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Objective: Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide.

Small nucleolar RNA host gene 6 (SNHG6) was reported to function as an oncogene in

a number of cancers. Here, we aimed to further explore the roles and molecular mechanism

of SNHG6 in CRC metastasis.

Methods: The expression levels of SNHG6, miR-26a, and enhancer of zeste homolog 2

(EZH2) mRNAwere assessed by quantification real-time PCR in CRC tissues and cell lines.

Western blot analysis was performed to determine the levels of E-cadherin, Snail, Vimentin,

N-cadherin, and EZH2. Cell migration and invasion capacities were detected by transwell

assay. Dual-luciferase reporter assay or RNA Immunoprecipitation assay was employed to

verify the interaction between SNHG6 and miR-26a, or EZH2 and miR-26a.

Results: Our data indicated that SNHG6 and EZH2 mRNA were upregulated, and miR-26a

was downregulated in CRC tissues and cell lines. SNHG6 knockdown suppressed the

migration, invasion, and epithelial-mesenchymal transition (EMT) of CRC cells. Moreover,

SNHG6 binded to miR-26a and repressed miR-26a expression. EZH2 was a direct target of

miR-26a, and it was regulated by SNHG6/miR-26a. MiR-26a inhibitor undermined the effect

of SNHG6 knockdown on cell migration, invasion, and EMT. Additionally, EZH2 antag-

onized the effect of miR-26a on cell migration, invasion, and EMT in CRC cells.

Conclusion: SNHG6 knockdown suppressed cell migration, invasion, and EMT at least

partly by sponging miR-26a and regulating EZH2 expression in CRC cells, providing

a strategy for blocking CRC metastasis.

Keywords: small nucleolar RNA host gene 6 (SNHG6), miR-26a, enhancer of zeste

homolog 2 (EZH2), epithelial-mesenchymal transition (EMT)

Introduction
Colorectal cancer (CRC), one of the most common malignancies, is a leading cause

of cancer-related deaths around the world.1 Although the development of diagnostic

and therapeutic methods has improved the survival rate of CRC patients, the

prognosis of patients with distant metastases is unfavorable.2 Therefore, a better

understanding of the molecular mechanism associated with metastasis in CRC is an

urgent need.

Long non-coding RNAs (lncRNAs) are defined as non-coding functional tran-

scripts of >200 nucleotides in length that are recognized as major players in

a multitude of pathways across species.3 Aberrant regulation of lncRNAs is demon-

strated to implicate in a variety of human diseases, including cancers.4 Small
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nucleolar RNA host gene 6 (SNHG6) was reported to

function as an oncogene in a number of cancers, including

hepatocellular carcinoma,5 gastric cancer,6 glioma,7 and

lung adenocarcinoma.8 SNHG6 knockdown was con-

firmed to repress the migration and epithelial-

mesenchymal transition (EMT) of glioma cells,7 lung

adenocarcinoma,8 and gastric cancer cells.9 Additionally,

upregulation of SNHG6 was associated with poor prog-

nosis of CRC patients.10 SNHG6 enhanced the prolifera-

tion of CRC cells through directly inhibiting p21

expression by recruiting enhancer of zeste homolog 2

(EZH2) to the p21 promoter.11 Moreover, SNHG6 seques-

tered miR-760 to promote CRC progression by regulating

FOXC1, highlighting its role as a potential therapeutic

target for CRC.12 Hence, in the present study, we aimed

to further explore the roles and molecular mechanism of

SNHG6 in CRC metastasis.

MicroRNAs (miRNAs), a class of small non-coding

RNAs of 19–23 nucleotides, act as a negative regulator

of gene expression by binding to the 3ʹ-untranslated region

of their target mRNAs.13 Deregulation of miRNAs is

involved in multiple biological processes in cancer, includ-

ing metastasis.14 MiR-26a has been reported as a tumor

suppressor miRNA in CRC,15 osteosarcoma,16 and hepa-

tocellular carcinoma.17 Additionally, previous studies

demonstrated that EZH2 played an important role in the

progression and metastasis of CRC.18,19 In the present

study, our data indicated that SNHG6 and EZH2 mRNA

were upregulated, and miR-26a was downregulated in

CRC tissues and cell lines. Furthermore, SNHG6 knock-

down suppressed cell migration, invasion, and EMT by

sponging miR-26a and regulating EZH2 expression in

CRC cells. Collectively, our data suggested the SNHG6

might serve as a potential strategy for blocking CRC

metastasis.

