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Background: Wilms tumor (WT) is the most common renal tumor in children with diffusely

anaplastic or unfavorable histology, indicative of a poor prognosis. Heterogeneous nuclear

ribonucleoprotein L (hnRNPL) is an RNA-binding protein (RBP) and a regulator of alter-

native RNA splicing that plays an important role in the occurrence and development of

several cancers.

Methods: Next generation sequencing technologies was used to discovery differentially

expressed genes between WT and adjacent nontumors. The gene ontology (GO) analysis was

performed to uncover the biological functions of differentially expressed genes, and the

kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis was

applied to find out the related signal pathways. Expression levelsof hnRNPL with WT tissues

and cells were determined by RT-qPCR.After silencing hnRNPL, the expression of hnRNPL,

p53 and Bcl-2 were detected by RT-qPCR and Western blot in WT cell line. The regulatory

effects of hnRNPLon proliferative and apoptotic potentials of WT cells were evaluated by

MTT and flow cytometry, respectively. RNA-binding protein immuno-precipitation was used

to confirm the direct interaction of hnRNPL with p53 mRNA. Mouse xenograft models

ofhnRNPL knockdown were established to test the functions in the growth of WT in vivo.

Results: High levels of hnRNPL were expressed in WT tissues and cells. Functional

analysis revealed that hnRNPL silencing suppressed cell proliferation and promoted cell

apoptosis in WT. Molecular mechanism exploration indicated that hnRNPL directly targeted

p53. Moreover, knockdown of hnRNPL inhibited the expression of p53 and Bcl2 in WT.

Additionally, hnRNPL silencing inhibited the growth of xenograft tumors in vivo.

Conclusion: HnRNPL act as p53 mRNA-binding protein, which plays an important role in

the proliferation and apoptosis of WT through p53 and Bcl2 pathways and these findings

provide new insights into the mechanism of WT pathogenesis.
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Introduction
Wilms tumor (WT) is the most commonmalignant tumor of the pediatric urinary system.

The combination of surgery, radiation, and chemotherapy has increased the survival rate

from 30% to more than 90% for many patients, but a cure remains elusive for patients

with metastatic or anaplastic disease. A significant number of patients die due to post-

operative recurrence, metastasis, and resistance to chemotherapeutic drugs.1

WTmaintenance and disease progression are associated with the altered expression

of multiple genes (WT1, WTX, CTNNB1, p53, MYCN, DROSHA, DGCR8, SIX1,

and SIX2), numerous recurrent copy number aberrations, and loss of heterozygosity

events.2 Wilms’ tumor 1 (WT1), located on chromosome 11p13, was first cloned in
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1990 as one of the first tumor suppressor genes in WT.3 No

recurrent loci for somatic WT1 mutations exist in WTs.2

Mutations in the WT1 gene occur in approximately 4–47%

of WT cases, and these are mostly nonsense mutations or

gene losses.4,5 The WT1 protein has become a useful marker

for the diagnosis of WTs. A pediatric renal tumor which

expresses WT1 protein in the nuclei of neoplastic cells is

considered aWT.6,7 Subsequently, a beta-catenin proto-onco-

gene (CTNNB1) and the Wilms’ tumor gene on the X chro-

mosome (WTX) have been identified in tumors.8 Combined

genetic alterations of WT1, CTNNB1, and WTX have been

estimated to occur in roughly one-third of WTs.9 A recent

whole-exome study identified mutations in microRNA pro-

cessing genes, including DROSHA and DGCR8, in 15% of

WTs.10 However, the frequencies of alterations in DROSHA

and DGCR8 are similarly low, leaving a significant fraction

of cases without an identified genetic defect “driver”.

Therefore, the identification and characterization of differen-

tial genes is of primary importance for understanding the

onset and progression of tumors, ultimately leading to the

recognition of potential markers and specific targets for the

prevention and individualized treatment of WTs.

