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Introduction: The genus Nepenthes of the pitcher plants contains several natural and

hybrid species that are commonly used in herbal medicine in several countries, but its

possible use in cancer applications remains unknown as yet.

Methods: In this study, we investigated the antioral cancer properties using ethyl acetate

extracts of the Nepenthes hybrid (Nepenthes ventricosa x sibuyanensis), namely EANS. The

bioactivity was detected by a MTS-based cell proliferation assay and flow cytometric or

Western blot analysis for apoptosis, oxidative stress, and DNA damage.

Results: Treatment for 24 hrs of EANS inhibited all three types of oral cancer cells that

were tested (Ca9-22, CAL 27, and SCC9), with just a small difference to normal oral cells

(HGF-1). This antiproliferation was inhibited by pretreatments with the reactive oxygen

species (ROS) scavenger N-acetylcysteine (NAC), and the apoptosis inhibitor (Z-VAD).

EANS treatment increased the subG1 population and it also dose- and time-dependently

induced annexin V- and pancaspase-detected apoptosis as well as cleaved caspases 3 and 9

overexpressions in the oral cancer cells (Ca9-22). After EANS treatment of Ca9-22 cells,

intracellular ROS and mitochondrial superoxide (MitoSOX) were overexpressed and mito-

chondrial membrane potential (MMP) was disrupted. Moreover, DNA damages such as

γH2AX and 8-oxo-2ʹ-deoxyguanosine (8-oxodG) were increased after EANS treatment to

Ca9-22 cells. The EANS-induced effects (namely, oxidative stress, apoptosis, and DNA

damage) were suppressed by ROS scavenger.

Conclusion: Our findings demonstrated that EANS inhibits ROS-mediated proliferation

against oral cancer cells.
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Introduction
Oral cancer is one of the main threats to public health worldwide, especially for patients

with the habits of alcohol drinking, betel quid-chewing, or smoking.1 In general, oral

cancer patients have 50% of five-year survival.2 The traditional therapy for oral cancer

is surgery with or without chemo- or radiotherapy,2 which occasionally associates with

side effects.3 Therefore, there is a challenge to use alternative or supplementary therapy

for cancer treatment without side effects.

Recently, chemoprevention effects of natural products against oral cancer cells

have been emphasized.4–8 Many natural product-derived bioactive compounds9-12

have shown anticancer potential because of their high cytotoxicity to cancer cells

and low toxicity to normal cells. Moreover, cancer progression is known to involve
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multiple signaling pathways and different drugs may have

differential targets. Therefore, it is important and helpful

to identify more natural product candidates for oral cancer

therapy.

Nepenthes plants are tropical plants with pitcher-

shaped leaves that trap animal victims for the nutrient

provision of these carnivorous plants. The genus contains

a number of original species, and natural or manmade

hybrids that increase its diversity to more than 170

species.13 Nepenthes plants have a wide range of habitats

located in the tropical belt of Australia, Madagascar,

Papua New Guinea, the Seychelles, and Southeast Asia.

Several representatives have been used for herbal medi-

cine in several countries. For example, N. mirabilis is

famous for its treatments against cough, jaundice, fever,

hypertension,14 and inflammation.15 Cell model studies

showed that Nepenthes plant extracts based on several

solvents suppressed the growth of certain bacteria16 and

fungi.17 However, the anticancer effect of Nepenthes

plants remains unclear.

Nepenthes plants are rich in antioxidant components.

For example, N. mirabilis and N. gracilis were reported to

contain flavonoids18 and phenolic compounds,19 respec-

tively. Methanolic extracts of N. bicalcarata leaves also

displayed high antioxidant properties.20 Antioxidants have

a potential for oral cancer prevention.21 Hence, possible

anticancer effects of Nepenthes plants warrant in-depth

investigation. Moreover, the ethyl acetate extraction for

Nepenthes plants is rarely investigated. Therefore, we

focused on evaluating the antioral cancer effect of

Nepenthes plants. Using ethyl acetate extract of

N. ventricosa x sibuyanensis (EANS), the changes of cell

viability, apoptosis, oxidative stress, and DNA damage

were investigated using oral cancer cells.

