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Background: High tumor mutation burden (TMB) is an emerging selection biomarker for

immune checkpoint blockade in tumors such as melanoma and non-small cell lung cancer.

TMB is typically calculated from whole genome sequencing or whole exome sequencing

(WES) data. Recently, clinical trials showed that TMB can also be estimated from targeted

sequencing of a panel of only a few hundred genes of interest, which can be performed at a high

depth for clinical applications.

Materials and methods: In this study, we systematically investigated the distribution of

TMB and preferences at the gene and mutation level, as well as the correlation between TMB

calculated by WES and panel sequencing data using somatic mutation data from 15 cancer

types from The Cancer Genome Atlas (TCGA).

Results: We proposed a pan-cancer TMB panel and demonstrated that it had a higher

correlation with WES than other panels. Our panel could serve as a reference data-set for

TMB-oriented panel design to identify patients for immunotherapy.
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Introduction
Immunotherapy has profoundly changed cancer treatment, providing durable ben-

efits across a wide range of cancer types once considered untreatable.1–7 To date,

more than 1,600 clinical trials on PD-1/PD-L1 blockade have been registered in

clinicaltrials.gov. Patients with advanced non-small cell lung cancer (NSCLC)

treated with nivolumab (Opdivo), an anti-PD-1 monoclonal antibody checkpoint

inhibitor, achieved a five-year overall survival (OS) rate of 16%, comparing with an

OS of 4% with standard-of-care chemotherapy.8 However, patient response rates

remain relatively low at 15–40%,9 indicating a need for effective biomarkers to

identify patients who are likely to respond to PD-1/PD-L1 blockade.

Many studies have attempted to identify reliable biomarkers in patients most

likely to benefit from immune checkpoint blockade. Immunohistochemistry (IHC)

for PD-L1 protein expression was the first diagnostic biomarker approved by the

FDA for PD-1/PD-L1 treatment. However, the high false-negative rate and lack of

standardized procedures mean that this assay is still far from being an ideal

biomarker for immunotherapy response prediction.10,11 In recent years, some pro-

gress has been made in the discovery of multiple genome stability-related biomar-

kers that correlate highly with the response of immunotherapy in multiple cancer

types.1,6,7,9,12–14 These include tumor mutation burden (TMB) or tumor mutation

load, neoantigen burden, DNA mismatch repair deficiency, and high microsatellite

instability. Of these, TMB is most robust, effective and clinical verifiable biomarker
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in multiple cancer types.9,12,15,16 Previous studies in small-

cell lung cancer and NSCLC found a remarkable associa-

tion between TMB values and the production of neo-

antigen peptides, thought to be highly correlated with

tumor immune response.17,18 Moreover, the clinical trial

CheckMate-032 study showed that TMB level has strong

distinguishing power in both Nivolumab single agent treat-

ment and Nivolumab plus Ipilimumab combination

therapy.19,20

TMB of a tumor sample is calculated by the number of

non-synonymous somatic mutations (single nucleotide

variants and small insertions/deletions) per mega-base in

coding regions.21 TMB represents both the stability level

of the tumor genome and heterogeneity of the tumor

micro-environment. However, methods to calculate TMB

differ greatly in scientific research and clinical practice.

Usually, whole genome sequencing, WES and panel

sequencing are used to calculate TMB, with various

approaches to filter somatic mutations. In research, the

most common method is WES, which sequences only the

coding regions of the genome, with average coverage of

120X to 150X. However, in clinical application, some

studies use panel sequencing to estimate TMB.22

Although only a small number of genes (about 300–500)

are covered, gene panel sequences can identify rare

somatic mutations because of the higher sequencing

depth compared to WES. For example, the FDA recently

approved two cancer-related genes panels, FoundationOne

CDx (F1CDx) and MSK-IMPACT.11,21 F1CDx adopts

a tumor-only sequencing strategy while MSK-IMPACT

requires sequencing of both the tumor and its matched

normal sample. In F1CDx, synonymous mutations are

counted while hotspot driver mutations are excluded

when calculating TMB. With MSK-IMPACT, TMB is

calculated with similar filtering criteria to those used in

WES. In addition to these two panels, there are also other

large gene panels from different institutes that approximate

TMB, with the size of the panel another important factor

influencing TMB approximation.