Currently, cancer is considered to be a disorder of the cell

cycle and apoptotic mechanisms.11 Therefore, the cell cycle

and apoptosis are the two hotspots of research in malignant

tumors.12 Disordered cell cycle regulation, uncontrolled

apoptosis, and altered cell proliferation are the most obvious

characteristics of cancerous tissues.13 Many oncogenes and

antioncogenes can directly regulate the cell cycle, which

results in an abnormal cell cycle in which cells grow uncon-

trollably, with inhibited apoptosis characteristics.14

Wild-type p53 is an important tumor suppressor gene

that can induce cell cycle arrest, apoptosis, differentiation,

DNA repair, angiogenesis, and metastasis inhibition.15

Many malignant tumors are accompanied by missense

mutations in wild-type p53 and accumulation of a large

number of mutant p53 (mp53) proteins.16 Studies have

shown that after the loss of the tumor suppressor function,

some mp53 proteins acquire new functions, such as parti-

cipating in the proliferation of cancer cells and improving

the chemotherapeutic resistance of cancer cells.17,18 In

WTs, expression of the p53 protein is indicative of an

anaplastic pathological type.19 Additionally, 75% of ana-

plastic WTs have p53 gene mutations, suggesting that p53

mutation is a prognostic marker of unfavorable histology

in WTs.20 Studies have shown that a favorable WT histol-

ogy could develop into an unfavorable histology with

dysfunctions in the p53 gene.21 Furthermore, mp53 plays

an important role in the progression, recurrence, and

metastasis of tumors and may be an important marker of

poor prognosis in patients with WTs.

Heterogeneous nuclear ribonucleoproteins (hnRNPs)

directly regulate the alternative splicing of a set of RNAs

and serve as multifunctional RNA-binding proteins (RBPs)

for mRNA transport, translation, and stabilization.22 This

ribonucleoprotein family contains at least 20 members,

named hnRNPA1 to hnRNPU. HnRNPL, an HnRNP family

member, plays an important role in the occurrence and devel-

opment of liver cancer, lung cancer, breast cancer, esopha-

geal squamous cell carcinoma, colorectal cancer, bladder

cancer, pancreatic cancer, and other tumors, thus supporting

its clinical relevance.23,24 Importantly, both hnRNPL and its

RNA targets are aberrantly expressed, which was closely

related to the promotion of growth, proliferation, adhesion,

invasion, and metastasis in tumor cells.25,26 Recent research

has shown that downregulation of hnRNPL expression can

significantly inhibit hepatoma cell proliferation and

migration.27 In lung cancer, hnRNPL regulates the tumori-

genic capacity of non-small cell lung cancer cells by inter-

acting with the purine-rich regions of exon 3 of caspase-9

pre-mRNA, resulting in its degradation and affecting the

expression of a caspase-9 mRNA subtype.28 Similarly, in

pancreatic cancer, lncRNA uc.345 has been shown to

increase the expression of hnRNPL, whereas hnRNPL

knockdown significantly reduces the proliferative capacity

promoted by lncRNA uc.345.29 However, there is no

research on the expression and biological role of hnRNPL

in the development of human WTs.

Based on the above research background, we compared

the expression profiles of mRNAs in paired WT specimens

and adjacent normal tissues, identifying that hnRNPL is

overexpressed in WT samples and correlated with the p53

signaling pathway. Mechanistic investigations demon-

strated that hnRNPL could promote WT growth and sup-

press apoptosis by upregulating p53 and Bcl2 expression,

which might lead to new therapeutic approaches and

improve the survival of children with WT.

Materials and methods
Patient tissue specimens
Tumor and paracarcinoma tissues of 50 WT patients were

collected in the Department of Urology Surgery at the

Children’s Hospital of Chongqing Medical University.

Each specimen was immediately snap-frozen in liquid

nitrogen and stored at −80°C. The histological confrma-
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tion for these samples was performed by 2 pathologists.

This study was approved by the Ethics Committee of

Chongqing Medical University, and written informed con-

sent from all patients and their parents was obtained before

surgery.

RNA sequencing (RNA-Seq) and

bioinformatics analysis of tumor tissues
WT and adjacent nontumorous tissues from 3 patients

were immediately subjected to whole-transcriptome

sequencing using an Illumina Gene Expression Sample

Prep Kit and a Solexa sequencing chip (Gene, Shanghai,

China). Then, bioinformatics approaches, including Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses, were

used to analyze genes with distinct variations to determine

target RNAs and related signaling pathways.

