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Abstract: We explore, using the Crh protein dimer as a model, how information from solution 

NMR, solid-state NMR and X-ray crystallography can be combined using structural bioinformat-

ics methods, in order to get insights into the transition from solution to crystal. Using solid-state 

NMR chemical shifts, we filtered intra-monomer NMR distance restraints in order to keep only 

the restraints valid in the solid state. These filtered restraints were added to solid-state NMR 

restraints recorded on the dimer state to sample the conformational landscape explored during 

the oligomerization process. The use of non-crystallographic symmetries then permitted the 

extraction of converged conformers subsets. Ensembles of NMR and crystallographic conform-

ers calculated independently display similar variability in monomer orientation, which supports 

a funnel shape for the conformational space explored during the solution-crystal transition. 

Insights into alternative conformations possibly sampled during oligomerization were obtained 

by analyzing the relative orientation of the two monomers, according to the restraint precision. 

Molecular dynamics simulations of Crh confirmed the tendencies observed in NMR conformers, 

as a paradoxical increase of the distance between the two β1a strands, when the structure gets 

closer to the crystallographic structure, and the role of water bridges in this context.

Keywords: structural bioinformatics, NMR structure calculation, ARIA, non-crystallographic 

symmetry, crystallographic ensemble refinement, molecular dynamics simulation

Introduction
Solid-state NMR is aiming at structure elucidation of insoluble proteins, eg, membrane 

proteins, cytoskeletal proteins and protein fibrils, which form multimeric or polymeric 

protein assemblies, as viroporins,1 light-harvesting complexes,2 phospholamban,3 

or more complex interactions including soluble and insoluble protein fragments, as 

prion protein,4 Het-s,5 the human prion protein6 or Ure2p.7 The structural study of the 

monomeric soluble part can be carried out by solution NMR, in aqueous solution or 

in detergents, and the combined use of restraints from solution NMR, and of informa-

tion, only accessible from solid-state NMR, about the oligomerization state, would 

be of great use to analyze the protein conformational landscape during the transition 

between the monomeric and multimeric states. Indeed, the joint use of solution and 

solid-state NMR recently revealed structural aspects of the αB-crystalline oligomer8 

and permitted the determination of phospholamban topology in membrane.9

We use as a model the Bacillus subtilis Crh protein (catabolite repression HPr), a phos-

phocarrier protein of the phosphoenolpyruvate: carbohydrate phosphotransferase system 
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(Figure 1), which displays a large conformational variability. 

Its monomeric structure was determined in solution by solution 

NMR10 (PDB entry: 1k1c) and is close to the HPr structure.11–14 

A conformational exchange between a monomeric and a dimeric 

structure was observed in solution, but selective precipitation of 

the dimeric protein hampered dimer structure determination.15 

The dimeric structure was then determined in the crystalline 

form by X-ray crystallography16 (PDB entries: 1mo1, 1mu4), 

as well as from micro-crystals by ssNMR17 (PDB entry: 2rlz). 

The transition from the monomeric to the dimeric form consists 

in the 3D domain swapping of strand β1 (Figure 1B, C). In the 

crystal, the dimers are interacting two-by-two to form a dimer 

of dimers. The wealth of structural information available for this 

protein, and its conformational variability make Crh a unique 

model to evaluate the feasibility of structure determination for 

multimeric proteins, using a mixed set of solution and ssNMR 

restraints and chemical shifts.

An additional aspect investigated concerns the relative 

orientation of the Crh monomers during the transition from 

solution to crystal. Getting structural information about such 

a transition is rare and could be of great value to understand 

the crystallization process of proteins. In that respect, ssNMR 

recently provided the opportunity to obtain information about 

starting points of crystallogenesis.18

In the present study, we focused on the calculations 

of Crh dimers and dimers of dimers, which represent 

well-documented conformations of the protein.16 Based on 

the observation that Crh in solution undergoes a monomer/

dimer equilibrium, we make the hypothesis that the dimeric 

state of Crh represent an initial stage of the crystal formation. 

In that frame, the dimer of dimers corresponds to later stages 

of the crystallogenesis.

Three series of NMR conformer generation were 

 performed with a version of ARIA 2.219 dedicated to ssNMR. 

The first series used precise distance restraints determined 

on the X-ray crystallographic structure. The two last series 

explore the conformational landscape of Crh dimers during the 

oligomerization and the crystal formation. The sets of ARIA 

conformers are compared to molecular dynamics (MD) simu-

lations starting from crystallographic structures of the Crh 

dimer and dimer of dimers. We observe a good convergence 

of the monomers, and a large variability of their relative 

orientation into the dimer. This variability is reduced by the 

application of non-crystallographic symmetry restraints. 

The variation of relative orientation of one monomer with 

respect to the other is maximum along the dimer longitudinal 

axis, in all conformations generated: (i) by ARIA, (ii) during 

molecular dynamics simulations, and (iii) in a crystallographic 

ensemble refinement20 along structure factors. A balance 

between protein–water and protein–protein interaction plays 

a crucial role in the stabilization of the monomer orientation 

observed in the crystal.

Materials and methods
Input files of the conformers calculations
The NMR assignments of Crh in solution10 and in the crystal21 

were obtained from the BMRB22 (ids: 4972 and 5757). Inter-

monomer assigned cross-peaks measured on the NHHC 

spectrum23 were also used. The monomeric structure (PDB 

entry: 1k1c)10 and the corresponding restraint file provided 

a synthetic NMR peak list for the monomer. The ψ and φ 

dihedral angle restraints were determined from TALOS ver-

sion 2003.027.13.05,24 using the ssNMR chemicals shifts 

(BMRB id: 5757). This prediction yields 26 hydrogen bonds in 

α-helices and 45 φ/ψ restraints in α-helices and β-strands. The 

accuracy of the conformers was analyzed with respect to two 

crystallographic structures16 (PDB entries: 1mo1, 1mu4).