Materials and methods
Clinical specimens and cell culture
Twenty-nine pairs of CRC tissues and corresponding non-

cancerous tissues were obtained from CRC patients who

had undergone surgical resection at Yinzhou People’s

Hospital between March 2014 and May 2016. All clinical

specimens were stored at −80°C until RNA extraction. No

conventional therapy was performed at pre-operation.

Prior written informed consent from all patients and

Institutional Review Board approval was obtained from

the Ethics Committee of Yinzhou People’s Hospital in

accordance with the ethical guidelines of the Declaration

of Helsinki. Human CRC cell lines (SW480, SW620,

HCT8, and HT-29) and human normal colon mucosal

epithelial cell line (NCM460), purchased from American

Type Culture Collection (ATCC, Manassas, VA, USA),

were cultured in DMEM medium (Invitrogen, Karlsruhe,

Germany) containing 10% fetal bovine serum (FBS,

Biochrom AG, Berlin, Germany), 1% penicillin/strepto-

mycin (Invitrogen) at 37°C in a humidified atmosphere

of 5% CO2.

Cell transfection
The modified miR-26a mimics, miRNA inhibitors (anti-

miR-26a), siRNA targeting SNHG6 (si-SNHG6), and cor-

responding negative controls were chemically enhanced

oligonucleotides designed and synthetized by Applied

Biosystems (Foster city, CA, USA). SNHG6 and EZH2

overexpression plasmids (Vector-SNHG6 and Vector-EZH

2) also were chemically synthetized by Applied

Biosystems, and Vector was used as a control. Cells were

transfected with 100 mM of the indicated oligonucleotide

or 50 ng of plasmid using Lipofectamine 2000 transfection

reagent (Invitrogen) according to the protocols of

manufacturers.

Quantification real-time PCR (qRT-PCR)
The expression levels of SNHG6, EZH2 mRNA, miR-26a,

and miR-16 were examined by the qRT-PCR assay. Briefly,

total RNA from tissues and cells was extracted using Trizol

(Invitrogen). Then, the integrity and quality of RNA extracts

were determined using an Agilent BioAnalyzer 2100 (Agilent,

Palo Alto, CA, USA). For SNHG6 and EZH2 mRNA, cDNA

was reversely transcribed from RNA extracts with M-MLV

reverse transcriptase (Promega, Madison, WI, USA) and qRT-

PCRwas performedwith a LightCycler 480 ProbesMaster Kit

(Roche Diagnostics, Mannheim, Germany) on a LightCycler

480 instrument (Roche Diagnostics). The expression levels of

SNHG6 and EZH2 mRNA were calculated by the 2−ΔΔCT

method with GAPDH as an endogenous control. For miR-

26a and miR-16, miScript II RT kit (Qiagen, Hilden,

Germany), miScript Primer Assays (Qiagen), and miScript

SYBR Green PCR kit (Qiagen) were used. The U6 small

nuclear RNA was used as an internal control. Primers used

for quantitative PCR were listed as follows: SNHG6: 5ʹ-ATA

CTTCTGCTTCGTTACCT-3ʹ (forward) and 5ʹ-CTCATT

TTCATCATTTGCT-3ʹ (reverse); EZH2 mRNA: 5ʹ-TTGTTG

GCGAAGCGTGTAAAATC-3ʹ (forward) and 5ʹ-TCCCTA

GTCCCGCGCAATGAGC-3ʹ (reverse); GAPDH: 5ʹ-

Zhang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:123350

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


TATGACTCTACCCACGGCAAG-3ʹ (forward) and 5ʹ-

TACTCAGCACCAGCATCACC-3ʹ (reverse).

