PaK1, and β-catenin in ovarian cancer tissues and 
corresponding normal tissues and the ihc scores (all samples in A were serous type). (B) qrT-Pcr and Western blotting analysis of numb, PaK1, and β-catenin expression 
in ovarian cancer tissues and corresponding normal tissues (n=60), as well as expression of numb mrna in ovarian cancer patients with different TnM stages. all tissue 
samples were calculated and the representative Western blotting bands were shown. (C) expression of numb in different ovarian cancer cell lines by qrT-Pcr. Data were 
expressed as mean ± sD from three independent experiments. *P,0.05; ***P,0.001 represents statistical difference.
Abbreviations: Ohc, immunohistochemistry; qrT-Pcr, quantitative reverse transcription-Pcr.
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Figure 2 numb inhibited cell proliferation in ovarian cancer cell lines. (A) The expression level of numb was measured by qrT-Pcr in sKOV3 cells transfected with 
si-numb or pcDna3.1-numb, and growth curves were analyzed by MTT assay for 0, 12, 24, 48, and 72 hours. (B) The expression level of numb was measured by qrT-Pcr 
in OVcar3 cells transfected with si-numb or pcDna3.1-numb, and growth curves were analyzed by MTT assay for 0, 12, 24, 48, and 72 hours. Data were expressed as 
mean ± sD from three independent experiments. *P,0.05 and ***P,0.001 represent statistical difference.
Abbreviations: nc, negative control; qrT-Pcr, quantitative reverse transcription-Pcr.

β
β

β
β
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Figure 3 numb decreased the migration and invasion ability of ovarian cancer cell lines. (A) cell migration and invasion ability of sKOV3 cells transfected with si-numb 
or pcDna3.1-numb were determined by transwell assay. (B) cell migration and invasion ability of OVcar3 cells transfected with si-numb or pcDna3.1-numb were 
determined by transwell assay. Data were expressed as mean ± sD from three independent experiments. ***P,0.001 represents statistical difference.
Abbreviation: nc, negative control.

suggested that PAK1 and β-catenin may be involved in the 

mechanism of Numb regulation of EMT in ovarian cancer 

cell lines. To confirm this hypothesis, PAK1 was overex-

pressed or knocked down in both SKOV3 and OVCAR3 

cell lines and the cells’ invasion and migration were also 

determined. Results showed expression of β-catenin was 

significantly increased when PAK1 was overexpressed 

and was significantly decreased when PAK1 was inhibited 

(P,0.05, Figure 5A and B). Furthermore, both the migration 

and invasion abilities were significantly promoted in PAK1-

overexpressing cells while knocking down PAK1 yielded 

the opposite results (P,0.05, Figure 5C). These results sug-

gested Numb could regulate EMT through PAK1-mediated 

regulation of β-catenin in ovarian cancer cell lines.

Discussion
Recent studies have identified Numb has an anti-oncogene 

role in lung cancer, prostate cancer,28 endometrial cancer,26,29 

and breast cancer.30 Accumulating evidence indicated that 

Numb was found to stabilize p53 and inhibit Notch signal-

ing.26,31–34 Further analysis elucidated that Numb had been 

frequently downregulated in human breast cancer resulting 

in p53 inactivation and an aggressive disease course regula-

tion.30 In addition, it has been demonstrated that Numb cor-

relates with a worse survival in multiple independent lung 

and ovarian cancer datasets and prevents a complete EMT 

by modulating Notch signaling in lung cancer. Currently, the 

role and underlying mechanism of Numb in cell proliferation, 

migration, invasion, and EMT in ovarian cancer is largely 

unclear. In our study, Numb was significantly decreased in 

ovarian cancer tissues, and the decrease was even worse in 

tissues of TNM III–IV stages, which was in accordance with 

the above reports. We found that cell proliferation in ovarian 

cancer was obviously constrained in the gain-of-function 

experiment of Numb. Based on these facts, we concluded 

that Numb played a suppressor role in ovarian cancer.