Materials and methods
Plant materials, ethyl acetate extract, and

drug inhibitors
Species identification and sample collection of Nepenthes

species (N. ventricosa x sibuyanensis) was performed by

Mr. Jui-Hsuan Kuo in the Dr. Celica Koo Botanic

Conservation Center (KBCC), Taiwan, in October, 2014.

The voucher sample (K45532) was air-dried and depos-

ited in the Graduate Institute of Natural Products,

Kaohsiung Medical University. N. ventricosa

x sibuyanensis twigs and leaves (210 g) were soaked in

methanol (1 L) to provide crude extract. Subsequently,

this was partitioned between water and EtOAc. Finally,

the EtOAc layer, namely EANS, was harvested (96 mg)

and stored at 4°C. All treatments with or without EANS

had the same concentration of dimethyl sulfoxide

(DMSO) (Sigma-Aldrich; St. Louis, MO, USA) as

a carrier of the active compounds.

In subsequent experiments with EANS, several kinds

of inhibitors were pretreated as follows: Free radical sca-

venger N-acetylcysteine (NAC) (2 mM, 1 hr) (Sigma),22

pan-caspase inhibitor Z-VAD-FMK (Z-VAD) (20 μM, 2

hrs) (Selleckchem. com; Houston, TX, USA),11 and mito-

chondrial superoxide inhibitor Mito TEMPO (20 μM, 1 hr)

(Cayman Chemical, Ann Arbor, Michigan, USA).23

Cell culture and cell viability
Oral cancer (Ca9-22, SCC9, and CAL 27) and normal oral

(HGF-1) cells were used as described previously.24 All cell

lines were purchased from American Type Culture

Collection (ATCC) and the Japanese Collection of

Research Bioresources (JCRB) Cell Bank. Cells were

incubated (37°C, 5% CO2) in a humidified atmosphere

and maintained with Dulbecco’s Modified Eagle Medium

(DMEM)/Nutrient Mixture F-12 (Gibco, Grand Island,

NY, USA) at 3:2 (oral cancer cells) and 4:1 (HGF-1

cells) ratio with 10% fetal bovine serum and common

antibiotics (Gibco). Cell viability is measured by mito-

chondrial-activity-based cell proliferation MTS assay

(Promega Corporation, Madison, WI) as described

previously.25

Cell cycle phases
Cellular DNA content was measured by 7-aminoactinmy-

cin D (7AAD) (Biotium, Inc., Hayward, CA, USA) stain-

ing and is commonly used for cell cycle phase analysis as

previously described.26 After 75% ethanol fixation, cells

were stained with 7AAD (1 μg/mL in phosphate-buffered

saline (PBS), 30 mins) for Accuri™ C6 flow cytometry

(Becton-Dickinson, Mansfield, MA, USA). The G1, S,

and G2/M populations added up to 100% where the

sub-G1 population was calculated separately as described

before.27

Annexin V/7AAD apoptosis assay
Apoptosis was analyzed by the phosphatidylserine-based

annexin V kit (Strong Biotech Corporation, Taipei,

Taiwan) as described previously.28 Cells were double-

stained with annexin V-labeled with FITC (10 μg/mL)
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and 7AAD (1 μg/mL) for 30 mins. Finally, cells were

analyzed by Accuri™ C6 flow cytometry.

Caspase activity assays: pancaspase flow

cytometry and Western blotting
Pancaspase activity (caspases-1, 3–9) was analyzed by

a generic caspase activity assay kit (Abcam, Cambridge, UK)

using flow cytometry as previously described.29 After treat-

ment with 0.5X TF2-VAD-FMK for 2 hrs, cells were washed

and resuspended for Accuri™ C6 flow cytometry.