Further efforts are still needed for more accurate TMB

approximation from targeted sequencing data of cancer-

related gene panels. In this work, we attempted to investi-

gate the TMB distributions in WES level across different

cancer types using WES data from the TCGA data-set. We

studied frequently mutated genes and hotspot mutations and

their associations with TMB.We also examined the correla-

tion between TMB approximation from F1CDX, MSK-

IMPACT, their union panel (F1CDX+MSK) and WES.

Furthermore, based on hotspot-mutated gene sets in differ-

ent cancers, we proposed an optimized pan-cancer panel for

better TMB estimation. This panel could serve as

a reference data-set for gene selection in TMB-oriented

panels designed for immunotherapy and other clinical

applications, such as targeted therapy for solid tumors.

Material and methods
Test data-set
VCF files of somatic mutations from WES sequencing

data called by Mutect2 for 15 different cancer types were

downloaded from the TCGA database (https://portal.gdc.

cancer.gov/projects). The data-set contained a total of

6,625 samples, of which 567 samples are lung adenocar-

cinoma (LUAD, 567), lung squamous cell carcinoma

(LUSC, 492), bladder urothelial carcinoma (BLCA, 412),

colon adenocarcinoma (COAD, 399), breast invasive car-

cinoma (BRCA, 986), skin cutaneous melanoma (SKCM,

467), stomach adenocarcinoma (STAD, 438), kidney renal

papillary cell carcinoma (KIRC, 281), liver hepatocellular

carcinoma (LIHC, 364), glioblastoma multiforme (GBM,

393), uterine corpus endometrial carcinoma (UCEC, 530),

ovarian serous cystadenocarcinoma (OV, 530), prostate

adenocarcinoma (PRAD, 498), esophageal carcinoma

(ESCA, 184) and pancreatic adenocarcinoma (PAAD,

178). For this analysis, we used these somatic mutations

as raw data to evaluate the correlation between TMB

estimated by cancer-related genes panels FoundationOne

CDx (F1CDx, 315 genes), MSK-IMPACT (468 genes),

union set of F1CDx and MSK-IMPACT (F1CDx+MSK,

525 genes) and WES. The list of oncogenes and suppres-

sor genes was obtained from the Oncokb database (http://

oncokb.org/) and Cosmic (https://cancer.sanger.ac.uk/cos

mic), which are manually curated.

TMB calculation
TMB was defined as the number of somatic mutations in the

coding region per megabase, including single nucleotide var-

iants (SNVs) and small INDELs (insertions and deletions,

usually less than 20 bases). However, the means to determine

reliable somatic codingmutations for TMBcalculationwas not

trivial. In the F1CDx approach, synonymous mutations were

included. However, stop-gain mutations in tumor suppressor

genes and hotspot driver mutations were not included in order

to reduce bias due to enrichment of cancer-related genes in the

F1CDx panel. Here, we followed the F1CDx approach to

calculate the TMB for our panel, defining the cutoff values as
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TMB-high (≥20 mutations/Mb), TMB-medium (<20 muta-

tions/Mb ≥10 mutations/Mb) and TMB-low (<10 mutations/

Mb). Others filtering parameters of somatic mutations identi-

fied by WES for TMB calculation were a mutated allele

frequency greater than 5% and a sequence depth greater than

20X in tumor samples greater or 10X in normal samples.

Pan-cancer TMB panel
Genes with a high mutation frequency in cancer patients

were selected for a pan-cancer panel to estimate TMB. We

calculated the proportion of patient samples from 15 differ-

ent cancers with mutations in each gene. For each cancer,

genes were sorted in descending order of the previous

proportion and the cumulative value of the proportion was

calculated. Based on a cumulative value of 30%, we

selected genes from all 15 cancers and added genes appear-

ing in more than 10 cancers to the pan-cancer TMB panel.

In total, 524 genes were identified and included in the panel.

Improved correlation analysis
As TMB calculation from panels and WES both use somatic

mutations from TCGA samples, a simple correlation analysis

might cause “over-fitting”. To avoid this problem, we further

trained a linear regressionmodel on a set (approximately 80%)

of randomly selected samples from TCGA for every cancer.

The remaining samples were used as the test data-set. During

the training process, we fit linear regression models as WES

TMB = a + b * Panel TMB for 15 cancers. The purpose of

these models was to calculate the predicted TMB for samples

in the test data-set. In this way, we obtained the correlation

between predicted TMB and real TMB. By comparing the

correlation between panels andWES, performance of different

panels and the pan-cancer TMB panel was evaluated.