Transwell assay of migration and invasion
For migration assay, 1.0×105 cells resuspended in 200 µL

of serum-free medium were seeded into the upper chamber

of transwell plates in a 24-well format with 8 µm pore size

(BD Falcon, Franklin Lakes, NJ, USA). For invasion

assay, 200 µL of serum-free medium containing 1.0×105

cells was added into the upper chamber with Matrigel-

coated membrance (BD Falcon). In both assays, 600 µL

of medium containing 10% FBS was added to the lower

chamber as a chemoattractant. Twenty-four hours later,

migrated or invaded cells were fixed with 90% methanol

(Sigma–Aldrich, St. Louis, MO, USA) and stained with

0.1% crystal violet (Sigma–Aldrich). Images were cap-

tured, and the cells numbers were determined by Image

J software (National Institutes of Health, Bethesda,

Maryland, USA) under a microscope (Leica, Wetzlar,

Germany) in random fields.

Western blot
Cells were lysed in lysis buffer comprised 50 mM Tris-HCl,

pH=7.5, 0.1% SDS, 150 mM NaCl, 1% NP-40, 0.5%

sodium-deoxycholate and protease inhibitor cocktail

(Roche Diagnostics). The concentration of protein extracts

was measured with the BCA Protein Assay Kit (Thermo

Fisher Scientific, Waltham, MA, USA). Twenty micrograms

of proteins was separated by gel electrophoresis on 10% gels,

and then transferred to PVDF membranes (Roche

Diagnostics). Blocked by 5% non-fat milk in Tween-20, the

membranes were blotted with anti-E-cadherin (1:1,000, Cell

Signaling Technology, Danvers, MA, USA), anti-Snail

(1:1,000, Cell Signaling Technology), anti-Vimentin (1:500,

Abcam, Cambridge, UK) and anti-N-cadherin (1:500,

Abcam), anti-EZH2 (1:1,000, Cell Signaling Technology),

and anti-β-actin (1:1,000, Cell Signaling Technology).

Following the incubation with horseradish peroxidase-

conjugated secondary antibodies (1:500, Abcam), the protein

bands were visualized by using the enhanced chemilumines-

cence system (GE Healthcare, Chicago, IN, USA).

Dual-luciferase reporter assay
Online software Starbase v2.0 was performed to predict the

target miRNAs of SNHG6. The wild-type SNHG6 reporter

plasmid containing the potential binding sites of miR-26a

(SNHG6-WT) and its mutant-type SNHG6-MUT was

constructed by Applied Biosystems. For the luciferase

assay, SNHG6-WT or SNHG6-MUT constructs were transi-

ently transfected into SW480 and SW620 cells together with

miR-26a mimics or miR-NC mimics. After 36 hrs post-

transfection, the relative luciferase activities were deter-

mined using a Dual Luciferase Assay System (Promega).

RNA immunoprecipitation (RIP) assay
RIP assay was performed to examine the potentially endo-

genous interaction between SNHG6 and miR-26a, or

EZH2 and miR-26a using Magna RIPTM RNA

Immunoprecipitation Kit (Millipore, Bedford, MA,

USA). Briefly, cells were transfected with miR-26a

mimics, Vector-SNHG6, Vector-EZH2, or respective con-

trols, and then were lysed in lysis buffer. Subsequently,

cell lysates were incubated with anti-Ago2 (Abcam) or

anti-IgG (Abcam) and protein A/G magnetic beads. The

magnetic bead-bound complexes were purified by Dnase

and Proteinase K (Applied Biosystems). Lastly, qRT-PCR

assays were used to determine the relative enrichment of

SNHG6, EZH2 mRNA, miR-26a, and miR-16 with

a LightCycler 480 Probes Master Kit on a LightCycler

480 instrument.

Statistical analysis
All data were analyzed using SPSS 19.0 software (SPSS

Inc., Chicago, IL, USA) and were presented as mean ±

standard deviation (SD) of three independent experiments.