Protein lysates (45 μg) were performed with 8% SDS-

PAGE and transferred to a PVDF membrane for 5%

nonfat milk blocking overnight. Apoptosis antibodies

(diluted 1:1,000) were chosen for Western blotting,

including: cleaved forms of caspase 3 (c-cas 3) and

caspase 9 (c-cas 9) from the Apoptosis Antibody

Sampler Kit and cleaved caspase 8 (c-cas 8) (1C12)

(Cell Signaling Technology, Inc., Danvers, MA, USA).

Loading control was mAb-β-actin (Sigma-Aldrich).

WesternBright™ enhanced chemiluminescence (ECL)

horseradish peroxidase (HRP) kit (Advansta, Menlo

Park, CA, USA) was used for detecting HRP activity to

secondary antibody.

Cellular ROS and mitochondrial

superoxide (MitoSOX) assays
The reactive oxygen species (ROS)-reacting chemical

2ʹ,7ʹ-dichlorodihydrofluorescein diacetate (DCFH-DA)

(Sigma-Aldrich, St. Louis, MO, USA) was oxidized by

ROS and became fluorescent for analysis by flow

cytometry.30,31 After treatment with DCFH-DA (10 μM,

37°C, 30 mins), cells were analyzed by flow cytometry

(Accuri™ C6). Similarly, superoxide-reacting dye

MitoSOX Red (Molecular Probes, Invitrogen, Eugene,

OR, USA) was specifically oxidized with mitochondrial

superoxide32 and became a fluorescent chemical for flow

cytometry.33 After treatment with MitoSOX™ Red (5 μM,

37°C, 30 mins), cells were analyzed by flow cytometry

(Accuri™ C6).

Mitochondrial membrane potential

(MMP) assay
A membrane-potential-sensitive cyanine dye DiOC2(3)

(Invitrogen, San Diego, CA, USA) was used for MMP

analysis as previously described.34 After treatment with

DiOC2 (3) (50 nM, 30 mins), cells were analyzed by

flow cytometry (Accuri™ C6).

γH2AX DNA damage assay
Flow cytometry indications using the DNA double-strand

break marker (γH2AX) was described in an earlier study.9

After treatment with primary antibody p-Histone H2A.X

(Ser 139) (Santa Cruz Biotechnology, Santa Cruz, CA,

USA) (1:50 dilution, 4°C, 1 hr), the secondary antibody

was further reacted for 30 mins for Accuri™ C6 flow

cytometry.

8-Oxo-2ʹ-deoxyguanosine (8-oxodG)

assay
For flow cytometric detection, the antibody from fluoro-

metric OxyDNA kit (EMD Millipore, Darmstadt,

Germany) was added to recognize 8-oxodG as described

previously.35 After fixation and washing, cells were

immersed in 10X diluted FITC-labeled antibody for 1
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hr and were subsequently resuspended in PBS buffer for

Accuri™ C6 flow cytometry.

Statistical analysis
Significant differences between multiple comparisons

were determined by one-way analysis of variance

(ANOVA) and the Tukey HSD test (JMP12; SAS

Institute, Cary, NC, USA). Data analysis was performed

in triplicate and presented as mean ± SD. Different

groups without the same small letters indicate significant

differences.

Results
Effect of EANS on cell viability
In this study, HGF-1 cells were used as a normal control

compared to three oral cancer cell lines, ie, Ca9-22, CAL

27, and SCC9. In MTS assay, EANS dose-dependently
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reduced the viability (%) of these oral cancer cells (Figure

1A). However, EANS-treated normal oral cells (HGF-1)

showed less cytotoxic effect (~80% viability) compared to

oral cancer cells.

The EANS-inhibiting viabilities of those test cells

were significantly suppressed by NAC pretreatment

(p<0.05~0.0001) (Figure 1B). In the example of Ca9-

22 cells, the EANS-inhibiting viabilities of oral cancer

cells were suppressed by a pancaspase inhibitor Z-VAD

pretreatment (Figure 1C).