EMT, with a positive relation to migration and inva-

sion, is a crucial factor for cancer progression and is 

featured by the loss of epithelial markers and the gain 

of mesenchymal markers.35 In the present study, we 

found that overexpression of Numb altered the expres-

sion of EMT markers, thus inhibiting ovarian cancer 
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cell migration and invasion. Accordingly, our data also 

validated that the increase in the expression of Numb sup-

pressed the expression of PAK1 and β-catenin.

β-catenin, which is located on human chromosome 3p21, 

plays a vital role in the classic Wnt signaling pathway.36 

In addition, β-catenin is increased in malignant cancers37 and 

has been demonstrated to regulate cell proliferation, differen-

tiation, and invasion and promote EMT in ovarian cancer.38 

There was evidence showing that PAK1 was interacted with 

β-catenin and that PAK1 directly phosphorylates β-catenin 

proteins and triggers β-catenin transcriptional activity.27,39,40 

Given the established role of β-catenin, we first explored 

whether Numb could regulate EMT through PAK1/β-catenin 

signaling. PAK1 promoted migration, invasion, and EMT, 

suggesting that Numb disrupted migration, invasion, and 

EMT through PAK1-mediated β-catenin signaling in ovarian 

cancer cell lines. However, whether Numb directly regulated 

PAK1 or it regulated PAK1 through other signaling pathways 

still need more studies to confirm.

In conclusion, Numb expression was downregulated 

while PAK1 and β-catenin were accelerated in ovarian 

cancer tissues and cells. Mechanically, we demonstrated 

Numb has an inhibitory effect on cell proliferation, migration, 

invasion, and EMT in ovarian cancer cell lines. In addition, 

Numb regulation of EMT could be through regulating PAK1/ 

β-catenin. Therefore, the potential role of Numb in ovarian 

cancer is first revealed, and it may provide novel insights 

into the treatment of ovarian cancer.

Figure 4 numb suppressed eMT in ovarian cancer cell lines. (A) The effect of numb on β-catenin and eMT markers (e-cadherin, n-cadherin and snail) protein expression 
levels in sKOV3 and OVcar3 cells was analyzed by Western blotting and the quantitative results were calculated. (B) The effect of numb on β-catenin and eMT markers 
(e-cadherin, n-cadherin and snail) mrna expression levels in sKOV3 and OVcar3 cells was analyzed by qrT-Pcr. Data were expressed as mean ± sD from three 
independent experiments. *P,0.05 represents statistical difference.
Abbreviations: eMT, epithelial–mesenchymal transition; nc, negative control; qrT-Pcr, quantitative reverse transcription-Pcr.
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Figure 5 numb regulated eMT through PaK1/β-catenin in ovarian cancer cell lines. (A) mrna expression of PaK1 and β-catenin in sKOV3 and OVcar3 cells transfected 
with si-PaK1 or pcDna3.1-PaK1 by qrT-Pcr. (B) Protein expression of PaK1 and β-catenin in sKOV3 and OVcar3 cells transfected with si-PaK1 or pcDna3.1-PaK1 
by Western blotting and the quantitative results. (C) Migration and invasion ability of sKOV3 and OVcar3 cells transfected with si-PaK1 or pcDna3.1-PaK1 by transwell 
assay. Data were expressed as mean ± sD from three independent experiments. ***P,0.001 represents statistical difference.
Abbreviations: nc, negative control; qrT-Pcr, quantitative reverse transcription-Pcr.
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Highlights
·	 Numb was significantly downregulated in ovarian cancer.

·	 Numb inhibited ovarian cancer cell proliferation.

·	 Numb inhibited ovarian cancer cell migration and 

invasion.

·	 Numb inhibited ovarian cancer cell EMT.

·	 Numb regulated PAK1/β-catenin signaling pathway in 

ovarian cancer.
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