The differences between the two groups were compared by

the Student’s t-test. The one-way variance analysis

(ANOVA) was used to analyze the differences between

multiple groups. P-values less than 0.05 were considered

statistically significant. *P<0.05, **P<0.01 or ***P<0.001.

Results
Upregulation of SNHG6 in CRC tissues

and cell lines
Firstly, we detected the expression levels of SNHG6 in

CRC tissues and adjacent noncancerous tissues by qRT-

PCR. The data revealed a significant upregulation of

SNHG6 expression in CRC tissues compared to normal

control (Figure 1A). Then, SNHG6 expression was

assessed in CRC cell lines. Results indicated that except

HCT8 cells, SNHG6 expression was highly elevated in

CRC cell lines (SW480, SW620, and HT-29) compared

with normal cell line NCM460 (Figure 1B).
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SNHG6 knockdown resulted in

decreased migration, invasion and EMTof

SW480 and SW620 cells
Then, loss-of-function experiments were performed to

explore the function of SNHG6 on CRC metastasis by trans-

fecting with si-SNHG6 into SW480 and SW620 cells. As

shown in Figure 2A, si-SNHG6 transfection in SW480 and

SW620 cells led to a drastic reduction of SNHG6 expression

compared with negative control. Subsequently, transwell

assays demonstrated that compared to respective controls,

SNHG6 knockdown significantly suppressed the migration

and invasion in SW480 and SW620 cells (Figure 2B and C).

Further, western blot results revealed that SNHG6 knock-

down resulted in a decrease of Snail, Vimentin, and

N-cadherin levels, as well as an increase of E-cadherin

expression, indicating an inhibition of EMT in SW480 and

SW620 cells (Figure 2D–F).

SNHG6 directly binded to miR-26a in

SW480 and SW620 cells
To further explore the molecular mechanism by which

SNHG6 knockdown inhibited the migration, invasion, and

EMT of CRC cells, online software Starbase v2.0 was

performed to predict the target miRNAs of SNHG6. Of inter-

est, there existed several potential complementary sites

between SNHG6 and miR-26a (Figure 3A). To confirm the

prediction, dual-luciferase reporter assays were performed by

transfecting with SNHG6-WT or SNHG6-MUT constructs

into SW480 and SW620 cells with miR-26a mimics. As

shown in Figure 3B, in comparison to control, transfection

ofmiR-26mimics resulted in about 3.25-fold increase of miR-

26 expression in SW480 cells, and 4.23-fold increase in

SW620 cells. Moreover, these results showed that compared

with homologous control, miR-26a overexpression strikingly

attenuated the luciferase activity of SNHG6-WT constructs,

while it failed to affect the luciferase activity of SNHG6-MUT

constructs (Figure 3C and 3D). RIP assay was used to exam-

ine the potentially endogenous interaction between SNHG6

and miR-26a. These data presented that SNHG6 was substan-

tially enriched by miR-26a overexpression with anti-Ago2 in

SW480 and SW620 cells (Figure 3E and 3F). Also, the

association between SNHG6 and miR-26a in SW480 and

SW620 cells was supported in Figure S1A and B.

miR-26a expression was downregulated

in CRC and was suppressed by SNHG6
Further, we observed miR-26a expression in CRC tissues

and cell lines. qRT-PCR results presented that compared to

the corresponding counterpart, miR-26a expression was

highly downregulated in CRC tissues and cell lines

(Figure 4A and B). Moreover, miR-26a expression was

inversely correlated with SNHG6 level in CRC tissues

(Figure 4C). Additionally, SW480 and SW620 cells were

transfected with Vector-SNHG6 or si-SNHG6, followed

by the detection of the miR-26a level. Results revealed

that compared to their counterpart, miR-26a level was

significantly decreased by Vector-SNHG6 introduction,

while it was markedly increased in the presence of si-

SNHG6 (Figure 4D).

miR-26a inhibitor undermined the effect of

SNHG6 knockdown on migration, invasion,

and EMTof SW480 and SW620 cells
To provide further mechanistic insight into the link

between SNHG6 and miR-26a on CRC metastasis,

SW480, and SW620 cells were cotransfected with si-
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SNHG6 and anti-miR-26a. Transwell assays revealed that

transfection of anti-miR-26a evidently antagonized si-

SNHG6-mediated anti-migration and anti-invasion effects

in SW480 and SW620 cells (Figure 5A–D). In parallel, the

anti-EMT effect of si-SNHG6 was significantly abolished

by anti-miR-26a transfection in SW480 and SW620 cells

(Figure 5E and F).

