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Abstract: CRYAB is a member of the small heat shock protein family, first discovered in

the lens of the eye, and involved in various diseases, such as eye and heart diseases and even

cancers, for example, breast cancer, lung cancer, prostate cancer, and ovarian cancer. In

addition, CRYAB proteins are involved in a variety of signaling pathways including apop-

tosis, inflammation, and oxidative stress. This review summarizes the recent progress con-

cerning the role of CRYAB in signaling pathways and diseases. Therefore, the role of

CRYAB in signaling pathways and cancers is urgently needed. This article reviews the

regulation of CRYAB in the apoptotic inflammatory signaling pathway and its role in cancers

progression and as a key role in anti-cancer therapy targeting CRYAB in an effort to improve

outcomes for patients with metastatic disease.
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Introduction
Small heat shock proteins (sHsps or HspBs) form a large and evolutionary ancient family,

whose members have been found in viruses, archaea, bacteria, plants, and animals.1 The

human genome contains 10 genes encoding sHsps.2 Some sHsps (HspB1, HspB5,

HspB6, and HspB8) are expressed ubiquitously, while others (HspB2, HspB3, HspB4,

HspB7, HspB9, and HspB10) have been found only in certain tissues.3 sHsps are

characterized by their complex oligomeric structures, allowing them to interact with

each other to form homo- and hetero-oligomeric structures of dynamic size (up to 700

kDa).4 For instance, the heterooligomeric complex formed by HspB4 and HspB5 plays

an important role in keeping the lens transparency.5 In heterooligomeric complexes,

HspB6 and HspB1 mutually affect the structure of each other and the formation of

heterooligomeric complexes might influence diverse processes depending on sHsps.6

HspB5, also known as CRYAB or αB-Crystallin, has an N-terminal domain,

a central domain, and a C-terminal domain.7 Its structural and functional character-

istics are shown in Figure 1:8 1) low molecular weight of 22 kDa; 2) N-terminal

domain of about 60 residues, a conserved α-crystallin structure of about 90 residues

involved in the dimerization domain, and the 25-residue C-terminal domain con-

taining the IXI motif; 3) the ability to form large oligomers; 4) dynamic quaternary

structure; and 5) induction by stress conditions.

CRYAB was first discovered proteins in the lens of the eye9 and is also expressed in

other parts of the body, such as the heart, skeletal muscle, ovaries, etc.10–12 However,

CRYAB protein mutations associate with the different diseases. For instance, domain

mutations (D109H, R120G, Q151X, G154S, P155Rfs9X, and R157H) are associated
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with myopathy.13 The dominant D109A mutation of CRYAB

is pathogenic and associated with myofibrils myopathy.14,15 In

addition to myopathy, mutations D109H, R120G, and

X176Wfs19X are only associated with cardiomyopathy and

cataract or discrete lens opacity.16 Other dominant mutations

(R11H, P20R, P20S, R69C, D140N, K150Nfs34X, A171T)

and recessive mutations (eg, R11C, R12C, R56W) are also

described as associated with congenital cataracts, uniformly

dispersed throughout the coding sequence.17 The autosomal

dominant multisystem phenotype in the residual (D109H)

mutation is not only associated with myopathy, but also with

cardiomyopathy and lens cataract.18 Even point mutations or

short deletions in CRYAB can lead to the development of

different hereditary diseases.

CRYAB acts primarily as a chaperone, blocking the

aggregation of denatured proteins and keeping aggregation-

prone proteins in reservoirs of non-native, foldable inter-

mediates within large, soluble, multimeric structures.19 The

ectopic expression of CRYAB in diverse cell types has been

demonstrated to confer protection against a broad range of

apoptotic stimuli,20 oxidative stress,21 and exposure to antic-

ancer drugs.22 Simultaneously, silencing its expression by

RNA interference sensitizes cells to apoptosis.23 Similarly,

a growing number of researchers have described the high

expression of CRYAB in human cancers and the significant

relationship between CRYAB and unfavorable survival of

cancer patients.24–26

So, what is the role of CRYAB in participating in the

apoptotic and inflammatory pathways and what role does it

play in the diseases? Here, we review recent advances impli-

cating the importance of CRYAB in signaling pathways, its

role in cancer progression, and as target molecules in antic-

ancer therapy.