ARIA-CNS calculation
An iterative ARIA 2.219 calculation was used to filter the 

monomer NMR restraints using the ssNMR chemical shifts: 

eight iterations in geometric force field were performed 

starting from the synthetic monomer peak list and the φ, ψ 

dihedral restraints described in “Input files of the conformers 
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Figure 1 Structures of the Crh protein. A) The monomer structure determined by 
solution NMR (PDB entry: 1k1c) contains three α helices (α1: residues 17–28, α2: 
residues 47–50 and α3: residues 70–83) as well as a β sheet formed from four β strands 
(β1: residues 3–9, β2: residues 31–37, β3: residues 40–42 and β4: residues 60–67).  
B) Topology of a Crh monomer, inside the dimer, C) Dimer structure determined by 
X-ray crystallography (PDB entry: 1mo1). The β strands are in green and the α helices 
in magenta. In the dimer (b,c), one monomer is colored and the other one displayed 
in gray. In c, the axes X, Y, Z allowing to define the angles Ψ, Θ and Φ are drawn. This 
figure was realized with pymol 0.9851 and TopDraw.52
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calculations”. The other ARIA calculations (Figure 2) were 

based on a single iteration in geometric force field, generating 

360 conformations. The calculations are performed on 

 symmetric homodimers, and the dimer symmetry is enforced 

by minimizing the RMSD between monomer conformations, 

and ambiguous distance restraints (ADRs) are applied between 

the monomers.25 A packing restraint to keep both monomers 

close in the 3D space is applied between the centers of mass, 

and is reduced from 15 to 0 kcal/mol.Å2 during the protocol.

During the iterative calculation, ARIA assigns NOE cross-

peaks in the following way. First, all possible assignments are 

derived for each peak by matching a list of chemical shifts 

with frequency windows centered around the position of a 

peak. Peak volumes are converted into distance restraints by 

using the isolated spin pair approximation, which relates the 

volume to the inverse sixth power of the distance between the 

two interacting spins. Ambiguous assignments are converted 

into ADRs, so that all assignment possibilities contribute 

to the target distance. Since most of the assignments are 

inconsistent, ARIA performs an iterative protocol to identify 

wrong assignments and noise peaks: at each iteration, the 

restraint list is corrected by filtering out unlikely assign-

ments and noise peak, and then, based on the filtered restraint 

list, a new structure ensemble is calculated. This ensemble 

is analyzed in the next iteration. To compensate for the 

simplified treatment of non-bonded forces and missing 

solvent contacts during structure calculation, at the end of 

the iterative protocol, the conformers are further refined in 

explicit water to remove possible artifacts.26

During each iteration of the iterative or non iterative 

 calculation, each protein conformer is produced by a 

simulated annealing procedure,27 comprising: (i) high 

 temperature torsion angle molecular dynamics (MD), 

(ii) torsion angle MD cooling phase, (iii) Cartesian space MD 

cooling phase using an increased number of steps (50,000 

to 100,000 steps).28

The 50 lowest-energy conformers were then submitted to 

a geometric force field refinement with non-crystallographic 

symmetry (NCS) restraints and analyzed afterward by 

two clustering methods. The NCS restraints were applied 
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Figure 2 A) Scheme of the ARIA calculations. The colored boxes on the left describe the input data, the blue denoting intra-monomer restraints, the red denoting inter-
monomer restraints coming from the interpretation of the ssNMR NHHC spectrum, the green denoting restraints of the swapping topology. The dark colors stand for precise 
crystallographic restraints, whereas light colors stand for fuzzy restraints originating from NMR measurements. The dashed vertical lines correspond to the calculation or to 
the processing of conformers, and the sets of conformers are given inside the white rectangles. B) Visual legend of (a).
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between the dimers associated in the dimer of dimers using 

a strict relationship29 based from the transformation (rotation 

and translation) between the two dimers in 1mo1. A water 

refinement with NCS restraints, including Lennard-Jones 

and electrostatic Coulombic potential was then performed 

on the resulting clusters.

Structure analysis
The RMSD between the backbone atoms was calculated by 

superimposing30 residues 1–85 for the dimers, and residues 

15–85 for the monomers. The fit to experimental restraints 

is evaluated from the number of violated distance restraints 

and the RMS of violations, a restraint being violated if the 

distance is larger than U +0.5Å or smaller than L −0.5Å, 

where U and L are restraint upper and lower bounds. The 

conformers quality was analyzed by PROCHECK v.3.5.431 

and WHATIF 5.1.32

The relative monomer orientation was described by the 

distance between the monomers centers of mass and by 

the Euler angles Ψ, Θ and Φ of the rotations describing the 

transformation from one monomer to the other. The rotation 

axes X, Y, Z are aligned along the principal inertia axes of 

the structure 1mu4 (Figure 1C).

The variation of Crh tertiary structure was monitored 

by calculating the minimum distances between axes of 

secondary structure elements. In the α-helices the axes are 

determined from the middles of the backbone atom segments 

(N(i), N(i+2)), (Cα(i), Cα (i+2)) and (C’(i), C’(i+2)), where 

i is the residue number. In the β strands, the axes are defined 

from the positions of backbone heavy atoms.

Clustering algorithms
Two algorithms were used to cluster the molecular 

conformations independently of the knowledge of the crystal-

lographic structure. The first algorithm (clustering-I) similar 

to the one used in HADDOCK,33 is based on the iterative 

processing of the pairwise coordinates RMSD matrix, using 

a RMSD cutoff and a minimal cluster size. The conformers 

are sorted into clusters, the cluster having the largest size is 

removed from the conformer pool, and the algorithm is run 

again on the remaining conformations. The distance cutoff 

varies from 2 to 4 Å, by steps of 0.1 Å, and the minimal cluster 

size varies from 5 to 10 by steps of 1, a given conformation 

belonging generally to several clusters. The second algorithm 

(clustering-II) groups conformers in two dimensions (clusters 

I versus conformers), by two successive hierarchical cluster-

ings (command hclust of R34), applied first on the conformer 

axis, and then on the cluster axis.