EZH2 was a direct target of miR-26a
Next, online software Starbase v2.0 was used to search for

the targets of miR-26a. The predicted data presented that

EZH2 was a potential target of miR-26a (Figure 6A). Thus,

RIP assay was performed by transfecting with miR-26a

mimics into SW480 and SW620 cells. Results presented

that compared to negative control, the introduction of miR-

26a mimics resulted in an abundant enrichment of EZH2

mRNA in SW480 and SW620 cells (Figure 6B). Moreover,

the association between EZH2 and miR-26a was confirmed

in Figure S1C and D. Further, we determined whether miR-

26a regulated EZH2 expression in CRC cells. As expect,

EZH2 expression was significantly reduced by – miR-26a

mimics transfection, while it was highly elevated when

introduced with anti-miR-26a in SW480 and SW620 cells

(Figure 6C).

Subsequently, EZH2 mRNA expression was determined

in CRC tissues and adjacent noncancerous tissues, and CRC

cell lines and NCM460 cells. These data revealed

a significant upregulation of EZH2 mRNA expression in
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CRC tissues and cell lines compared to their counterparts

(Figure 6D and E).

EZH2 antagonized the effect of miR-26a

on cell migration, invasion, and EMT, and

it was regulated by SNHG6/miR-26a
Lastly, we investigated whether miR-26a exerting

a regulatory function on CRC metastasis was mediated by

EZH2. SW480 and SW620 cells were transfected with miR-

26a mimics alone or together with Vector-EZH2. Transwell

results indicated that transfection of miR-26a mimics in

SW480 and SW620 cells led to a dramatical suppression of

the migration and invasion compared to their counterparts

(Figure 7A–D). Moreover, miR-26a mimics transfection sig-

nificantly inhibited the EMT of SW480 and SW620 cells

(Figure 7E and F). Further, our results presented that Vector-

EZH2 transfection antagonized the effect of miR-26a on

migration, invasion, and EMT in SW480 and SW620 cells

(Figure 7A–F).

Further, we observed how did SNHG6/miR-26a affect

EZH2 expression in CRC cells. These results revealed that

compared with respective controls, EZH2 expression was

strikingly increased by Vector-SNHG6 transfection in

SW480 cells, while it was significantly decreased in the

presence of si-SNHG6 in SW620 cells (Figure 7G and

7H). Additionally, the regulatory effect of SNHG6 on

EZH2 expression was abrogated in response to the altera-

tion of miR-26a expression in SW480 and SW620 cells

(Figure 7G and 7H).

Discussion
CRC is a leading cause of tumor-related deaths worldwide,

with the majority attributable to distant metastasis.20

Increasing evidences have suggested that some lncRNAs

play promotional roles in CRC metastasis. For example,
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upregulation of TUG1 enhanced the migration and inva-

sion of CRC cells in vitro and promoted their metastasis

in vivo.21 LncRNA-ATB overexpression was tightly asso-

ciated with lymph node metastasis and hematogenous

metastasis of CRC.22 Also, 91H was verified as an inde-

pendent distant metastasis indicator and 91H silencing

repressed the migration and invasion capacities of CRC

cells.23

Previous studies demonstrated that the dysregulation of

SNHG6 was closely involved in various cancers metasta-

sis. For instance, Chang et al,5 reported that upregulation

of SNHG6 accelerated tumor growth and metastasis

through inducing EMT in hepatocellular carcinoma.