The role of CRYAB in the signaling
pathway
CRYAB has multiple functions in cells, but how does it

work? Based on the report, the apparent pleiotropic activity

of CRYAB may be due to its binding to chaperones and

regulation of the activity and half-life involved in many

protein targets involved in apoptotic cell death tumorigen-

esis and metastasis.27–29 And CRYAB contains several ser-

ine sites that can be phosphorylated by specific stress or

mitogen-activated protein kinases.30 Phosphorylation and

oligomeric organization of these proteins are dynamic and

are deeply modified due to changes in the cellular

environment.31 In fact, these structural modifications are

reversible and may be sensors in the cellular environment.

Changes in the sHsps structure can lead to at least 300

different stoichiometries to allow them to interact with

putative proteins.32

Participation in apoptosis
Apoptosis is a programmed cell death that is negatively

regulated by sHsps.33–35 In environmental damage such as

heat shock, contrary to the increased expression of sHsps,

the expression of these proteins is not up-regulated in

apoptosis. In some cells, the expressed sHsps can counter-

act the apoptotic process mediated by the immune system

or therapeutic drugs. CRYAB is now thought to interact

with specific proteins and regulate their activity during the

initiation and execution phases of apoptosis.36,37

CRYAB is a recognized anti-apoptotic protein,38 whose

main property is to negative regulation of the proapoptotic

members of the Bcl-2 family, Bax, and caspase-3.39 CRYAB

interacts directly with caspase-3, Bax, and Bcl-xS.39,40 In

addition to interacting with these proteins, CRYAB inhibits

their transfer from the cytoplasm to the mitochondria,

thereby preventing stress-induced apoptosis.40 Similarly,

CRYAB interacts with p53 to sequester its translocation to

the mitochondria, thus indirectly inhibiting its pro-apoptotic

effect against the apoptotic Bcl-2 molecule.41 CRYAB pro-

tects cells from apoptosis by inhibiting caspase-3 and PARP

(poly(ADP-ribose) polymerase) activation.42 CRYAB was

also found to inhibit p53-dependent apoptosis mediated by

the calcium-activated Raf/MEK/ERK signaling pathway by

H2N
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α-Crystallin domain

Phosphorylation sites WDPF motf N-terminal domain Flexible C-terminal domain

149 175
COOH
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Figure 1 Schematic representation of the structure of the CRYAB protein (including the N-terminal domain, the flexible C-terminal domain, the WDPF domain, and the α-
Crystallin protein domain, and the serine (S) phosphorylation site).
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inhibiting Ras activation.43 CRYAB can also block UVA cell

apoptosis by participating in the regulation of PKCα1pha
and Raf/MEK/ERK signaling pathway proteins.44 In addi-

tion, CRYAB binds directly to the most potent endogenous

inhibitor of apoptosis, X-linked inhibitor of apoptosis, to

inhibit caspase.45 CRYAB is involved in the regulation of

intracellular apoptosis signaling, which inhibits apoptosis by

activating the Akt signaling pathway and enhancing PI3K

activity.46 The above data indicates the anti-apoptotic effect

of the CRYAB protein (Figure 2). Recently, results showed

CRYAB protects cardiomyocytes against heat stress, likely

by reducing Factin aggregation (thus stabilizing the cytoske-

leton), regulating the cell cycle, and preventing caspase-

mediated apoptosis.47

Involved in inflammation and redox
Intracellular CRYAB has been shown as one of the potent

factors in controlling neuroinflammation in several occa-

sions, for instance, multiple sclerosis (MS), an autoimmune

demyelinating disease of the central nervous system (CNS).

A surprising finding about CRYAB is that patients with MS

have at least 70 different proinflammatory mediators (acute

phase proteins, complement cascade members, and clotting

factors). The interaction with CRYAB reduces the concentra-

tion of these peptides, leading to a decrease in inflammatory

response.48 In the CNS, microglia and astrocytes are the two

main cellular components that participate in the inflamma-

tory process. Recent research reports indicated the molecular

and cellular basis of extracellular CRYAB-mediated suppres-

sion of neuroinflammation. In EAE mice, the expression of

CRYAB was significantly increased in astrocytes. CRYAB

was preferentially expressed in astrocytes and can be secreted

through exosomes. Expression levels of exosomal CRYAB

secreted from astrocytes were markedly increased under

stress. Furthermore, incubation of immortalized astrocytes

or microglia cell lines with CRYAB remarkably inhibited

astrocytes and microgliamediated inflammatory responses

in both autocrine and paracrine manners.49

Another anti-inflammatory pathway associated with

extracellular CRYAB involves activation of immunoregu-

latory responses in macrophages via endosomal/phago-

some CD14 and Toll-like receptors 1 and 2 (two new

CRYAB interacting proteins).50 These reports clearly indi-

cate that CRYAB has a different effect on inflammation.