Molecular dynamics simulations
The X-ray crystallographic structure 1mo116 containing a 

Crh dimer of dimers (chains A, B, C, D) was used as the 

starting point for the molecular dynamics (MD) simulations. 

The simulations were performed with periodic boundary 

conditions: sol_dimer on the chains A and B, and sol_tetra, 

cryst_tetra on the chains A, B, C and D (Table 1). The 

 simulations sol_dimer and sol_tetra intend to describe the 

behavior of the Crh dimer and dimer of dimers in solution, 

whereas the simulation cryst_tetra models the Crh dimer of 

dimers in a more restricted environment, including qualitative 

crystal packing. A similar approach was used recently35 to 

simulate proteins in the crystalline state.

The simulations sol_dimer and sol_tetra were performed 

at constant pressure, with a cutoff distance of 10 Å to 

determine the water box size. Conversely, the simulation 

cryst_tetra was performed at constant volume with a cutoff 

distance of 2 Å to determine the water box size, in order to 

model the effect of long-range order observed in the solid 

state. In cryst_tetra, the 10 sulfate molecules, and the 9 

glycerol molecules observed in the crystal were kept in the 

simulation box.

Simulations of 10 ns were recorded using the package 

AMBER 9.0,36 and the ff99SB force field.37 A cutoff of 10 

Å was used for Lennard-Jones interactions, and long-range 

electrostatic interactions were calculated with the Particle 

Mesh Ewald (PME) protocol.38 The systems total charge was 

neutralized using sodium counterions ions. The SHAKE algo-

rithm39 was used to keep rigid all covalent bonds involving 

hydrogens, enabling a time step of 2 fs. Pressure was 

regulated with isotropic position scaling and a relaxation time 

of 1 ps, and temperature using a Langevin thermostat40 with 

a collision frequency of 2 ps−1. For sol_dimer and sol_tetra, 

Table 1 Preparation details of the molecular dynamics simulations

 sol_dimer sol_tetra cryst_tetra

Number of counterions 6 12 32
Water box dimensions (Å) 74.1 × 89.7 × 58.3 72.5 × 91.7 × 81.1 58.9 × 79.2 × 68.9
Number of water molecules 9396 12560 6266
Total number of atoms 30918 43140 24454
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the simulations were performed at temperature 298 K and 

pressure 1 atm, whereas for cryst_tetra, the temperature was 

283 K, at which the ssNMR experiments21 were recorded. 

Atom coordinates were saved every ps.

Simulations were initiated by some rounds of semi-

restrained and then unrestrained minimization of the entire 

system. Heating of the system up to 300 K was realized during 

20 ps at constant volume, while restraining the positions of 

the protein atoms with a force constant of 25 kcal/(mol.Å2). 

The equilibration process was then performed: one MD 

round of 5 ps at constant volume and four MD rounds of 

2.5 ps were run while reducing the position restraints from 

25 kcal/(mol.Å2) down to 5 kcal/(mol.Å2); eventually a 

last MD round of 70 ps was performed with a restraint of 

2.5 kcal/(mol.Å2) to complete the system equilibration.

Ensemble crystallographic refinement
The Crh dimer of dimers was refined along the struc-

ture factors measured on 1mo1 (file: 1mo1-sf.cif). The 

ensemble crystallographic refinement,20 generated 16 con-

formations of the oligomer, using CNS 1.2.29 The starting 

conformation was the one observed in the PDB structure 

1mo1. The water molecules and the cofactors (sulfate ions 

and glycerol) were not duplicated. Ten percents of the 

structure factors were used for data cross-validation. A R 

factor of 0.14 and a free R factor of 0.18 were observed 

on the set ens_XR.

Results
Filtering of the solution NMR restraints
The generation of oligomer conformations requires the use of 

intra-monomer restraints, and an objective method was used 

to filter among the solution NMR restraints observed for the 

Crh monomer, those still valid in the oligomer state observed 

by ssNMR. The filtering is based on ssNMR chemical shifts 

and provides restraints valid for microcrystalline as well as 

for precipitate states of Crh, as the same ssNMR spectrum 

was observed for both states.41

The possible interaction between β1 and β4 strands is 

formed very early during the protein oligomerization and 

 crystallization, as it was observed from solution NMR 

chemical shifts.10 Interactions between strands β1 and β4 

were thus imposed through distance restraints corresponding 

to hydrogen bonds between the β strands, extracted from 

the X-ray crystallographic structure of Crh. Equivalent 

information about interaction interfaces could be obtained 

by mutational studies,42 electron microscopy43 or molecular 

dynamics simulations.44,45

An iterative ARIA calculation was performed on a 

 symmetric homodimer to filter among the monomer NMR 

distance restraints, those still verified in the dimer structure. 

The inputs were: (i) the ssNMR sequential assignment of the 

Crh dimer,21 (ii) the dihedral and intra-monomer hydrogen 

bond restraints deduced from the TALOS analysis of the 

ssNMR chemical shifts, (iii) the synthetic peak list built from 

the solution NMR distance restraints recorded on the residues 

16–85. The synthetic peak list was submitted to ARIA along 

with the monomeric assignments in order to limit the number 

of restraint contributions and to consequently reduce the 

combinatorial analysis during the NOE assignment. The itera-

tive ARIA run produced the mono_aria set of restraints. The 

contact map obtained from restraints mono_aria (Figure 3, 

lower triangle) is quite similar to the contact map of the 

restraints mono_xray obtained by filtering the 1k1c restraints 

directly on the crystallographic structure 1mo1 (Figure 3, 

upper triangle). The restraints mono_xray and mono_aria 

will be used as intra-monomer restraints during the ARIA 

 calculations described below.