Wang et al,24 verified that SNHG6 overexpression

enhanced the migration and invasion via miR-125b/

NUAK1 axis, and promoted EMT by upregulating

Snail1/2 expression in bladder cancer cells. Yan and

colleague9 found that SNHG6 overexpression was asso-

ciated with invasion depth, distant metastasis, and TNM

stage, and SNHG6 knockdown inhibited EMT processes

of gastric cancer cells. In the present study, our data

indicated that SNHG6 was upregulated in CRC tissues

and cells, consistent with previous studies.10,11 We also

found that SNHG6 knockdown repressed the migration

and invasion of CRC cells, similar to a recent

document.12 Moreover, we firstly manifested that

SNHG6 knockdown resulted in decreased EMT in CRC

cells. All these results hinted that SNHG6 might contribute

to the metastasis of CRC.

The competing endogenous RNA hypothesis proposed

that lncRNA might act as natural miRNA sponges to

inhibit intracellular miRNA function.25 Thus, online soft-

ware Starbase v2.0 was performed to predict the target

miRNAs of SNHG6. Among these candidates, miR-26a

was selected for further research due to its role as a tumor

suppressor miRNA in various cancers, such as nasophar-

yngeal carcinoma,26 breast cancer,27 and gastric cancer.28

Moreover, downregulation of miR-26a was associated

with lymph node metastasis and miR-26a repressed the

metastasis in gastric cancer.28 MiR-26a was also demon-

strated to function as an anti-metastasis miRNA in naso-

pharyngeal carcinoma,29 triple negative breast cancer30,

and hepatocellular carcinoma.31 Additionally, miR-26a

repressed CRC progression by hindering the binding of

hnRNP A1-CDK6 mRNA and inducing apoptosis.32 High

expression of miR-26a led to an inhibition of migration

behavior of CRC cells and fucosyltransferase 4 expression,

a protein associated with invasion and metastatic proper-

ties of CRC.15 Further, we first confirmed that SNHG6

binded to miR-26a and repressed miR-26a expression in
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CRC cells. Our data also indicated a significant down-

regulation of miR-26a expression in CRC tissues and

cells, in accordance with former work.15 Furthermore, we

validated that SNHG6 knockdown exerted its anti-

migration, anti-invasion, and anti-EMT effects through

sponging miR-26a in CRC cells.

Then, online software Starbase v2.0 was used to search

for the targets of miR-26a. Among these candidates, EZH2

was chosen for follow-up experiments because it played

vital roles in the development, progression, and metastasis

of CRC.18,19,33 Moreover, EZH2 upregulation was a mark

of advanced and metastasis tumors including breast and

prostate cancer.34,35 In addition, EZH2 overexpression

epigenetically silenced a number of miRNAs, and thus

negatively regulated the metastasis of hepatocellular

carcinoma.36 EZH2 depletion induced by H19 promoted

bladder cancer metastasis via inhibition of E-cadherin

expression.37 In this study, we verified that EZH2 was

upregulated in CRC tissues and cell lines. Also, we man-

ifested that EZH2 was a direct target of miR-26a in CRC

cells, which was consistent with previous reports.29,38

Moreover, EZH2 antagonized the effect of miR-26a on

cell migration, invasion, and EMT, and it was regulated

by SNHG6/miR-26a in CRC cells.

Conclusion
In conclusion, our data indicated that SNHG6 knockdown

repressed the migration, invasion, and EMT at least partly

by sponging miR-26a and regulating EZH2 expression in

CRC cells. Target SNHG6 might be a potential strategy for

blocking CRC metastasis.

Ethical statement
Prior written informed consent from all patients and

Institutional Review Board approval was obtained at

Yinzhou People’s Hospital.
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Figure S1 SNHG6 and EZH2 associated with miR-26a. SW480 (A) and SW620 (B) cells were transfected with Vector or Vector-SNHG6, followed by the determination of

miR-26a and miR-16 enrichment levels with anti-Ago2 or anti-IgG. The relative enrichment of miR-26a and miR-16 was detected in Vector- or Vector-SNHG6-transfected

SW480 (C) and SW620 (D) cells with anti-Ago2 or anti-IgG.
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