Inflammation is also associated with oxidative stress,

and, in this respect, CRYAB induces a reduced state in

cells.51,52 In fact, CRYAB-expressing cells are accompa-

nied by a decrease in mitochondrial membrane potential

and reduced glutathione, a decrease in intracellular reac-

tive oxygen species and nitric oxide levels, and iron

uptake.53,54 Therefore, it can impair protein oxidation,

lipid peroxidation, DNA damage, and cytoskeletal struc-

ture damage caused by oxidative stress.55–57

CRYAB in diseases
CRYAB is a structural protein of the lens that helps maintain

lens transparency.9 CRYAB is also expressed in non-tissue,

including the heart, brain, skeletal muscle, skin, ovaries, and

kidneys.10–12 Abnormal expression of CRYAB also occurs in

manydiseases, such as eye diseases58,59 and heart diseases.60,61
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Figure 2 Schematic diagram of CRYAB protein involved in the regulation of apoptosis (inhibition: ┤, activation: →).
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There is increasing evidence that CRYAB is an important

regulator of cardiac cytoprotection and is resistant to various

forms of cellular stress. Over-expression of CRYAB in cul-

tured cardiomyocytes and transgenic mouse hearts protects

against ischemia or reperfusion injury52 and reduces cardiac

hypertrophy caused by overload53 CRYAB-20 protein levels

are reduced during ischemia, and reperfusion causes clinical

damage to cardiac function. Administration of CRYAB-20

peptide reduced the infarct size of the mouse model of myo-

cardial infarction and showed cardioprotective effects of

CRYAB.64 Most interesting is the recent discovery that abnor-

mal expression of these chaperones often occurs in tumors.65–

67 There is increasing evidence that CRYAB is diversified and

significantly associated with cancer.68,69 Emerging strategies

to therapeutically target CRYAB and/or interacting proteins to

selectively activate apoptosis and/or derail the metastatic cas-

cade in an effort to improve outcomes for patients with meta-

static disease.24

CRYAB in breast cancer
Breast cancer (BC) is one of the most common cancers for

females and the leading cause of cancer-related death in

females globally, with a high incidence rate and

mortality.70 BC may have evolved from a process of con-

tinuous progression of hyperplasia of mammary gland

(HMG).71,72 According to reports, the expression of

CRYAB was significantly up-regulated in HMG,73 while

it was also highly expressive in BC, such as basal-like,

triple-negative breast cancer (TNBC), and mammary

metaplastic carcinoma.74–76 Although Her2 has long been

reported to be involved in the pathogenesis of brain metas-

tases, it has recently been reported that CRYAB expression

is associated with distant recurrence in TNBC patients and

as the first distal site compared to early brain

recurrence.77–80 Consistent with this pathogenic effect,

CRYAB is closely associated with advanced tumor pro-

gression, lymphocytic infiltration, and death, and could be

a novel oncoprotein biomarker of a poor prognosis in BC,

especially in advanced patients.81,82 Paradoxically, the

upregulation of CRYAB was not involved in the molecular

chaperone in the progression of the disease,83 and did not

seem to have an independent impact on patient survival or

to interfere with taxane-based therapy in two randomized

clinical trials.84

So how is the CRYAB protein regulated in BC?