Cell culture and transfection
A human immortalized normal kidney cell line (HK2) and

WT cell line (G401) were purchased from Beijing Union

Cell Resource Center. The cells were cultured under

adherent conditions in F12/DMEM (Gibco, USA) and

McCoy’s 5A medium (modified, Gibco, USA) supplemen-

ted with 10% FBS (Gibco, USA), 100 IU/mL penicillin

and 100 µg/mL streptomycin in a 5% CO2 incubator at 37°

C. The cells were observed and passaged every other day.

HnRNPL-targeting siRNA and negative control (NC)

siRNA sequences (Gene, Shanghai, China) are shown in

Table 1. Twenty-four hours before transfection, G401 cells

in the logarithmic growth phase were digested with a

Trypsin-EDTA solution (Gibco, USA) and counted.

Then, 1.5×105 cells were collected and plated in a 6-well

plate. An siRNA transfection reagent was prepared and

used according to the manufacturer’s instructions. The

cells were divided into three groups as follows: an experi-

mental group with hnRNPL siRNA transfection, a NC

group with NC siRNA transfection, and a blank control

group with no transfection.

Real-time quantitative RT-PCR
To quantitate the expression of hnRNPL, TP53, and Bcl2,

we extracted total RNA from 50 patients’ samples and the

G401, HK2, and G401 cell lines at 48 hrs after transfection

with RP1202 (Bioteke, China). The isolated total RNA

was reverse transcribed using PrimeScript RT Master

Mix (Takara, Japan) for mRNA analysis according to the

manufacturer’s instructions. The quantity of the mRNA

was measured using SYBR Premix Ex Taq II (Takara,

Japan), and the reactions were performed on a CFX96

Real-Time PCR Detection System (Bio-Rad, USA). The

PCR conditions were 30 s at 95°C followed by 40 cycles

at 95°C for 5 s and 60°C for 45 s. The sequence-specific

primers used for HnRNPL, P53, and Bcl2 and GAPDH are

shown in Table 2. The expression levels of hnRNPL,

TP53, and Bcl2 mRNA were quantified relative to those

of GAPDH using the 2-ΔΔCT method.

Western blot analysis to detect HnRNPL,

p53, and Bcl2 protein expression
Cells were harvested 48 hrs after siRNA transfection, and

protein was isolated with RIPA buffer (Beyotime, China).

Cellular protein was extracted from each group, and the

total protein content was determined according to the

instructions provided with the cell protein extraction kit.

The total protein samples were separated on SDS-PAGE

gels and transferred onto PVDF membranes (Millipore,

USA). The membranes were immunoblotted overnight at

4°C with primary antibodies against the following targets:

HnRNPL (1:800; Abcam, UK), p53 (1:800; Abcam, UK),

Bcl2 (1:1000; Abcam, UK), and human β-actin (1:500;

Abcam, UK). The PVDF membranes were washed with

TBST and then incubated with secondary HRP-conjugated

goat IgG (1:5000; ZSGB-BIO,China) for 1 hr at 37°C.

Signals were detected with a Bio-Rad Image Lab system

(Bio-Rad, USA). The images were quantified by Image J

Table 1 HnRNPL siRNA sequences

siRNA Sequences (5ʹ–3ʹ)

HnRNPL siRNA 5ʹ-UUCUCCGAACGUGUCACGUTT-3ʹ

5ʹ-AUCUUAGAUUGAUCCAAGCTT-3ʹ

NC siRNA 5ʹ-ACUACUGAGUGACAGUAGATT-3ʹ

5ʹ-UCUACUGUCACUCAGUAGUTT-3ʹ

Table 2 Sequence-specific primers

Gene Primers (5ʹ–3ʹ)

hnRNPL Fwd: 5ʹ-GCTATGTGGTGGTAATGCCTAA-3ʹ

Rev: 5ʹ-ATAAATGGGGTTCAGGATGGTA-3ʹ

TP53 Fwd: 5ʹ-GGCCCACTTCACCGTACTAA-3ʹ Rev: 5ʹ-

GTGGTTTCAAGGCCAGATGT-3ʹ

Bcl2 Fwd: 5ʹ-GGATGCCTTTGTGGAACTGT-3ʹ

Rev: 5ʹ-AGCCTGCAGCTTTGTTTCAT-3ʹ

GAPDH Fwd: 5ʹ- GTCAAGGCTGAGAACGGGAA-3ʹ

Rev: 5ʹ-AAATGAGCCCCAGCCTTCTC-3’
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software, and the relative protein expression levels were

normalized to β-actin levels in each sample. All experi-

ments were performed in triplicate.

