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Purpose: Inflammation has been strongly associated with retinal damage in diseases such as

diabetic retinopathy. Several studies have reported that high glucose exposure induces

damage to the retinal vasculature. We and others have shown that high glucose can activate

the NOD-like receptor family, pyrin domain containing family member 3 (NLRP3) pathway,

leading to increased levels of cleaved caspase 1 and IL-1β to activate a number of inflam-

matory pathways in the retina.

Methods: We used retinal endothelial cells grown in normal (5 mM) or high (25 mM)

glucose or retinal lysates from endothelial cell-specific knockout mice for exchange protein

activated by cAMP 1 (Epac1). Human recombinant protein kinase R (PKR) or C16, a PKR

inhibitor, was used on the cells to dissect PKR and NLRP3 signaling.

Results: Using retinal endothelial cells (REC) in high glucose and whole retinal lysates from

endothelial cell-specific knockout of Epac1, we demonstrate that Epac1 regulates PKR

phosphorylation. Using an Epac1 agonist or PKR inhibition with C16, we demonstrated

that loss of PKR resulted in reduced NLRP3, cleaved caspase 1, and IL-1β levels.

Furthermore, despite the addition of recombinant human PKR, Epac1 was still able to

significantly reduce NLRP3 signaling.

Conclusion: Overall, these studies demonstrated that PKR regulates the NLRP3 inflamma-

some in REC, and that Epac1 inhibition of PKR can reduce activation of the NLRP3

inflammasome.
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Introduction
In the past decades, there has been an increasing acceptance of the role that

inflammation plays in the diabetic retina.1–5 In addition to the countless others,

one potential pathway that may mediate retinal inflammation is the inflammasome.

The inflammasome is a multiprotein scaffolding complex that contains a member of

the NOD-like receptor family, pyrin domain containing family member (NLRP),

procaspase 1, and apoptosis-associated speck-like protein containing a CARD,

leading to activation of interleukin-1-beta6,7 To date, both NLRP1 and NLRP3

inflammasomes have been associated with diabetic retinopathy;7,8 however, most

work has focused on the NLRP3 inflammasome. Work in humans with various

stages of diabetic showed increased NLRP3 and associated inflammasome proteins

in vitreous samples, with the largest responses in patients with proliferative diabetic

retinopathy.9 We have previously reported that exchange protein for cAMP 1

(Epac1) decreased inflammatory mediators in the retinal vasculature,10 as well as

inhibited the NLRP3 inflammasome.11 Our findings in cells grown in high glucose
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agree with work in retinal pigmented epithelium showing

increased NLRP3 and inflammasome proteins, as well as

in samples from patients with age-related macular

degeneration.12 Thus, it appears that the NLRP3 inflam-

masome may be involved in retinal disease. The remaining

key question is upstream regulation of the NLRP3

inflammasome.

Protein kinase R (PKR) may regulate the NLRP3

inflammasome, as PKR deficiency reduced NLRP3, high

mobility group box 1 (HMGB1), and IL-1β levels in

macrophages.13 PKR is activated by stress signals and

upon autophosphorylation, it can lead to NFkB activation

and ultimately the inflammasome.14 PKR can also be

activated by protein activator of the interferon-induced

protein kinase (PACT), which is encoded by the

PRKRA gene in humans.15 In addition to PACT, PKR is

phosphorylated by dsRNA during viral infection, and PKR

may play a role in metainflammation associated with

metabolic syndrome.16 In mice and monkeys, studies

have shown that tumor necrosis factor alpha (TNFα) can
induce PKR, leading to memory impairment.17 Once PKR

is phosphorylated, it can activate a number of downstream

pathways, leading to inflammatory, apoptotic, or autopha-

gic pathways.18 Studies using PKR knockout animals have

demonstrated that loss of PKR significantly reduced

inflammasome actions and inflammatory mediators.19

Taken together, a number of stimuli can activate PKR,

leading to downstream inflammatory pathways.

In this study, we wanted to investigate upstream reg-

ulation of PKR in the retina of Epac1 conditional knockout

mice, as well as in retinal endothelial cells (REC) grown in

high glucose. We also tested whether Epac1’s inhibition of

the NLRP3 inflammasome is mediated through PKR

actions.

Methods
Epac1 endothelial cells specific KO mice
Animal procedures meet the Association for Research in

Vision and Ophthalmology requirements and were

approved by the Institutional Animal Care and Use

Committee of Wayne State University and conform to

NIH guidelines. Epac1 floxed mice (B6;129S2-

Rapgef3tm1Geno/J mice) and B6 FVB-Tg (cdh5-cre)7Mlia/

J Cre mice were purchased from Jackson Laboratories.