Upregulation of CRYAB may be associated with transcrip-

tional activation. In fact, the CRYAB gene promoter con-

tains the proto-oncogene Ets1, a member of the ETS

transcription factor family that bind to DNA at palindro-

mic ETS-binding sites (EBS), which are activated by the

oncogenic transcription factor Ets1. Ets1-mediated events

appear to be associated with poor survival.85 In addition,

Bcl-2 is reported to be a positive prognostic marker

for BC, and CRYAB is a marker of poor prognosis. In

the correlation analysis, the two proteins demonstrated

a weak negative correlation.86 Simultaneously, CRYAB

enhances tumorigenesis by regulating the vascular

endothelial growth factor (VEGF) and confers anti-

VEGF resistance to BC.87,88 It induces EGF and ancho-

rage-independent growth of human mammary gland-like

tumors through constitutive activation of the MEK/ERK

pathway.89 CRYAB can also be used as an oncoprotein

because it transforms immortalized human mammary

epithelial cells in invasive BC in nude mice, which have

the same characteristics as mammary gland-like tumors.75

CRYAB in lung cancer
Lung cancer (LC) is the most common malignancy world-

wide, and also the leading cause of cancer-related mortality

in the majority of developed countries.90 The two major

types of LC are small cell (SC) and non-small cell lung

cancer (NSCLC), and the latter accounts for approximately

85% of all cases.91 Many studies are devoted to NSCLC,

but there is still a lack of specific and valuable molecular

markers to accurately indicate the prognostic status of

NSCLC patients. Early studies have shown that CRYAB is

up-regulated in NSCLC by analyzing gene expression pro-

files of Anip973R and its parental line.92 Is CRYAB an

independent marker for prognosis in NSCLC? A study

reported that CRYAB did not predict outcomes in patients

treated for NSCLC. The reason is that larger studies are

required to validate this finding.66 Another study was the

first to report on the differential expression of CRYAB with

NSCLC, in both mRNA and protein level simultaneously.

In addition, high CRYAB protein expression was correlated

with certain clinic pathological attributes, including TNM

stage and overall survival.93 CRYAB, whose nuclear stain-

ing is an independent factor of poor survival, plays an

essential role in NSCLC biology.94 What’s more, ERK-

regulated CRYAB induction by matrix detachment inhibits

anoikis and promotes lung metastasis in vivo.95 Some stu-

dies have proved that CRYAB over-expression in idiopathic

pulmonary fibrosis (IPF) disrupts Smad4 mono-

ubiquitination by interacting with its E3-ubiquitin ligase,

TIF1γ, limiting its nuclear export, thus activing TGF-

β1-Smad4 pro-fibrotic activity, demonstrating that
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CRYAB may also be a key target for the development of

specific drugs in the treatment of IPF or other fibrotic

diseases.96 CRYAB may be distinguished as a novel prog-

nostic biomarker in NSCLC patients, and targeting CRYAB

may provide a promising strategy for NSCLC treatment.93

CRYAB in hepatocellular carcinoma
Primary liver cancer is a cancer which occurs in liver and

is the third most common cause of cancer-related deaths

worldwide. Hepatocellular carcinoma (HCC) is the most

prevalent subtype of primary liver cancer.97 Much hope is

focused on obtaining a better understanding of the

mechanism relevant to this disease in order to develop

new preventive, diagnostic, and therapeutic options. First,

CRYAB promoted HCC progression in vivo and in -

vitro. Second, functional and genetic screens demonstrated

that CRYAB overexpression fostered HCC progression by

inducing EMT. Remarkably, CRYAB complexes with and

elevates 14–3-3ζ protein, leading to up-regulation of

ERK1/2 activity. Clinically, CRYAB expression correlated

with BCLC staging, patients‘ overall survival, and disease

recurrence. Simultaneously, CRYAB overexpression acti-

vated the ERK1/2/Fra-1/slug signal to induce HCC cell

EMT. The above results support the notion that CRYAB is

a positive regulator of HCC growth and aggressiveness.65

Moreover, upregulation of CRYAB is regulated by its

upstream heat shock factor 1 (HSF1), the predominant

regulator of heat shock response and whose phosphoryla-

tion is induced by glucose in HCC cell lines.98 Therefore,

expression of the CRYAB gene, which is related with the

transferability and invasive capacity of hepatocellular car-

cinoma cells, can be used as a prognostic indicator in

human hepatocellular carcinomas. It may also be involved

in the malignant transformation of hepatocytes.99

CRYAB in OS
Osteosarcoma (OS) is the most common primary malig-

nant tumor in children and adolescents.100 Early studies

via detection of two-dimensional difference gel electro-

phoresis, the genomic analysis, and further studies in OS

have indicated the amount of CRYAB was significantly

increased, especially in advanced stages of the disease.101

CRYAB expression is high in OS tissues and is positively

correlated with cell invasiveness and activity of ERK1/2

secreted by MMP-9 (Matrix Metalloprotein-9). Clinically,

the high expression of CRYAB is associated with shor-

tened survival and tumor recurrence in postoperative OS

patients, and is a new adverse outcomes marker for OS

patients.102 A study showed krüppel-like factor 4 (KLF4),

a zinc-finger transcription factor, and an essential regulator

in many cellular processes, specifically bound the promo-

ter of CRYAB and upregulated CRYAB expression in

human osteosarcoma cells.103 Another study revealed

microRNAs-491 plays a role in osteosarcoma by directly

targeting CRYAB.104 Whether CRYAB protein is actively

regulated or passively regulated, it is closely related to OS

disease, and may be a new therapeutic target of OS.