MTT assay
Cells were plated in 96-well plates after transfection (104/

well/100 μL; 6 wells per group) and incubated in a humi-

dified atmosphere with 5% CO2 at 37°C. After incubation

for 0, 24, 48, and 72 hes, MTT (5 mg/mL) was added to

each well, and the plates were incubated for an additional

4 hes. Then, the culture medium was discarded, and 150

μL of DMSO was added. Finally, the plate was shaken at

200 rpm for 10 mins, and the optical density was deter-

mined at 490 nm on a multiwell plate reader. The back-

ground absorbance of the medium without cells was

subtracted. All samples were assayed in triplicate, and

the mean±SD for each experiment was calculated. Cell

growth curves were plotted with time on the transverse

axis and A490 on the longitudinal axis.

Apoptosis rate assay
After incubation at 37°C with 5% CO2 for 48 hrs, siRNA-

transfected cells were harvested and washed twice with

cold PBS. The cells were centrifuged, resuspended, and

stained with Annexin V-FITC and propidium iodide from

an Annexin V-FITC Apoptosis Detection Kit for 10 mins

at room temperature in the dark. Then, the cells were

analyzed on a flow cytometer according to the manufac-

turer’s protocol. All tests were repeated in triplicate.

RNA immunoprecipitation (RIP) assay
Transfected cells were lysed in complete RIP lysis buffer

(Millipore,USA), and the cell lysates were stored at −80°C
until use. The cell extracts were then incubated with magnetic

beads conjugated to specific antibodies or control IgG

(Millipore) overnight at 4°C. The beads were washed 6

times and incubated with proteinase K to remove proteins.

All procedures were performed according to the manufac-

turer’s protocols. Finally, the purified RNAwas reverse tran-

scribed into cDNA and subjected to qRT-PCR analysis.

Xenograft tumor model establishment

and analysis
All the animal experiments were approved by the Animal

Ethics Committee of the Children’s Hospital of Chongqing

Medical University and were in accordance with the experi-

mental protocol of the Children’s Hospital of Chongqing

Medical University. Cell lines were stably transfected with

hnRNPL siRNA and NC siRNA and diluted with the appro-

priate cell culture medium. For tumor xenograft formation,

6×106 total cells were injected into the dorsal skin (6 points per

mouse) of 4- to 5-week-old male BALB/c nude mice (n=3 per

group, from the Experimental Animal Center of Chongqing

Medical University, China). The mice were observed daily.

After 4, 16, and 30 days, anesthetized mice were subcuta-

neously injected with 75 mg/kg D-luciferin (Xenogen, USA)

in PBS. Bioluminescence images were acquired with an IVIS

Imaging System (Xenogen) 2–5mins after injection. Analyses

were performed using Living Image software (Xenogen),

which uses the photon flux of a region of interest (ROI)

drawn around the bioluminescence signal to be measured.

For determination of the “fold increase” above background,

average background measurements were obtained using the

same ROI for a corresponding region in NC mice. The data

were divided by the average background measurement and

normalized to the signal obtained immediately after xenograft

formation (day 4). The tumors were obtained from nude mice

after 1 month and weighed.

Statistical analyses
Statistical analysis was conducted using SPSS 19.0 soft-

ware (IBM, USA). Gene expression is indicated as the

mean value and its range of variability (lower limit,

upper limit). Protein expression is indicated as the mean

± SD (�x ± s). Comparison of multiple sample means was

performed using . A P-value <0.05 was considered statis-

tically significant for all tests.