Presentation of ARIA calculations
Input restraints (Figure 2) include mono_aria and the 

TALOS restraints, described above, as well as the follow-

ing inter-monomer restraints. Exact distances, measured on 

the structure 1mo1, for the inter-monomer peaks assigned on 
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Figure 3 Comparison of the contact map obtained by filtering on the X-ray structure 
1mo1 (upper triangle, empty circles) and of the contact map (restraints mono_aria) 
obtained by filtering monomer peak list using ssNMR chemical shifts (lower triangle, 
crosses). The restraints are plotted along the residue numbers.
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the spectrum NHHC,23 produce the restraints NHHC_xray. 

The NMR restraints NHHC_ssnmr are built from the NHHC 

peaks, using invariant bounds 2.5–4.5 Å. Additional inter-

monomer restraints between the strands β1 and β4 were 

applied using hydrogen bond restraints (hbonds_B1B4) 

or using restraints 4.5–5.5 Å between Cα (CA B1B4), 

 determined from 1mo1. Ambiguous inter-monomer restraints 

(AIR_inter) similar to the one used in HADDOCK33 were 

applied between all residues assigned to the dimer interface 

by chemical shift perturbation in solution.10

Three sets of ARIA conformers were generated (Figure 2). 

The restraints used in the first conformer set (exact_xray) 

were: mono_xray, NHHC_xray, TALOS and hbonds_B1B4, 

based on exact crystallographic distances. This calculation 

was followed by a water refinement step (w_exact_xray). 

The second conformer set (nmr_xray) was obtained using 

a mixed set of ssNMR and crystallographic restraints: 

mono_xray, NHHC_ssnmr, TALOS and hbonds_B1B4, in 

order to explore the conformational landscape in presence 

of restraints close to those observed in the crystal. Finally, 

the third conformer set (nmr) was only based on NMR 

restraints (mono_aria, NHHC_ssnmr, TALOS) and on the 

information on dimerisation interface already observed in 

solution (CA_B1B4 and AIR_inter). This last conformer set 

intended to sample the conformational landscape of the Crh 

dimer of dimers during oligomerization and crystal forma-

tion. As no significant changes are observed between ssNMR 

spectra recorded on Crh micro-crystals and precipitates,41 it 

is possible to assume that ssNMR restraints give information 

about the Crh oligomer architecture in the crystal as well as 

in the precipitate.

The study of Crh by NMR in solution10 has shown that 

two modes of association are possible for the dimer, one aris-

ing via the swapping of the β1 strand. The crystallographic 

structure then gave the exact topology of the position of the 

strand β1.16 The hypothesis made in the present work that the 

dimeric state of Crh represent an initial stage of the crystal 

formation, implies that the hydrogen bonds between β1 and 

β4, are formed early in the oligomerization process. The 

associated restraints, hydrogen bonds or restraints between 

the Cα bring a determinant information for the convergence 

of the relative monomer positions in the dimer.

The dimer conformations obtained from the sets nmr_xray 

and nmr were further refined using additional non-crystal-

lographic symmetry (NCS) restraints in geometric force 

field, to produce the sets NCS_nmr_xray and NCS_nmr. 

The application of non-crystallographic symmetry (NCS) 

restraints represents only a qualitative short-range model-

ing of the crystal or precipitate order. An additional water 

refinement step was finally performed on a conformations 

cluster extracted from NCS_nmr_xray and on two clusters 

extracted from NCS_nmr, to produce the sets wNCS_nmr_

xray, wNCS_nmrI and wNCS_nmrII. The sets wNCS_nmrI 

and wNCS_nmrII will be described more precisely in the 

section “Convergence of the calculation and fit to the NMR 

restraints”.

Convergence of the calculation  
and fit to the NMR restraints
Clustering-I, described in Materials and Methods was per-

formed on the 50 lowest-energy conformers calculated in 

the geometric force field (exact_xray, nmr_xray and nmr), 

and for the conformations of NCS_nmr_xray and NCS_nmr, 

calculated using NCS restraints. The number of clusters, the 

cluster sizes, the backbone precision inside the clusters and 

the accuracy to the X-ray structure 1mu4, were analyzed in 

Table 2. The six clusters detected for exact_xray and their 

larger sizes in the 38–45 range prove the calculation conver-

gence. The slight decrease of the coordinate precision inside 

the clusters and of the accuracy to the structure 1mu4, as well 

as the appearance of 5-members clusters, reveal a decrease 

of the convergence in nmr_xray. Nevertheless, more than 9 

Table 2 Results of the clustering-I performed on the 50 best-energy conformers generated in geometric force field (exact_xray, nmr_xray, 
nmr), and performed on the 50 conformers obtained after a refinement in presence of NCS restraints (NCS_nmr_xray, NCS_nmr) 

Conformer clustering

Set Number of clusters Cluster size RMSD (Å) to X-ray  
structure

RMSD (Å) of the 
cluster

exact_xray 6 38–45 2.2–2.3 1.5–1.8
nmr_xray 19 5–44 2.4–3.3 1.3–2.1
NCS_nmr_xray 4 41–45 2.5–2.6 1.3–1.5
nmr 33 5–21 3.7–6.8 1.5–2.4
NCS_nmr 35 5–26 3.0–7.3 1.4–2.3

Notes: The number of clusters obtained is given along with the range of cluster sizes, the range of the coordinate RMSD (Å) to the crystallographic structure 1mu4 (accu-
racy), and the range of the coordinate RMSD (Å) between the conformers inside each cluster (precision). The RMSD values were calculated by superimposing the backbone 
heavy atoms.
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clusters are larger than 30 members, and the lower bounds 

of the RMSD are similar to those observed for exact_xray. 