CRYAB in colorectal cancer
Colorectal cancer (CRC) is the third most common cancer

in both males, and the fourth leading cause of cancer-

related deaths worldwide.105 Research on early diagnosis

of colorectal carcinogenesis biomarkers is still ongoing,

and the selection of “personalized” treatment strategies

provides a prognostic marker for colorectal cancer to

improve the prognosis of the disease.106 The study was

the first to report the expression of CRYAB and splicing

changes may mark the risk of cancer by CRC biopsy

analysis.79,107 Its high expression, lymph node metastasis,

distant metastasis, and tumor TNM stage were all signifi-

cantly associated with the overall survival CRC patients.

CRC patients with high CRYAB expression and positive

distant metastasis encountered a significantly poorer over-

all survival.79 Clinical data indicated that CRYAB expres-

sion upregulation had a positive association with TNM

stage CRC patients.108

CRYAB high expression could prompt tumor cell pro-

liferation, invasion, and metastasis of CRC through

EMT.108,109 Its expression level in CRC patients was clo-

sely correlated with MMP7 and E-cadherin, two core EMT

gene products. In addition, three significant signaling path-

ways (PI3K, p38, and ERK) were involved in CRYAB-

induced EMT.108,110,111 However, in certain cell types, the

ERK, but not PI3K and p38 signaling pathways, may be

crucially involved in the invasion, proliferation, and EMT

induced by CRYAB over-expression. In summary, CRYAB

may trigger the EMT in CRC by activating the ERK

signaling pathway and is a potential tumor biomarker for

CRC diagnosis and prognosis.108 Also, CG/GG at CRYAB

C-802G is correlated with CRC susceptibility, and this

polymorphism may be a useful marker for the clinical

outcome of CRC.112

CRYAB in head and neck cancer
Head and neck cancers comprise a heterogeneous group of

tumors that arise in the paranasal sinus, oral and nasal
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cavities, pharynx and larynx, and salivary glands. 90% of

these tumors are squamous cell carcinomas and are newly

diagnosed in 600,000 patients annually.105 Only 40–50%

will survive 5 years, making this the fifth-most frequent

malignant cancer worldwide.113 Regarding brain cancer,

high expression levels of CRYAB are evident in invasive

gliomas.114,115 The higher expression of CRYAB may lead

to prolonged survival of head and neck squamous cell

carcinoma cells under hypoxic conditions, more likely by

ROS formation.116 In laryngeal squamous cell carcinoma

(LSCC), CRYAB is significantly overexpressed and corre-

lated with malignant phenotypes. CRYAB had a poor

prognosis in cancer patients25 and may serve as a novel

prognostic factor for LSCC.67,117 In oral squamous cell

carcinoma, CRYAB is highly expressed and has a poor

prognosis for cancer patients.118 It was first found that the

single nucleotide polymorphisms at the promoter region of

CRYAB, C-802G, is associated with patient oral cancer

susceptibility, recurrence, and 5-year disease-free survival,

but not metastasis.119

However, CRYAB staining with cutaneous squamous

cell carcinoma of the head and neck (CSCCHN) with

clinical Perineural invasion (PNI), a clinical indicator of

poor prognosis, showed a decrease compared to non-PNI

CSCCHN. Surprisingly, CRYAB is a key component in the

machinery leading to degradation of cyclin D1, which is

key to understanding how loss of CRYAB can lead to

deregulated cellular growth in CSCCHN with PNI. It is

possible that under-expression of CRYAB in tumors that

exhibit neurotropism contributes to their more aggressive

nature.120

Moreover, in nasopharyngeal carcinoma (NPC), CRYAB

is down-regulated.121 Activation of CRYAB suppressed NPC

tumor formation in nude mice. Overexpression of CRYAB

affectedNPC progression-associated phenotypes such as loss

of cell adhesion, invasion, interaction with the tumor

microenvironment, invasive protrusion formation in three

dimensionalMatrigel culture, as well as expression of epithe-

lial-mesenchymal transition-associated markers. CRYAB

functions to suppress NPC progression by associating with

the cadherin/catenin adherens junction and modulating the β-
catenin function.122