The Epac1 floxed mice were bred with the cdh5-Cre

mice to generate conditional knockout mice in which

Epac1 is eliminated in vascular endothelial cells. At 3

months of age, Epac1 floxed and Epac1 Cre-Lox mice

were used for these experiments.20,21 Euthanasia was per-

formed with drug overdose followed by cervical disloca-

tion. Whole retinal lysates were collected from the mice.

Retinal endothelial cells
Primary human REC were purchased from Cell Systems

Corporation (CSC, Kirkland, Washington). Cells were

grown in Cell Systems medium (Complete Medium

Formulated at Normal Blood Glucose Level, 5 mM) sup-

plemented with microvascular growth factors (MVGS), 10

µg/mL gentamycin, and 0.25 µg/mL amphotericin

B (Invitrogen, Carlsbad, CA). Once cells reached conflu-

ence, some dishes were moved to Cell Systems High

Glucose Medium (25 mM) for a minimum of 3 days

prior to experiments. Only dishes prior to passage 6 were

used. Cells were starved by incubating in high or normal

glucose medium without MVGS for 12 hrs prior to

treatments.

Cell treatments
Some cells in high glucose were treated with the PKR

inhibitor, C16 (Tocris, United Kingdom), in varying

doses for 16 hrs to determine the optimal dose for future

experiments. Additionally, some cells in high glucose were

also treated with recombinant human PKR (rhPKR, Novus

Biologicals, Littleton, CO). A time course experiment was

completed to determine the optimal timing for activation

of PKR. Additional cells received an Epac1 agonist

(8-CPT-2ʹ-O-Me-cAMP) for 24 hrs at 10 µM.11 For cells

treated with both rhPKR and Epac1, rhPKR (0.24 ng/µL)

was used for 24 hrs prior to Epac1 agonist (24 hrs)

application.

Western blotting
Whole retinal lysates from mice or cell culture lysates were

collected into lysis buffer with protease and phosphatase

inhibitors. Equal amounts of protein separated onto a pre-

cast tris-glycine gel (Invitrogen, Carlsbad, CA) were blotted

onto the nitrocellulose membrane. After blocking in TBST

(10 mMTris-HCl buffer, pH 8.0, 150 mMNaCl, 0.1% Tween

20) and 5% (w/v) BSA, membranes are treated with Epac1,

phosphorylated PKR, total PKR, NLRP3, cleaved caspase 1,

and IL-1β (Abcam, Cambridge, MA) or beta-actin (Santa

Cruz Biotechnology, Santa Cruz, CA) primary antibodies

followed by incubation with secondary antibodies labeled

with horseradish peroxidase. A chemiluminescence reagent

kit (Thermo Scientific, Pittsburgh, PA) was used to visualize
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antigen–antibody complexes. Images are acquired on an

Azure C500 (Azure Biosystems, Dublin, CA) and optical

densities were determined using Image Studio Lite software.

ELISA
An IL-1β ELISA was performed following the manufac-

turer’s instructions with the exception that 120 µg protein

was loaded into all wells, and the primary antibody was

incubated overnight.

Statistics
Non-parametric Kruskal–Wallis with Dunn’s post-hoc tests

were used for the cell culture data. One-way ANOVAwith

Student Newman Keul’s post-hoc test was used for animal

work. Data are presented as mean + SEM. P<0.05 is taken

as statistically significant.

Results
C16 is a potent inhibitor of PKR phosphorylation in REC

grown in high glucose. Before we initiated these studies,

we wanted to determine if C16 could effectively inhibit

PKR in REC as it had done in other cell types.22 Figure 1

shows that C16 was highly effective in reducing PKR

phosphorylation at 2 and 5 µM. We used 2 µM for the

remainder of the studies.

Inhibition of PKR reduced NLRP3, caspase 1, and IL-

1β levels in REC. Once we established the optimal dose of

C16, a PKR inhibitor, we investigated whether PKR inhi-

bition regulated the NLRP3 inflammasome pathway in

REC. Figure 2 demonstrates that PKR inhibition signifi-

cantly reduced PKR (Figure 2A), NLRP3 (Figure 2B),

cleaved caspase 1 (Figure 2C) IL-1β Western blot

(Figure 2D), and IL-1β ELISA (Figure 2E) in REC

grown in high glucose. No changes were noted in cells

grown in normal glucose.