The application of the NCS restraints to the nmr_xray con-

formers (NCS_nmr_xray), induces convergence and accuracy 

close to the ones observed for exact_xray. Indeed, the number 

of clusters is four and their sizes are in the range 41–45, 

these parameters displaying a similar order of value than in 

exact_xray. In nmr, a poor accuracy with respect to 1mu4 

is obtained, as the coordinates RMSD to 1mu4 increased 

twofold with respect to other sets, the number of clusters 

is doubled, and the maximum cluster size is divided by two 

with respect to exact_xray. The application of NCS restraints 

(NCS_nmr) does not modify much this situation, which may 

be due to the relatively local symmetry applied.

The hierarchical clustering-II method, applied on clusters 

of conformations previously obtained, detected one group of 

conformers in nmr_xray and NCS_nmr_xray, and two groups 

in NCS_nmr. The following conformers sets were finally 

extracted from exact_xray, NCS_nmr_xray and NCS_nmr: 

(i) for exact_xray, the 38 best-energy conformers, (ii) for 

NCS_nmr_xray, 41 conformers obtained by clustering-I 

and closest to the structure 1mu4, (iii) for NCS_nmr, the 

12-members cluster (NCS_nmr_I) closest to 1mu4, and a 

22-members cluster (NCS_nmr_II), were extracted from the 

two groups detected by clustering-II. The four conformations 

sets were then refined in water and, for (ii) and (iii), in the 

presence of NCS restraints, to provide the sets w_exact_xray, 

wNCS_nmr_xray, wNCS_nmrI and wNCS_nmrII, which will 

be analyzed in more details below.

Conformers convergence,  
quality and accuracy
The Crh monomer convergence is good for all sets 

(Table 3), with coordinate RMSD values in the 0.6–0.9 Å 

range, close to the value of 0.8 Å obtained on the ssNMR 

structure 2rlz.17 The small number of restraint violations 

larger than 0.5 Å in all clusters, along with violation RMS 

in the 0.11–0.15 Å range prove the good fit of the con-

formations to the restraints. The conformer local RMSD 

along the sequence (Figure 4B) qualitatively resembles to 

the fluctuations by residues in MD simulations (Figure 4A) 

and to the B factors in 1mo1 (Figure 4C), with local 

maxima located in the same protein regions (residues 27, 

40, 57, 60, 67).

The atomic fluctuations by residues measured along 

the MD trajectory sol_dimer (data not shown) are very 

similar to those observed for the dimer of dimers in trajec-

tory sol_tetra (Figure 4A). These two sets of fluctuations 

give a picture of the Crh internal dynamics in qualitative 

agreement with the observations made by NMR relaxation 

on Crh in solution.10 Indeed, the helix α1 (residues 17–28) 

and the strands β2 (residues 31–37), β3 (residues 40–43) 

Table 3 Quality, restraint fitting and convergence of the ARIA conformers refined in presence of NCS restraints and water (w_exact_xray, 
wNCS_nmr_xray, wNCS_nmrI, wNCS_nmrII) 

Number of conformers w_exact_xray wNCS_nmr_xray wNCS_nmrI wNCS_nmrII

 38 41 12 22

PROCHECK core (%) 92.8 ± 2.3 92.1 ± 2.2 91.6 ± 3.4 91.0 ± 2.7
PROCHECK allowed (%) 6.8 ± 2.5 7.5 ± 2.2 7.7 ± 3.2 8.4 ± 2.9
NQACHK −0.2 ± 0.4 −1.0 ± 0.5 −1.9 ± 0.5 −2.5 ± 0.5
RAMCHK −3.0 ± 0.5 −3.1 ± 0.5 −1.2 ± 0.7 −2.1 ± 0.7
C12CHK −2.2 ± 0.5 −1.9 ± 0.6 −0.7 ± 0.7 −2.1 ± 0.5
BBCCHK 0.6 ± 0.3 0.4 ± 0.3 0.7 ± 0.7 0.1 ± 0.6
INOCHK 1.0 ± 0.02 1.0 ± 0.02 0.5 ± 0.5 1.0 ± 0.03
BMPCHK 27 ± 6.6 26.2 ± 7.6 19.3 ± 4.4 46.2 ± 13.8
Number of violations 0.5 Å 52.0 ± 6.4 46.8 ± 6.6 19.3 ± 5.3 21.6 ± 5.5
Violation RMS (Å) 0.15 ± 1.0E-02 0.14 ± 9.0E-03 0.12 ± 1.9E-02 0.11 ± 1.7E-02
Monomer RMSD (Å) 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.1 0.9 ± 0.2
Dimer RMSD (Å) 1.2 ± 0.4 1.1 ± 0.3 1.2 ± 0.4 1.8 ± 0.6
Monomer RMSD (Å) to 1mu4 1.0 ± 0.2 1.2 ± 0.2 1.6 ± 0.1 1.9 ± 0.2
Dimer RMSD (Å) to 1mu4 2.0 ± 0.3 2.3 ± 0.3 2.4 ± 0.4 7.6 ± 1.0
Ψ (X) (°) −61.6 ± 15.2 −68.4 ± 11.0 −62.9 ± 15.2 −124.3 ± 34.9
Θ (Y) (°) 11.3 ± 2.2 12.4 ± 1.2 13.2 ± 2.2 9.7 ± 3.8
Φ (Z) (°) −7.5 ± 3.1 −8.9 ± 2.3 −8.0 ± 3.4 −17.8 ± 5.3
Distance between centers of mass (Å) 20.0 ± 0.6 19.9 ± 0.5 19.4 ± 0.9 21.5 ± 0.9

Notes: Relative position of the monomers inside the dimer in the ARIA conformers is described using the angles Ψ, Θ and Φ (see materials and methods for definition) and 
the distance between the monomer centers of mass.
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sets except for nmr (data not shown). Along with clustering 

techniques, the NCS allows to detect sets of conformers 

(w_exact_xray, wNCS_nmr_xray, wNCS_nmrI) displaying 

precisions (Table 3) similar to the precision (1.3 Å) of the 

ssNMR structure of Crh.17 The accuracy with respect to 

1mu4, observed in all sets except wNCS_nmrII, compares 

well to the results obtained on the Crh dimer structure 2rlz 

calculated from ssNMR restraints,17 for which the accuracy 

on the monomer is 1.6 Å, on the dimer 2.9 Å. Neverthe-

less, in wNCS_nmrII, the RMSD to 1mu4 displays a 3-fold 

increase.