CRYAB expression is down-regulated in highly dediffer-

entiated malignant anaplastic thyroid carcinoma because of

a tumor-specific transcription factor pattern.121 CRYAB gene

silencing is present in rapidly growing dedifferentiated ana-

plastic thyroid carcinomas. The main underlying mechanism

seems to be a tumor-specific transcription factor expression

pattern, which is most prominently characterized by down-

regulation of the transcription factor, TFCP2L1.123

CRYAB in other cancers
CRYAB was highly expressed in gastric cancer tissues,

contributed to gastric cancer cells migration and invasion

via EMT, mediated via the NF-κB signaling pathway,

predicting a poor prognosis in patients with gastric cancer

and, thus, possibly providing a novel therapeutic target for

gastric cancer.124

CRYAB was reported to be expressed in retinoblasto-

mas, but it may not prevent apoptosis of neoplastic

cells;125 while in the same laboratory in the same year

CRYAB was reported to be highly expressed in retinoblas-

toma after chemotherapy and may protect tumor cells from

apoptotic signals produced by anticancer drugs.126

Integrative analysis of transcriptomics and clinical data

uncovered in the prostate a novel direct transcriptional reg-

ulation of CRYAB by Microphthalmia-associated transcrip-

tion factor (MITF), a basic helix-loop-helix leucine zipper

transcription factor that regulates the expression of lineage

commitment programs that are essential for propagation of

the melanocyte lineage.127 Although there is no direct or

mechanistic evidence of the MITF-CRYAB transcriptional

axis in other cancer types, in melanoma both MITF and

CRYAB expression are upregulated by BRAF/MEK-

inhibitor treatments.128,129 In addition, the correlation

between MITF and CRYAB is also present in colorectal

cancer, but not in breast nor lung cancer.130 These suggested

that theMITF-CRYAB axis controls beyond prostate biology

and CRYAB as a novel direct target of the transcription factor

that is, at least in part, responsible for its tumor-suppressive

activity in the prostate and could be considered as potentially

protective against prostate cancer.127,131

CRYAB, a proposed negative regulator of tumor necrosis

factor-related apoptosis inducing ligand (TRAIL)- and cis-

platin-induced mediated apoptosis, displayed low expression

level significantly associated with adverse patient survival

and acts as a molecular marker for the outcome of patients

with ovarian cancer. The data showed molecular mechan-

isms underlying ovarian cancer cell apoptosis and resistance

to TRAIL as an obstacle for its therapeutic efficacy.132,133

Conclusions and prospects
As noted above, the expression and functional roles of

CRYAB in cancers (Table 1), and further research needs to

be done to reveal its underlying role in the progression and

metastasis of diseases. Although the CRYAB protein has
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multiple functions, the most important function is to act as

an anti-apoptotic polypeptide in various stress-induced

apoptosis69,134 and as a molecular chaperone to block aggre-

gation of denatured proteins by exposure to heat

stress.134,136 Moreover, although the pre-clinical results of

CRYAB-based anti-cancer drugs in vivo and in vitro are

promising, there is still a long way to go from the laboratory

to clinical trials. Another important issue is the off-target

effect. Is the drug targeting CRYAB sufficient to control the

ultimate anti-cancer effects when other HSPs are present? If

the answer is yes, what is the underlying mechanism? Only

if these events are fully explored can the treatment of

CRYAB be used for clinical applications.

Therefore, according these data, we speculate that

the plausible reasons for the ambiguous expression and

function of CRYAB in cancers are listed as follows: i)

CRYAB expression is developmentally related in some

tissues; ii) CRYAB may be specific in certain tissues or

populations; iii) cytoprotective and anti-apoptotic

activities play a leading role in determining the role

of CRYAB in promoting or inhibiting the development

of certain types of cancer; and iv) the final functional

role of CRYAB is affected by the synergistic or inhi-

bitory effects of other HSPs regulatory molecules.
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