Results
TMB distribution in WES level
We first examined the distribution of TMB at the WES level

for each cancer type as the somatic mutations were called

from WES data in the TCGA data-set. Based on the WES

TMB distribution results shown in Figure 1A and B, we

found that TMB distributions were very different in different

cancer types. For example, SKCM had the highest TMB

level, with the third quartile reaching 20 mutation/Mb (the

threshold for TMB-high samples in the F1CDx study23).

Using this threshold, 530 of 6,625 (7.2%) samples were

identified as TMB-high. In BLCA, COAD, LUAD, LUSC,

SKCM, STAD and UCEC, the percentage of TMB-high

samples ranged from 5–30%. However, the percentage of

TMB-high samples in the other eight cancer types (BRCA,

KIRC, LIHC, GBM, OV, PRAD, USCA and PAAD) were

very low (0–4%). Though KIRC and LIHC had low TMB

distributions, a relatively high objective response rate to

immunotherapy for these two cancers were still observed.9

These results indicated that different cancer types have dif-

ferent TMB distribution level, and that a simple cutoff value

for TMB-high samples (defined here as 20 mutations/Mb) is

not suitable in predict efficacy of immunotherapy in every

solid tumor type. For cancers with low TMB distributions,

more clinical trials are needed to confirm TMB as a good

marker, and a suitable TMB cutoff must be determined using

a large number of patient samples with known corresponding

clinical response results to immunotherapy.

Top mutated genes in WES level
The top 20 most commonly mutated genes in each cancer

were calculated and shown in Figure S1. The gene USH2A,

TTN, TP53, SYNE1, RYR2, MUC16, CSMD3 showed

highly mutation frequencies in at least ten cancer types. The

APC gene had the highest mutation frequencies (270/399) in

COAD and BRAF was most frequently mutated (228/467) in

the SKCM than the other cancer type. Some well-established

cancer-associated genes, such as PI3KCA and TP53, were

frequently mutated in most cancer types. For example, the

mutation ratio for PI3KCA in seven cancer types ranged from

2.4–42%; for TP53, 9.2–64.0%. For PTEN, the mutation ratio

in the same seven cancer types was relatively low for most

cancer types, starting from 1.25%, but reaching 50.9% in

UCEC. Moreover, the top mutated genes in different TMB

level data-set (TMB-high, TMB-medium and TMB-low)

were interesting as well. However, the number of samples

with high TMB in BRCA(29/986), KIRC(1/281), LIHC(10/

364), GBM(28/393), OV(20/530), PRAD(4/498), ESCA(7/

184) and PAAD(2/178) were relatively low (Figure 1).

Thus, we only calculated the top 20 mutated genes in the

other seven cancer types (BLCA, COAD, LUAD, LUSC,

SKCM, STAD and UCEC) from three data-sets: TMB-high,

TMB-medium and TMB-low samples. Comparing the results

in these three data-sets ( Figure S1), we found that the top

genes in these three data-sets were different for every cancer

and the impact of these genes on TMB approximation was

different. Figure 2 shows the number of samples with muta-

tions in nine representative genes in LUAD (Figure 2A) and

SKCM (Figure 2B). TP53, EGFR, PIC3CA and KRAS were

often mutated in TMB-low samples in LUAD. Conversely,

these genes were mutated in TMB-high samples in SKCM.
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Figure 1 Tumor mutation burden (TMB) distribution in whole exome sequencing (WES) level. (A) The histogram plots show the frequency of TMB high, medium and low in

WES level (B) Violin plots show the distribution of the TMB for 15 tumor types in WES level.

Abbreviations: LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma ; BLCA, bladder urothelial carcinoma; COAD, colon adenocarcinoma; BRCA, breast

invasive carcer; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; KIRC, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; GBM,

glioblastoma multiforme; UCEC, uterine corpus endometrial carcinoma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; ESCA, esophageal

carcinoma; PAAD, pancreatic adenocarcinoma.

Figure 2 The mutated frequency of 9 genes in WES level for data-sets of all samples, TMB-high samples, TMB-medium samples and TMB-low samples. (A) LUAD. (B) SKCM.