Effect of EANS on cell cycle distributions

of oral cancer cells
Proliferation, cell cycle progression, and apoptosis may inter-

act between each other.36 Therefore, we investigated whether

EANSmay influence cell cycle progression. DNA histograms

of different concentrations of EANS treatments in oral cancer

cells were shown in Figure 2A. Incubation of Ca9-22 cells for

24 hrs with EANS dose-dependently increased the sub-G1

and G2/M populations, and decreased the G1 population, but

it showed little change in the S population (Figure 2B).

Furthermore, those EANS-affected cell cycle disturbances of

Ca9-22 cells were suppressed by NAC.

Effect of EANS on annexin V-based

apoptosis of oral cancer cells
To confirm whether the subG1 accumulation of EANS on

Ca9-22 cells was related to apoptosis, we detected apop-

tosis using phosphatidylserine exposure-dependent

annexin V/7AAD flow cytometry. Annexin V/7AAD dot-

plot graphs of different concentrations and time course of

EANS treatments in Ca9-22 cells were shown in
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Figure 3A and C. EANS increased apoptosis in terms of

annexin V (+) % in Ca9-22 cells in a dose- and time-

dependent manner (Figure 3B and D). Furthermore, those

EANS-induced apoptosis expressions of Ca9-22 cells were

suppressed by NAC.

Effect of EANS on caspases-based

apoptosis of oral cancer cells
To further confirm apoptosis-inducing ability of EANS on

Ca9-22 cells, we detected caspase activation using flow

cytometry. Pancaspase graphs of different concentrations

and time course of EANS treatments in Ca9-22 cells were

shown in Figure 4A and C. EANS increased apoptosis in

terms of pancaspase (+) % in Ca9-22 cells in a dose- and

time-dependent manner (Figure 4B and D). Furthermore,

those EANS-induced pancaspase (apoptosis) activations of

Ca9-22 cells were suppressed by NAC.

Since the applied pancaspase kit was developed to

generically detect the pancaspase activity (caspases (cas)-

1, 3, 4, 5, 6, 7, 8, 9),29 it was necessary to further examine

the involvement of caspase signaling for apoptosis.

Therefore, we detected several members of caspase signal-

ing by Western blotting. After EANS treatment to Ca9-22

cells, the cleaved forms of caspases such as c-cas 3 and

c-cas 9 expressions were increased but c-cas 8 was unde-

tectable (Figure 4E), suggesting that EANS mainly

induced intrinsic apoptosis in Ca9-22 cells. Furthermore,

those EANS-induced expressions of apoptosis signaling

proteins of Ca9-22 cells were suppressed by NAC.

Effect of EANS on ROS generation of oral

cancer cells
Excess ROS may induce DNA damage and apoptosis.37

Therefore, we investigated whether EANS may influence

intracellular ROS generation. ROS graphs of different

concentrations of EANS treatments in Ca9-22 cells were

shown in Figure 5A. EANS treatment to Ca9-22 cells

enhanced the ROS generation in a dose-dependent manner
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Figure 6 Effect of ethyl acetate extract of N. ventricosa x sibuyanensis (EANS) on mitochondrial superoxide (MitoSOX) generation of oral cancer cells. (A) MitoSOX graphs of

different concentrations of EANS treatments in oral cancer cells. Ca9-22 cells were pretreated with or withoutN-acetylcysteine (NAC) (2 mM, 1 hr) and posttreated with EANS (0
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(Figure 5B). Furthermore, those EANS-induced ROS gen-

eration of Ca9-22 cells were suppressed by NAC.

A time course of ROS development after EANS treat-

ments in oral cancer cells (Ca9-22) and normal oral cells

(HGF-1) is shown in Figure 5C. As shown in Figure 5D,

EANS dramatically induces ROS generation of Ca9-22

cells in a time-dependent manner within 3 hrs. In contrast,

HGF-1 cells maintain basal level of ROS after the same

treatment by EANS.

