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Dehydrocorydaline inhibits cell proliferation,

migration and invasion via suppressing MEK1/2-

ERK1/2 cascade in melanoma
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Purpose: Alkaloids are naturally occurring chemical compounds that are widely distributed

in plants, and have pharmaceutical values and low toxicity. In recent years, some of them

have been demonstrated to be promising therapeutic drug candidates for cancer treatment.

Herein, we tried to explore the antitumor effect of dehydrocorydaline (DHC), a natural

alkaloid isolated from Corydalis, on malignant melanoma.

Methods: We treated two malignant metastatic melanoma cell lines, A375 and MV3, and a

normal melanocyte cell line, PIG1, with various concentrations of DHC for set amounts of

time, and detected cell proliferation, migration, and invasion by using MTT, BrdU, transwell,

Western blot and soft agar assay in vitro and tumorigenicity in the xenografts in vivo.

Results: Our results showed that DHC dramatically blocked cell proliferation and led to cell

cycle arrest at G0/G1 phase and downregulated the expressions of cell cycle regulators

CDK6 and Cyclin D1 in melanoma cells. However, DHC had little inhibitory effect on

normal melanocyte cell line PIG-1. Meanwhile, DHC suppressed cell invasion and migration

through modulating the epithelial–mesenchymal transition (EMT) markers including E-

cadherin, vimentin, as well as β-catenin. In addition, DHC also significantly attenuated

tumor growth in vivo. The expressions of cell cycle-related and metastasis-related proteins

were further confirmed by immunohistochemical staining in the xenografts. Importantly,

MEK1/2-ERK1/2 cascade was inactivated after DHC treatment and ERK activator t-butyl-

hydroquinone (tBHQ) treatment rescued DHC-induced cell proliferation inhibition.

Conclusions: Our results indicated that DHC inhibited cell proliferation and migration/

invasion via inactivating MAPK signaling, and showed that DHC might be a potential novel

drug to treat malignant melanoma.
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Introduction
Malignant melanoma (MM) is the most aggressive form of skin cancer. Over the past

few decades, the number of MM cases has increased worldwide.1,2 In the absence of

new interventions, from 2011 to 2030, the annual expenses of the treatment for newly

diagnosed MM cases are estimated to rise by 252.4%.3 Importantly, metastasis has

been shown to be the main reason for the increasing morbidity and mortality of MM.

Metastasis occurs even in patients with thin small primary MM.4 Until recently, the

prognosis of patients with MM remains very poor, despite conventional therapy of

surgical resection, radiotherapy, and chemotherapy.5 Therefore, it is urgent to find

some efficient drugs with minimal toxicity for the treatment of MM.
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Recent reports showed that alkaloids such as berberine,6–10

tetrahydropalmatine,11 and vinblastine12 from the plants had

various anticancer activities. The functions andmechanisms of

these alkaloids showed multiformity in different kinds of

cancers. For example, growth inhibition of human hepatoma

cells induced by berberine was mediated via mitochondria

damage-induced apoptosis.7 But in lung cancer cells, berber-

ine attenuated the invasiveness through decreasing the expres-

sions of urokinase-plasminogen activator (uPA) andMMP2.10

In breast cancer cells, tetrahydropalmatine can reverse the

multidrug resistance ofMCF-7 cells by attenuating the activity

of P-glycoprotein.11 Another alkaloid, vinblastine, could inhi-

bit the cell proliferation of leukemia cells through reversing

multi-drug resistance (MDR).12 This evidence dramatically

indicated that alkaloids are promising candidates for tumor

therapy.

As an alkaloid, dehydrocorydaline (C21H21NO4, DHC)

was isolated from Corydalis yanhusuo, Corydalis tuber or

Corydalis bulbosa, and was originally identified to block the

release of noradrenaline in the taenia caecum and pulmonary

artery from the adrenergic nerve terminals.13 In addition,

DHC inhibited antibody-mediated and cell-mediated allergic

reactions14 and suppressed the expression of pro-inflamma-

tory cytokines, including IL-1β and IL-6.15 Moreover, DHC

was known to have biological effects in the treatment of

coronary artery disease,16 anti-acetylcholinesterase17 and

anthelmintic features.18 A recent study showed that DHC

promoted myogenic differentiation via p38 MAPK

activation.19 Interestingly, DHC also had some bioactivity

that could inhibit tumor progression. For example, DHC

inhibited cell proliferation through inducing apoptosis in

breast cancer cells.20 Also, DHC exerted anti-metastatic

potential by suppressing MMPs and Bcl-2 in non-small cell

lung carcinoma (NSCLC) cells.21 However, the effect of

DHC in melanoma cells remained unknown.

In this paper, we explored the function of DHC in MM

progression and metastasis. Our studies showed that DHC

inhibited cell proliferation, cell cycle progression, and

migration/invasion by inactivating the MAPK (MEK1/2-

ERK1/2) cascade in MM. This evidence indicated that

DHC could act as a potential candidate drug in the treat-

ment of metastatic MM.