Abbreviations: LUAD, lung adenocarcinoma; SKCM, skin cutaneous melanoma; TMB, tumor mutation burden; WES, whole exome sequencing.
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Interestingly, TTN and MUC16 also appeared in the top ten

mutated genes for six cancers with various TMB values

(Figure S1). TTN, which encodes for titin, is a tumorigenic

gene with a coding length of 80781 bp, likely making it

susceptible high mutation rates because of random DNA

repair errors.24 Therefore, the TTN gene is frequently mutated

both in TMB-high samples and TMB-low samples. MUC16

(coding length, 43524 bp) encodes a transmembrane glyco-

protein with a molecular weight of 2000 kDa, meaning that it

also has a high risk of mutation.25

Association of hotspot mutations with

TMB
TMB is defined as the number of somatic coding mutations

per million bases. As the coding length of WES data is

generally about 33 million bases, many mutations from dif-

ferent genes contribute to the calculation of TMB fromWES.

As shown above, some genes were frequently mutated in

particular cancer types. However, the relationship of those

hotspot mutations with TMB are still not well-understood.

Here, we investigated whether hotspot somatic mutations

might be associated with TMB in specific cancers.

Firstly, we defined hotspot mutations as highly frequent

mutations found in at least ten samples in the complete set

of cancer WES data (Figure S2). Next, we focused on those

hotspot mutations which occurred in at least three samples

in one cancer type. Finally, a total of 150 unique mutations

were investigated for their association to TMB level (327

cancer type-specific mutations). For these mutations, we

calculated the P-value using a Mann-Whitney U-test and

the fold-change by the median TMB value in mutation-

positive samples (samples containing the mutation) and

mutation-negative samples (samples without the mutation),

as listed in Figure S3. Figure 3A shows that most of these

hotspot mutations were associated with high TMB (101/

327) and only a small number of mutations were associated

with low TMB (5/327). We found that some hotspot muta-

tions occurred in only one cancer type. For example, the

mutations P.S71L in OR2A5, P.G362E in CNTNAP2, P.

F17F in BCL2L12 and P.T554I in SLC27A5 only occurred

in SKCM and were associated with high TMB, with an

adjusted-log10 (P-value)>1.3 and log2 (fold-change)>1.

However, other hotspot mutations occurred in at least two

cancer types. For example, the mutation KRAS:P.G12V

appeared in BRCA, COAD, LUAD, OV, PAAD, STAD

and UCEC, but only in OV was this mutation was posi-

tively related to low TMB, with a -log10 (P-value) of 2.29

and log2 (fold-change) of −2.26. As shown in Figure 3A–B,
only in LUAD were the mutations P.E746_A750del and P.

L858R in EGFR significantly associated with low TMB

(adjusted P-value <0.00006 and log2 (fold-change) of

4.28). In other words, samples with these two hotspot

mutations were usually TMB-low in LUAD and would be

targetable by first-generation tyrosine kinase inhibitors.

Most colorectal patients with the BRAF P.V600E mutation

were TMB-high, with a P-value of 8.21E-19 (fold-change:

31.9 vs 3.4). However, the BRAF V600E mutation was

associated with TMB-low in LUAD patients with P-value

0.015 (fold change: 1.9 vs 5.9). In summary, our results

indicated that some hotspot mutations were strongly asso-

ciated with TMB level, either low or high.

Figure 3 (A) The volcano figure of the -log10 (P-value) and the log2 (fold-change) in the mutation-positive samples (samples with this mutation) and mutation-negative

samples (samples without this mutation) for 150 hotspot mutations. (B) The number of samples with 15 typical hotspot mutations in different cancer types.

Abbreviations: LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma ; BLCA, bladder urothelial carcinoma; COAD, colon adenocarcinoma; BRCA, breast invasive

carcer; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; KIRC, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; GBM, glioblastoma

multiforme; UCEC, uterine corpus endometrial carcinoma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; ESCA, esophageal

carcinoma; PAAD, pancreatic adenocarcinoma.
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The impact of gene set on TMB

estimation

Though WES is the best way to calculate TMB, gene panel

sequencing has become increasingly popular and practical in

routine molecular diagnostics. To demonstrate the capability

of TMB estimation from gene panels, we carried out in silico

TMB estimation for various panels using WES mutations

from the public TCGA data-set. A total of 6,625WES samples

from the TCGAwere filtered and analyzed in silico using the

cancer-related gene panels F1CDx, MSK-IMPACT and

F1CDX+MSK. TMB estimated from simulated F1CDx and

Figure 4 The correlation of estimated TMB by two FDA-approved panels with WES. (A) F1CDx with WES (R2=0.95). (B) MSK-IMPACTwith WES (R2=0.94).