Results
HnRNPL upregulation in human WT

tissues and cells
The tumor types of all specimens were confirmed by two

independent pathologists. Based on the RNA-Seq data from

the clinical samples of 3 WT patients, 328 upregulated genes

and 420 downregulated genes were identified in the WT

tissues. A hierarchical clustering analysis showed that the

gene expression pattern was changed (Figure 1A). We iden-

tified hnRNPL overexpression in the WT samples (P<0.01;

Figure 1B). Furthermore, hnRNPL mRNA expression was

significantly higher inWT tissues than in adjacent nontumor-

ous tissues by qRT-PCR with 50 patients’ samples (P<0.01;

Figure 1C). Then, hnRNPL was overexpression in WT cells

compared with normal kidney cells (P<0.001; Figure 1D) as

determined by qRT-PCR. These results were consistent with
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the chip sequencing results and implied that hnRNPL plays

an important role in WT formation.

Differentially expressed genes participate

in biological processes and the p53

signaling pathway in WTs
To systematically identify the functions of the genes dif-

ferentially expressed in WTs, we performed GO and

KEGG pathway enrichment analyses. GO analysis showed

that the differentially expressed genes are involved in

many processes, such as cell proliferation, single-organism

processes, biological quality regulation, and RNA poly-

merase II transcriptional regulation (Figure 2A). KEGG

pathway enrichment analysis showed that these differen-

tially expressed genes are involved in some signaling path-

ways that are significantly correlated with tumor

progression, such as leukocyte transendothelial migration,

the p53 signaling pathway, and transcriptional misregula-

tion in WT (Figure 2B).
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Relative hnRNPL, p53, and Bcl2

expression levels were significantly

decreased in hnRNPL siRNA-transfected

WT cells
To further investigate the effect of hnRNPL in WTs, we

downregulated hnRNPL expression by transfecting tumor

cells with siRNAs. Based on the bioinformatics results and

previous literature, we were interested in determining

whether hnRNPL could regulate the p53 signaling path-

way by RNA binding or alternative splicing. qRT-PCR

indicated that the expression levels of hnRNPL, p53, and

Bcl2 in G401 cells were significantly lower in the

hnRNPL siRNA transfection group than in the blank con-

trol and NC groups (P<0.05; Figure 3). The Western blot

results were similar that siRNA transfection group is lower

expression than the blank and NC groups (P<0.01;

Figure 4). These results verified that hnRNPL silencing

decreased p53 and Bcl2 activity, suggesting that hnRNPL

could regulate p53 pathway enhancers in WTs.

WT cells proliferation was significantly

inhibited and apoptosis was promoted

after transfection with HnRNPL siRNA
To study the functional consequences of silencing

hnRNPL in WT cells, we measured cell proliferation and

apoptosis. The growth of tumor cells in the hnRNPL

siRNA transfection group was obviously inhibited as

determined by MTT assays (P<0.05; Figure 5). Flow cyto-

metry showed that the early apoptosis rate was signifi-

cantly higher in the hnRNPL siRNA transfection group

after 48 hrs than in the blank control and NC groups

(P<0.001; Figure 6). Based on these data, hnRNPL silen-

cing inhibited proliferation of WT cells and promoted cell

apoptosis by reducing Bcl2 levels.
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P53 mRNA is a novel target for hnRNPL

in WT
As a classic RBP, hnRNPL can regulate target genes through

protein–RNA binding. To characterize the association

between hnRNPL and p53, we used RIP assays to map

hnRNPL–p53 interactions in WT cells. The results showed

that the hnRNPL protein could directly interact with p53

mRNA in WT (Figure 7).

HnRNPL promotes WT progression in

vivo
Finally, to assess the impact of hnRNPL on WT progression

in vivo, we subcutaneously injected G401 cells transfected

with hnRNPL siRNA or NC siRNA into BALB/c nude

mice. The intratumoral accumulation of hnRNPL siRNA

resulted in significant suppression of tumor growth at 30

days after transplantation, as assessed by the biolumines-

cence imaging of xenografts (P<0.05; Figure 8A-E) and

weighing of tumor tissues (P<0.05; Figure 8F). Thus,

hnRNPL acts as an oncogenic factor in WT growth in vivo.

Taken together, these data indicate that hnRNPL

knockdown could inhibit proliferation and accelerate

apoptosis by directly regulating the p53/Bcl2 signaling

pathway in WTs. Thus, hnRNPL likely participates in the

mechanism of nephroblastoma formation and may be a

useful therapeutic target for WTs.