Effect of EANS on the MitoSOX

generation of oral cancer cells
Oxidative stress is mainly produced in mitochondria,38 espe-

cially for mitochondrial superoxide. Therefore, we examined

MitoSOX upon EANS treatment. MitoSOX graphs of different

concentrations and time course of EANS treatments in Ca9-22

cells are shown in Figure 6A and C. EANS increases MitoSOX

(+) % in Ca9-22 cells in a dose- and time-dependent manner

(Figure 6B and D). Furthermore, those EANS-induced

MitoSOX generations of Ca9-22 cells were suppressed

by NAC.

Effect of EANS on MMP of oral cancer cells
Oxidative stress generated from mitochondria may regu-

late apoptotic signaling.39 Therefore, we examined MMP

upon EANS treatment. MMP graphs of different concen-

trations and time course of EANS-treated Ca9-22 cells are

shown in Figure 7A and C. EANS increased MMP (–) %

in Ca9-22 cells in a dose- and time-dependent manner

(Figure 7B and D). Furthermore, those EANS-induced

MMP destructions of Ca9-22 cells are suppressed by the

pretreatment of MitoSOX-specific inhibitor Mito TEMPO.

Effect of EANS on γH2AX-based DNA

damage of oral cancer cells
To investigate the effects of EANS on inducting apoptosis in

Ca9-22 cells, DNAdamage in terms of γH2AXwere evaluated.
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concentrations of EANS treatments in oral cancer cells. Ca9-22 cells were pretreated with or without mitochondrial superoxide inhibitor (Mito TEMPO) (20 µM, 1 hr) and

posttreated with EANS (0 (untreated control), 20, 30, and 40 μg/mL, 24 hrs), ie, Mito TEMPO+EANS vs EANS. MMP-negative population is marked as MMP (–). (B)
Statistics of MMP change in Figure 7A. Different treatments were compared with each other. Treatments without the same labels (a–e) indicate the significant difference.

p<0.05~0.0001. (C) MMP graphs of time course of EANS treatments in oral cancer cells. Ca9-22 cells were pretreated with or without Mito TEMPO (20 µM, 1 hr) and

posttreated with EANS (40 μg/mL, 0, 12, and 24 hrs). (D) Statistics of MMP change in Figure 7C. Treatments without the same labels (a–c) indicate the significant difference.

p<0.05~0.0001. Data, mean ± SD (n=3).

Tang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:125234

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


EANS treatments in Ca9-22 cells were shown in Figure 8A and

C.EANS increased γH2AX(+)% inCa9-22 cells in a dose- and

time-dependent manner (Figure 8B and D). Furthermore, those

EANS-induced γH2AX expressions of Ca9-22 cells were sup-

pressed by NAC.

Effect of EANS on 8-oxodG-based DNA

damage of oral cancer cells
To investigate the effects of EANS on inducting apoptosis in

Ca9-22 cells, oxidativeDNAdamage in terms of 8-oxodGwere

evaluated. 8-OxodGgraphs of different concentrations and time

course of EANS treatments in Ca9-22 cells were shown in

Figure 9A and C. EANS increased 8-oxodG (+) % in Ca9-22

cells in a dose- and time-dependent manner (Figure 9B and D).

Furthermore, those EANS-induced 8-oxodG expressions were

suppressed by NAC.

Discussion
Nepenthes plants are used for herbal medicine14,15 and dis-

play diverse biological effects against bacteria16 and fungi.17

However, an anticancer effect of Nepenthes plants remains

unclear. Moreover, different solvents were used to extract

Nepenthes plant in earlier studies20,40,41 with the exception

of ethyl acetate which was used here for the first time.