Abbreviations: TMB, tumor mutation burden; WES, whole exome sequencing.
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MSK-IMPACT panels showed a high correlation to TMB

estimated from WES, with R2 correlation values of 0.95 and

0.94, respectively, for total mutations (Figure 4A and B).

However, for most cancer types, there were obvious differ-

ences observed between WES and the two panels (Figure 5).

F1CDx,MSK-IMPACTand F1CDX+MSK had differences in

R2 when correlating the data to WES, with F1CDX+MSK

having the best R2, followed by MSK-IMPACT and F1CDx.

Despite this, the TMB calculated from these three panels

correlated with TMB calculated from WES in most cancer

types. However, they did not perform well in some cancer

types (ESCA,KIRC and PAAD.), particularlyKIRC,with low

R2 correlation values below 0.4. The results indicated that

these three panels were only suitable for TMB calculations

for a subset of cancer types. As the above three panels were not

specially designed to calculate TMB values, we attempted to

propose a pan-cancer TMB panel as described in Methods.

Finally, 524 high-frequency mutated genes were selected

(Figure S4). Comparing this pan-cancer TMB panel to the

three panels above improved the R2 correlation values in all 15

cancer types (Figure 5).

To avoid the problem of “over-fitting”, we further fitted

linear regression models using approximately 80% of the

samples to predict TMB values for the remaining 20% of

samples for each cancer type. We assessed the correlation

between the predicted and real TMB for the samples in the

test data-set. Furthermore, 300, 400 or 500 genes were ran-

domly selected five times and their average R2 values were

compared (Figure 6). Similar to previous results, F1CDx,

MSK-IMPACT and F1CDX+MSK performed well in some

cancer types, like BLCA, COAD, SKCM, STAD andUCEC,

while results were poorer in ESCA, KIRC and PAAD.

Excitingly, using the pan-cancer TMB panel, the correlations

improved tremendously in these cancer types. Besides, we

found that randomly selected gene sets had little difference

between F1CDx, MSK-IMPACT and F1CDX+MSK in

almost all cancer types. In general, the pan-cancer TMB

panel we proposed in this study had a higher correlation

with WES for all cancer types.

Discussion
Here, we used somatic mutations identified from WES

data from the TCGA data-set to investigate the TMB

distribution level across 15 cancer types. Frequently

mutated genes and hotspot mutations and their associa-

tions with TMB level were then systematically analyzed.

However, determining TMB by WES is not feasible for

larger patient cohorts in current clinical practice due to its
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Figure 6 Correlation analysis between the predicted TMB and the real TMB in different panels.

Abbreviations: TMB, tumor mutation burden; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma ; BLCA, bladder urothelial carcinoma; COAD, colon

adenocarcinoma; BRCA, breast invasive carcer; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; KIRC, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular

carcinoma; GBM, glioblastoma multiforme; UCEC, uterine corpus endometrial carcinoma; OV, ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; ESCA, esophageal
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high costs, substantial turn-around time and limited avail-

ability of fresh cancer tissue samples.26 Recent research

efforts have demonstrated that targeted sequencing panels

used routinely in the clinic may provide a reasonable

estimate of TMB from only a few hundred genes of

interest.11,21,27 Our study on the correlation between

TMB calculated from WES and that of different panels

systematically addresses the question of whether TMB

estimated from panels is equivalent to TMB estimated

using public WES data from TCGA.

Recently, many organizations have provided panel

sequencing for cancer patients with solid tumors for the

purpose of diagnosis, targeted therapy and prognosis.

Generally, such panels consist of a few genes to a few hun-

dred genes, depending on the clinical purpose. As new target

drugs are approved by FDA and new guidelines from the

National Comprehensive Cancer Network are released,

panels should be updated with new target genes with action-

able mutations. In the meantime, the development of an

increasing number of immune checkpoint inhibitors requires

a more accurate pan-cancer panel to estimate TMB and

determine patient suitability for treatment. The pan-cancer

TMB panel proposed here provides a reference data-set for

gene selection in any TMB-oriented panel design. However,

we still need more clinical data with immunotherapy

response results to refine this pan-cancer TMB panel. We

anticipate that these genes can be added into existing panels

and are capable of estimating TMB to predict patient

response to cancer immunotherapy.
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