The PROCHECK and WHATIF analyses (Table 3) 

determined quality parameters in the range admitted for 

NMR solution structures. For all runs, more than 86% of the 

residues are located in the core PROCHECK Ramachandran 

diagram. Similarly, the WHATIF parameters are in the −4/4 

range, the worse values being observed for RAMCHK. 

The run wNCS_nmrII displays the worse number of inter-

atomic bumps (BMPCHK), arising from residues mainly 

located in the N terminal region 1–30, which is the sign of 

a badly defined dimer interface. All quality parameters are 

constant in the four runs, which means that the application 

of looser restraints does not degrade the physical relevance 

of the generated conformations in the sets wNCS_nmrI and 

wNCS_nmrII.

To summarize, the lack of convergence and accuracy in 

the Crh dimer appears if fuzzier restraints are applied. The use 

of a qualitative short-range modeling of the intermolecular 

organization reminiscent of the crystal situation, improves 

drastically the dimer convergence. In the hierarchy of the 

restraints defining the crystal organization, the NCS restraint 

is thus prominent to impose the convergence toward the 

crystal structure, and this is an argument in favor of the early 

appearance of the dimer of dimers interaction in transition 

path from solution to crystal.

Relative monomer orientation  
in the dimer
The relative orientation of the monomers into the dimer was 

monitored (Table 3) through the Euler angles Ψ, Θ and Φ, 

defining the rotations around the principal inertia axes X, Y 

and Z (Figure 1C). The largest standard deviation is always 

observed for Ψ which corresponds to a largest variability 

around the X axis. This is in agreement with the variability 

in relative monomer orientation in the ssNMR structure 

of Crh17 2rlz and between the crystallographic structures 

1mo1 and 1mu4 (Table 4a). In a similar way, the set of 16 

dimers of dimers conformations (ens_XR) obtained from a 
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of C) the mean B factors in the four chains of 1mo1.

and β4 (residues 60–67), which were shown to have large 

S2 values by NMR relaxation, display also smaller fluctua-

tions by residues. Also, the residues 37–39 located in the 

turn between β2 and β3, and the residues 48–54 in helix 

α2, which were shown to be flexible by NMR relaxation, 

display larger fluctuations. On the other hand, in the simula-

tions, the helix α3 (residues 70–80) and the strand β1 (resi-

dues 4–9) which were rigid according to NMR relaxation 

measurements, display more flexibility than the rigid protein 

regions described above.

The clustering simplifies the description of the Crh 

conformational landscape, with respect to the description 

obtained with the geometric force field. Indeed, the use of 

NCS restraints improves the structure precision of more 

than 1 Å, and the structure accuracy of about 1.0 Å for all 
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the simulation sol_dimer than in the simulations sol_tetra, 

cryst_tetra, and the monomer RMSD are always smaller 

than the dimer RMSD. These two features agree well with 

the variability of monomer relative orientation, observed 

among the ARIA conformers, as well as with the drift 

from the X-ray crystallographic structure observed in 

wNCS_nmrII. The Euler angles stay close to the values 

observed in crystallographic structures (Table 4b), but again 

Ψ displays the largest standard deviations, in agreement with 

the observations made for ARIA conformers. The distance 

between monomer centers of mass (Table 4b) is smaller than 

the value observed in the crystallographic structures, and 

decreases along the whole sol_dimer simulation from 21 Å 

down to 19.5 Å, whereas it stays constant around 20.5 Å for 

simulations sol_tetra and cryst_tetra.

The relative orientation of the monomers displays the 

 largest variability for the rotations around the longitudinal 

axis X of the dimer. This feature is observed for independently 

calculated conformations, as the sets of ARIA conformers, 

the ssNMR structure 2rlz, or the conformers obtained from 

a crystallographic ensemble refinement,20 as well as for 

conformations sampled in MD simulations. This variation 

Ψ of may thus correspond to relative monomer orientations 

sampled during the transition from solution to crystal.

Oligomer architecture
The oligomer architecture was analyzed by monitoring: the 

distances between secondary structure elements of the Crh 

A B

C D

E

Figure 5 A) Crh dimer structure 1mu4 and lowest-energy conformers from  
B) w_xray_exact, C) wNCS_xray_nmr, D) wNCS_nmrI and E) wNCS_nmrII. The Crh 
chains are colored in blue and red. This figure was realized with pymol 0.98.51

Table 4 Analysis of the relative position of the monomers inside the dimer: (a) in the Crh PDB structures (2rlz,17 1mo1, 1mu416) and 
in the sets of 16 dimers of dimers conformers (ens_XR) obtained from the crystallographic ensemble refinement;20 and (b) during the 
MD simulations (sol_dimer, sol_tetra, cryst_tetra)

a) PDB structures 2rlz 1mo1/1mu4 ens_XR

Distance (Å) 22.1 ± 0.7 21.3 ± 0.2 20.8 ± 0.1

Angle Ψ (X) (°) −67 ± 11.6 −74.5 ± 1.8 −77.0 ± 1.6

Angle Θ (Y) (°) 12.8 ± 1.1 15.7 ± 0.6 16.0 ± 0.2

Angle Φ (Z) (°) −7.9 ± 2.4 −11.2 ± 1.0 −12.3 ± 0.5

b) MD simulations sol_dimer sol_tetra cryst_tetra

Distance A–B (Å) 19.2 ± 0.4 20.7 ± 0.5 20.0 ± 0.1

Distance C–D (Å) – 20.3 ± 0.4 20.1 ± 0.2

Angle Ψ A–B (X) (°) −77.8 ± 7.1 −80.3 ± 6.1 −79.5 ± 5.6

Angle Ψ C–D (X) (°) – −75.5 ± 4.8 −76.0 ± 5.0

Angle Θ A–B (Y) (°) 15.3 ± 0.8 14.2 ± 1.0 15.8 ± 1.0

Angle Θ C–D (Y) (°) – 14.8 ± 0.8 15.6 ± 0.9

Angle Φ A–B (Z) (°) −11.1 ± 1.8 −11.5 ± 1.5 −11.9 ± 1.9

Angle Φ C–D (Z) (°) – −10.3 ± 1.3 −11.2 ± 1.5

Notes: The relative position of the monomers are described through the distance between the monomer centers of mass, and through the angles Ψ, Θ and Φ (see materials 
and methods for definition).

 crystallographic ensemble refinement20 displays also Ψ as 

the most variable angle (Table 4a).