Epac1 reduced phosphorylation of PKR both in vivo

and in vitro. We have previously reported that Epac1

reduced NLRP3 signaling.11 To expand those findings,

we used endothelial cell-specific Epac1 knockout mice,

as well as REC treated with an Epac1 agonist to determine

if Epac1 regulates PKR. Figure 3A shows that Epac1

CreLox mice have significantly increased levels of PKR

phosphorylation compared to their floxed littermates.

Figure 3B shows similar findings of decreased PKR phos-

phorylation in REC grown in high glucose that received an

Epac1 agonist. Figure 3C is a control for the mice to

demonstrate reduced Epac1 levels in whole retinal lysates

from the Epac1 CreLox mice.

Epac1 can overcome PKR to reduce the NLRP3 inflam-

masome. We next tested whether Epac1 could reduce

NLRP3 signaling in REC that had been treated with

rhPKR. Figure 4A is a time course experiment to show

that 48 hrs is effective in increasing PKR phosphorylation

in REC grown in high glucose. The images in Figure 4B

and C are controls to demonstrate that the Epac1 agonist

(Figure 4B) and rhPKR (Figure 4C) regulated their respec-

tive proteins. Figure 4D–F demonstrates that Epac1 reduces

NLRP3 (Figure 4D), caspase 1 (Figure 4E), IL-1β Western

blot (Figure 4F) levels, and IL-1β ELISA (Figure 4G),

while rhPKR increased all 3 proteins. Despite excess

PKR, Epac1 continued to decrease NLRP3 signaling when

the Epac1 agonist and rhPKR were given at the same time.

Discussion
An increasing acceptance of the role of inflammation as

a causative factor in pre-proliferative diabetic retinopathy

has occurred over the past decade.1,3,23 More recently,

a role for danger associated molecular pattern receptors,

specifically HMGB1, has been observed in ocular

disease.24,25 HMGB1 has been linked to the NLRP3

inflammasome in macrophages.13 Since we have also

reported that both HMGB1 and NLRP3 are increased in

REC,11,20 we wanted to investigate mechanisms of activa-

tion of NLRP3 in the retina.

While a number of pathways have been reported to

activate the NLRP3 inflammasome, we chose to focus this

study on PKR. While little has been published on PKR in
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the retina or in diabetic retinopathy, a recent review sug-

gested that PKR has a fundamental role in chronic low-

grade inflammation occurring in metabolic disorders,

leading to the formation of metainflammation.16 Others

have reported that inhibition of PKR protects cardiomyo-

cytes against palmitic acid-induced injury26 or hydrogen

peroxide-induced apoptosis.27 Work in osteoblasts sug-

gested that PKR induces expression of NLRP3, leading

to periodontal disease.28 Work in macrophages is less

clear, with studies suggesting that PKR is essential for

inducing inducible nitric oxide synthase, but not

inflammasomes.29 In the eye, one study has shown salvia-

nolic acid A protected RPE cells through inhibition of

PKR-NLRP3 signaling.30 Thus, literature suggests that in

a majority of cells, PKR activates the NLRP3 signaling;

however, less is known in diabetic retinopathy.

In these studies, we first tested a PKR inhibitor to

investigate whether it could block NLRP3 signaling. C16,

a PKR inhibitor, has been reported to prevent inflammation

in Alzheimer’s disease22,31 as well as in an acute excitotoxic

rat model.32 Our data suggest that C16 is highly effective in

reducing NLRP3 signaling in REC. While C16 was

effective, we had previously reported that Epac1 inhibited

the NLRP3 inflammasome.11 In that study, we focused on

HMGB1 and toll-like receptor 4. Literature has linked

HMGB1 and PKR with studies showing the reduced PKR

levels blocked HMGB1 release.13,19 We show that endothe-

lial cell Epac1 knockout mice have increased PKR levels,

suggesting that Epac1 can regulate PKR. Further, data in

REC grown in high glucose show that an Epac1 agonist can

significantly reduce PKR levels. When the Epac1 agonist

and recombinant human PKR are added to REC, data

demonstrate that Epac1 overcame excessive PKR levels to

reduce activation of the NLRP3 inflammasome. Why

recombinant human PKR increased PKR phosphorylation

in the REC grown in high glucose is beyond the scope of

this study, but can be addressed in the future.

Taken together, our data demonstrate that PKR is

involved in NLRP3 activation in REC grown in high

glucose. Inhibition of PKR by C16 or Epac1 was effec-

tive in reducing NLRP3 signaling. Data suggest that

increased Epac1 signaling in the diabetic retina may

reduce activation of the NLRP3 inflammasome via inhi-

bition of PKR.
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