Discussion
The initiation and progression of WTs is a complex process

involving multiple genes and stages, including mutation of

normal genes, inactivation of tumor suppressor genes, and

activation of oncogenes.30 Considering the important role of

RNA editing as a posttranscriptional regulatory mechanism,

it is not surprising that aberrant activation of RNA editing has

emerged as a driver of cancer progression.31 The discovery

of widespread deregulated RNA processing events in many

human cancers indicates that transcriptome remodeling and

translational deregulation are hallmarks of malignant trans-

formation and therapeutic resistance.32 Importantly, rapid

advancements in the sensitivity of sequencing technologies

have facilitated the detection of rare but functionally relevant
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transcripts in primary human cells.32 We generated RNA

expression profiles of WTs using high-throughput sequen-

cing technology and identified 748 abnormally expressed

genes. We screened an essential gene, hnRNPL, that is over-

expressed inWTs and verified the results in tumor tissues and

cells by qRT-PCR. Previous studies of hnRNPL in diseases

have focused on its function as a spliceosome and an

RBP.33,34 In addition, more than 90% of genes are shown to

undergo alternative splicing, and many disease-causing

mutations give rise to alternative mRNA transcripts.35,36

RBPs are highly pervasive posttranscriptional regulators

involved in pathways regulating gene expression, including

maturation, nuclear transport, stabilization, degradation, and

translational control of RNAs.32 However, the function of

hnRNPL in WTs is unknown. Here, using a combination of

in vitro, in vivo, and human tumor data, we demonstrate that

hnRNPL is an important modulator of WT pathogenesis and

can facilitate the translation of p53 mRNA by directly bind-

ing with the p53 gene. HnRNPL knockdown decreases p53

and Bcl2 activity, induces cell apoptosis, and inhibits cell

proliferation and tumor growth in WT.

P53 is a well-known tumor suppressor gene that is

frequently mutated in many human cancers, and it has

been extensively studied as a potential therapeutic target

in WTs.20 P53 mRNA translation is regulated by some

microRNAs and RBPs.37 Here, we provided evidence

that hnRNPL functions as a positive regulator of p53

translation and confirmed a direct regulatory relationship

between endogenous hnRNPL and p53 mRNA using

RIP assays in WT cells. HnRNPL might act as an

alternative spliceosome and an RBP binding to the

5ʹuntranslated region, 3ʹ end or pre-mRNA of p53

mRNA, contributing to human WT initiation and pro-

gression. Interestingly, although p53 can promote apop-

tosis by transcriptionally activating apoptotic genes or

interacting with Bcl2 regulators and inducing cell cycle

arrest,38 we found that hnRNPL knockdown results in

increased apoptosis and inhibited proliferation in WT

G401 cells via the blockade of Bcl2 protein which

inhibits cell apoptosis by decreasing p53 levels.25

Thus, these findings demonstrate that hnRNPL promotes
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growth and reduces apoptosis in WTs, which supports

the hypothesis that hnRNPL is closely related to WT

oncogenesis.

Surprisingly, knockdown of hnRNPL could reduce

the expression of p53 but inversely inhibit the growth

of WTs, attributed to the fact that the p53 gene may be

mutated in cancers.16,39 In fact, 75% of anaplastic

nephroblastoma cases have p53 mutations, and p53

mutations could change a favorable WT histology to

an unfavorable histology.40,41 Additionally, mutated

p53 may be exploited by cancer cells to facilitate

tumorigenesis, for example, by promoting cell prolif-

eration, enhancing antiapoptotic activity and enhancing

chemotherapy resistance.42,43 Therefore, hnRNPL

might facilitate p53 mutations by splicing and editing

RNA in WTs. Finally, we established a xenograft tumor

model using immunodeficient mice and demonstrated

that hnRNPL promoted tumorigenesis in vivo.

Conclusion
Our results have shown that hnRNPL is an oncogene that

can act as a hub in the p53/Bcl2 signaling pathway, which

plays an important role in the proliferation and apoptosis

of WT cells. This study, for the first time, links hnRNPL to

the p53 and Bcl2 signaling pathways and provides new

insights into disease pathogenesis along with a useful

therapeutic target for WTs.
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