The lowest-energy conformer of each cluster (Figures 5B, 

C, D) is close to the structure 1mu4, except the lowest energy 

conformer of wNCS_nmrII (Figure 5E) which displays a 

 difference in the relative orientation of the monomers. This 

difference comes from the largest bias displayed by Ψ among 

the orientation angles (Table 3). This feature of wNCS_nmrII 

may correspond to an orientation transiently populated during 

the Crh transition from solution to crystal.

During molecular dynamics (MD) simulations, larger 

conformational drifts are observed (data not shown) in 
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dimer (Table 5), the hydrogen bonds in the secondary structure 

elements (df 6) and the water bridges (Figure 7).

The increase of the β4-β2, α3-β4 and α3-α1 distances 

in wNCS_nmrI and wNCS_nmrII (Table 5) with respect 

with the other ARIA conformers sets, is consistent with the 

disorder observed in the Crh precipitate for these secondary 

structure elements.41 Beside, in the same sets, the α2-β1a 

distance increases and the α2-β3 distance decreases, which 

corresponds to α2 going apart from β1a and closer to mono-

mer core, in agreement with the variability in the monomers 

orientation. During MD simulations, the distances between 

secondary structures (Table 5) generally increase from the 

dimer to the dimer of dimers architecture.

Contrary to the other distances between secondary struc-

ture elements, the distance β1a-β1a shows a tendency to 

decrease in ARIA conformers generated in geometric force 

field with looser restraints (nmr: data not shown) or in the 

MD simulation sol_dimer (Table 5). In the same way, the 

distance β1-β4 is slightly larger in w_exact_xray, whereas in 

MD simulations, the inter-monomer distance β1-β4 is larger 

for dimer of dimers. A modeling of the long-range crystal 

order thus forces the β strands involved in inter-monomer 

interaction to go apart.

The hydrogen bond lifetime was monitored in the sec-

ondary structures as the percentage of simulation time or of 

ARIA conformers for which the distance is smaller than 2.2 Å 

(Figure 6). Within each contact map, the hydrogen bonds 

in the helices are the least formed in α2 (residues 47–50), 

which was also shown46 to be labile in MD simulations of 

HPr. Among the ARIA conformers sets, shorter lifetimes 

are observed in wNCS_nmrI (Figure 6D) and wNCS_nmrII 

(Figure 6E) than in wNCS_nmr_xray (Figure 6F), specially 

in the helices α1 (residues 17–28), α2 (residues 47–50), and 

between the strands β2 (residues 31–37) and β4 (residues 

60–67). In MD simulations, the helices α2 and α3 are less 

stable in sol_dimer than α1 (Figure 6C), but improve their 

stability in sol_tetra (Figure 6B) and cryst_tetra (Figure 6A). 

Overall, a greater secondary structure stability is observed for 

conformations closer to the crystallographic structure. But, 

the inter-monomer hydrogen bonds between the strands β1a 

Table 5 Distances (Å) between secondary structure elements in the ARIA conformers and during the MD simulations

Secondary elements w_exact_xray wNCS_nmr_xray wNCS_nmrI wNCS_nmrII

Intra-monomer

α2-β1a 4.8 ± 0.2 5.0 ± 0.3 7.2 ± 2.5 7.2 ± 2.5
α2-β3 5.7 ± 0.1 5.8 ± 0.2 5.2 ± 0.4 5.2 ± 0.4
α3-α1 9.1 ± 0.2 9.2 ± 0.2 9.5 ± 0.3 9.5 ± 0.3
α3-β4 6.0 ± 0.2 6.1 ± 0.3 6.3 ± 0.2 6.3 ± 0.2
β2-β3 3.1 ± 0.1 3.2 ± 0.1 3.2 ± 0.1 3.2 ± 0.1
β4-β2 3.6 ± 0.1 3.6 ± 0.1 3.8 ± 0.1 3.8 ± 0.1

Intra-monomer

α2-β1a 4.8 ± 0.2 5.0 ± 0.3 7.2 ± 2.5 7.2 ± 2.5
α2-β3 5.7 ± 0.1 5.8 ± 0.2 5.2 ± 0.4 5.2 ± 0.4
α3-α1 9.1 ± 0.2 9.2 ± 0.2 9.5 ± 0.3 9.5 ± 0.3
α3-β4 6.0 ± 0.2 6.1 ± 0.3 6.3 ± 0.2 6.3 ± 0.2
β2-β3 3.1 ± 0.1 3.2 ± 0.1 3.2 ± 0.1 3.2 ± 0.1
β4-β2 3.6 ± 0.1 3.6 ± 0.1 3.8 ± 0.1 3.7 ± 0.1

Inter-monomer

β1a-β1a 4.0 ± 0.1 4.0 ± 0.2 3.9 ± 0.3 3.9 ± 0.3
β1-β4 3.7 ± 0.2 3.6 ± 0.1 3.6 ± 0.2 3.6 ± 0.2