In this study, we used ethyl acetate extract of N. ventricosa

x sibuyanensis (EANS) to evaluate the antiproliferative effect

for oral cancer cells. Incubation of oral cancer cells (Ca9-22,

CAL 27, and SCC9) for 24 hrs with EANS show IC50 values

with 25, 20, and 32 μg/mL. Incubation of normal oral cells

(HGF-1) for 24 hrs with the highest test concentration of

EANS (40 μg/mL) shows about 80% viability. Therefore,

EANS has higher cytotoxicity against oral cancer cells than

normal oral cells. The antiproliferative effect of EANS
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treatment against oral cancer cells was suppressed by the ROS

scavenger NAC and the pancaspase inhibitor Z-VAD (Figure

1), suggesting that oxidative stress and apoptosis play vital

roles in the antioral cancer effect of EANS. It should be

emphasized that the concentration of EANS used in this

study was based on a cell line model and may not be suitable

to apply to blood or tissue levels.

Although antioxidants at normal concentration may

reduce the ROS generation, antioxidants at high concentra-

tion may induce intracellular ROS generation.42 Many anti-

oxidant components were reported from Nepenthes

plants.18–20 In our test concentrations (10–40 μg/mL), 3

hrs incubation of EANS enhanced ROS generation in oral

cancer cells (Ca9-22) ranging from 70% to 80% ROS (+)

(Figure 5B). Moreover, 2 hrs incubation of EANS (40 μg/
mL) induced 80% ROS (+) of ROS generation in Ca9-22

cells (Figure 5C). Accordingly,Nepenthes plants containing

antioxidant constitutes may have concentration effects on

ROS induction in Ca9-22 cells. In contrast, 3 hrs incubation

of EANS (40 μg/mL) maintained basal level of ROS gen-

eration in normal oral cells (HGF-1) (Figure 5C), suggest-

ing on differential ROS induction between oral cancer and

normal oral cells. Since ROS may induce apoptosis43 and

DNA damage,44 this differential ROS induction may partly

explain the differential killing against oral cancer cells but

less cytotoxic effects on normal oral cells.

In addition to ROS generation, EANS also induce

MitoSOX generation and MMP destruction in oral cancer

cells. Therefore, EANS induces oxidative stress against oral

cancer cells. These inductions were inhibited by NAC or Mito

TEMPO pretreatments, which further supported that oxidative

stress was involved in antioral cancer effect of EANS.
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Furthermore, EANS-induced subG1 accumulation (Figure 2),

annexin V-detected apoptosis (Figure 3), pancaspase-detected

apoptosis (Figure 4B and 4D), and caspase signaling activation

(Figure 4E) was also inhibited by NAC pretreatment.

Accordingly, the role of oxidative stress in these EANS-

induced apoptosis-related effects was validated.

Excessive oxidative stress frequently induces several types

of DNA damages such as DNA double-strand breaks

(γH2AX)44 and oxidative DNA damage (8-oxodG).45

Consistently, we found that EANS-induced oxidative stress,

in turn, induced γH2AXand 8-oxodG expressions,whichwere

inhibited by NAC pretreatment (Figures 8 and 9). Again, the

function of oxidative stress in EANS-induced ROS-mediated

DNA damagewas validated. However, the signaling transduc-

tion for EANS-induced oxidative stress was not examined in

the present study. It was reported that oxidative stress may

activate mitogen-activated protein kinase (MAPK) signaling46

and in turn regulate apoptosis47 and DNA damage.48,49

A detailed investigation of the effect of MAPK of antioral

cancer effects caused by EANS is warranted in the future.

Conclusion
The antioral cancer effect of Nepenthes plants is

reported here for the first time. In this study, we demon-

strated that ethyl acetate extraction for N. ventricosa

x sibuyanensis (EANS) preferentially inhibited the pro-

liferation of oral cancer cells but showed little effect on

normal oral cells. Oxidative stress detected by intracel-

lular ROS and mitochondrial superoxide were also

induced by EANS treatment for oral cancer cells.

Oxidative stress-induced apoptosis and DNA damage

appeared in EANS-treated oral cancer cells. Using

NAC pretreatment to oral cancer cells, we further

demonstrated that the EANS-induced antiproliferation,

oxidative stress-associated changes, apoptosis, and

DNA damages were mediated by ROS.
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