Secondary elements sol_dimer sol_tetra cryst_tetra

Intra-monomer

α2-β1a 3.3 ± 0.5 4.0 ± 0.2 4.4 ± 0.2
α2-β3 5.5 ± 0.5 5.8 ± 0.2 5.6 ± 0.2
α3-α1 9.0 ± 0.3 9.5 ± 0.2 9.4 ± 0.3
α3-β4 6.0 ± 0.2 6.3 ± 0.2 6.3 ± 0.2
β2-β3 3.0 ± 0.1 3.2 ± 0.2 3.4 ± 0.1
β4-β2 3.1 ± 0.3 3.9 ± 0.1 3.9 ± 0.1

Inter-monomer

β1a-β1a 3.4 ± 0.5 4.0 ± 0.1 4.0 ± 0.1
β1-β4 3.4 ± 0.5 4.0 ± 0.1 4.0 ± 0.1

Notes: In the simulations, the mean values were calculated over the 2–10 ns interval and over the monomers.
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(residues 12–14) display the opposite pattern, as their lifetimes 

are shorter in w_exact_xray  (data not shown) than in other sets 

of conformers, revealing thus a feature of the crystalline state. 

Similarly, in MD simulations, the inter-monomer hydrogen 

bonds between the strands β1a are more stable in sol_dimer 

than in cryst_tetra, in agreement with the variations of the 

β1a-β1a distance, described above.

The water bridges were detected in MD simulations 

as water molecules for which at least two atoms display a 

distance smaller than 2.5 Å to a protein acceptor or donor 

groups. Seven bridges are present in more than 25% of the 

molecular dynamics (MD) simulation sol_dimer, but this 

number is multiplied by 3 in the dimer of dimers simulations, 

where the size of the solute is multiplied by 2. The water 

bridges thus appear in presence of a more rigid structure 

and may induce this rigidity. In sol_dimer (Figure 7A), two 

water bridges are observed at the dimer interface, between 

O Met-51 (chain A)/H Arg-17 (chain B) and between the 

strands β4 and β1: H Glu-7 (chain A)/O∈1 Gln-82 (chain B). 

During the dimer of dimers MD simulations (sol_tetra, 

cryst_tetra), more water bridges are located (Figures 7B, C) 

between the dimers and at the monomer interfaces, and 

inter-monomer bridges appear between: H Ala-54/O∈1 

Gln-24, O Lys-11/H Gln-15, Leu-21/Hζ3 Lys-40, H Lys-

41/O Gln-24, O Met-51/H Ala-16. The appearance of water 

bridges is observed for MD simulations, for which the 

strands β1a tend to separate from each other according to 

the previous analyses, and may be thought to compensate 

for the induced structure destabilization.

The inter-molecular crystallographic water bridge 

between Thr-57 and Thr-12, which corresponds to a bridge 

conserved in the crystallographic structure,47 is not observed 
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Figure 6 Contact maps showing the hydrogen bond formation along the MD trajectories or among the ARIA conformers. (a) cryst_tetra (chains A, B), (b) sol_tetra (chains A, B), 
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in any of the MD simulations. In cryst_tetra, the crystal-

lographic water positions are not observed, and this may 

be the consequence of not modeling the exact environment 

and packing of the crystal. On the other hand, the disap-

pearance of the Thr-57/Thr-12 bridge in MD simulations is 

correlated with a larger variability of the relative monomer 

orientation than in the crystallographic ensemble refinement, 

and supports the importance of this bridge for stabilizing 

the dimeric structure, in agreement with the observation 

of Lesage et al.47 Indeed, the position of the Thr-57/Thr-12 

bridge is appropriate to block the rotation around the axis X, 

which is responsible for the largest part of the variability in 

monomers orientation inside the dimer.

To summarize, the Crh conformations closest to the crys-

tal structure, are characterized by more stable intra-monomer 

secondary structures along with a paradoxical separation 

of the β1a strands. This separation is accompanied by the 

apparition of a larger number of water bridges stabilizing 

the oligomer architecture. In that respect, the absence in MD 

simulations of water bridges present in the crystal is probably 

a reason for the residual variability in the monomers relative 

orientation.

Discussion conclusion
Several structure calculations were performed using ARIA 

with sets of distance restraints based on the solution and 

solid-state NMR experiments, as well as on the crystallo-

graphic structures. The clustering of solutions and the use 

of environment restraints (NCS, water) allows to generate 

dimer conformations exhibiting precision and accuracy 

similar to the ones observed for the ssNMR structure of the 

Crh dimer.17 The approach proposed here makes full profit 

of the data recorded in solution, which are easier accessible 

than ssNMR data, and of ssNMR chemical shifts which can 

be nowadays obtained even for proteins of up to 100 amino 

acids.48 The information about intermolecular restraints were 

here partly obtained from the X-ray crystallographic struc-

ture, but, as methodology for the measurement of restraints 

is advancing at a fast pace,49 one can expect in the future to 

rely more on the ssNMR information.

The sampled conformations give insights into the relative 

orientation of monomers during the transition from solution 

to crystal, as in wNCS_nmrII. The inclusion of specific water 

molecules at the interfaces was already shown to be important 

in the prediction of complex structures.50 Here, the presence 

of water molecules allows the apparition of water bridges 

stabilizing the inter-molecular interactions.

The variability of monomer orientation is concentrated 

in rotations around the dimer longitudinal axis, and this 

is just amplified but not created by the use of fuzzy NMR 

distance restraints, as this feature is observed also in a set 

of crystallographic conformers obtained from ensemble 

refinement along the structure factors. More generally, 

A

B

C

Figure 7 Water bridges observed in the MD simulations: A) sol_dimer, B) sol_tetra, 
C) cryst_tetra. The cuto3 distance for the detection of hydrogen bonds between 
water atoms and acceptor/donor groups was 2.5 Å. The Crh chains are colored in 
blue and red, and the water molecules are drawn in green CPK. This figure was real-
ized with pymol 0.98.51
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the comparable pattern of observed orientations for all 

series of conformations supports a funnel shape of the 

conformational space during the transition from solution 

to crystal.
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