Materials and methods
Cell culture
Human metastatic melanoma cell line A375 and normal

melanocyte PIG1 were obtained from the American Type

Culture Collection (ATCC, Manassas, VA, USA). Another

human metastatic melanoma cell line, MV3, was described

previously,22 and was obtained from the Army Medical

University (previously termed as the Third Military

Medical University). Briefly, A375 and PIG1 cells were

maintained in DMEM (Thermo Fisher Scientific,

Waltham, MA, USA). MV3 cells were cultured in

Roswell Park Memorial Institute-1640 (RPMI-1640;

Gibco, Thermo Fisher Scientific). Both were supplemented

with 10% fetal bovine serum (FBS; Gibco) and 1% peni-

cillin-streptomycin (P/S; Gibco). Cells were cultured at

37°C with 5% CO2 in a humidified incubator (Sanyo,

Osaka, Japan). The use of these cells was approved by

the Academic Board of Southwest University.

Drug treatment
DHC, with purity higher than 99%, was obtained from the

Chinese National Institutes for Food and Drug Control

(NIFDC, Beijing, China) and was dissolved in dimethyl

sulfoxide (DMSO; Sigma-Aldrich, Merck, Shanghai,

China). A375 and MV3 were treated with DHC at indi-

cated concentrations or times, with DMSO as control.

t-Butylhydroquinone (tBHQ; HY-100,489) was purchased

from MedChemExpress (Shanghai, China) and was dis-

solved in DMSO. The cell morphology was taken by the

Olympus microscopy (Olympus, Japan). Cell viability was

performed by trypan blue assay, described previously.23

MTT assays
Cell proliferation was performed by using the thiazolyl

blue tetrazolium bromide (MTT) assay, which was

described previously.23 1,000 cells were used to determine

the growth curve of A375 and MV3 cellsand 5,000 cells

were used to determine the cell proliferation rate of PIG1

cells. Each experiment was independently performed for

three times, and a two-tailed unpaired Student’s t-test was

performed to analyze the significance.

BrdU staining
For BrdU staining, 1×104 cells were cultured in the

24-well plates for 8 h and treated with either DMSO or

DHC for another 24 h, and then incubated with 10 μg/mL

5-bromo-2-deoxyuridine (BrdU; Sigma-Aldrich Co.) for

0.5 h; then, the BrdU assay was employed as previously

described.24 Each experiment was independently per-

formed three times, and a two-tailed unpaired Student’s

t-test was performed to analyze the significance.
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Cell cycle assay
For the cell cycle assay, 3×105 cells were cultured in 60-

mm dishes for 24 h and then treated with 40 μM DHC or

isometric DMSO. After 48 h treatment, cells were washed

with cold PBS and then fixed in 70% ethyl alcohol at 4°C

for more than 24 h. Subsequently, the cell cycle was

analyzed by using a BD Accuri C6 cytometer (San Jose,

CA, USA). Detailed information was described

previously.25 The cell cycle and sub-G1 phase were further

analyzed by using the FlowJo Software version 7.6.1

(FlowJo LLC, Ashland, OR, USA). Each sample in this

experiment was performed in triplicate, and a two-tailed

unpaired Student’s t-test was performed to analyze the

significance.

Wound-healing assays
For wound-healing assays, 1×106 cells were cultured in

2 mL DMEM supplemented with 1% FBS, in 6-well

plates. After the cells reached full confluence, we used a

yellow pipette tip to scratch a linear wound in the

monolayer of the cells. Subsequently, floating and

damaged cells were removed by cold PBS washing

three times. Then, serum-free DMEM with 40 μM
DHC or DMSO, respectively, were added to the plates.

After the indicated time, cells that migrated over the

denuded area were observed under an inverted micro-

scope (Nikon Corporation, Tokyo, Japan), and pictures

were taken by a charge coupled device (CCD). The

corporation of wound closure was calculated according

to the migration over the denuded area. Each sample in

this experiment was performed in triplicate, and a two-

tailed unpaired Student’s t-test was performed to analyze

the significance.

Cell migration and invasion
The migration assay was conducted with the treatment of

40 μM DHC or DMSO as previously described.24 Each

experiment was performed in triplicate and the migration/

invasion rate was normalized by the proliferation rate. A

two-tailed unpaired Student’s t-test was performed to ana-

lyze the significance.

Western blot assay
The Western blot assay was conducted as previously

described.26 All the primary antibodies used in this study

were purchased from the Cell Signaling Technology (CST,

Danvers, MA, USA) and are listed here: GAPDH (51132),

CDK6 (3136), cyclin D1 (2978), E-cadherin (3195), vimentin

(5741), β-catenin (8480), MEK1/2 (4694), p-MEK1/2

(Ser221, 2338), ERK1/2 (4695) or p-ERK1/2 (Thr202/

Tyr204, 4370). HRP (horseradish peroxidase)-conjugated sec-

ondary antibodies including goat anti-mouse IgG (H+L)

(A0216, 1:2,000) and goat anti-rabbit IgG (H+L) (A0208

1:2,000) were purchased from Beyotime (Taicang, Jiangsu,

China). Proteins were visualized by the BeyoECL Plus

(Beyotime) and Western blotting detection instruments

(Clinx Science, Shanghai, China). The gray levels of the

protein bands were calculated by using Image J 1.8.0 software

(developed at the US National Institutes of Health and avail-

able on the Internet at http://rsb.info.nih.gov/nih-image/), and

the relative protein levels were normalized by grey levels of

GAPDH. Each blot was analyzed for 3 times, and a two-tailed

unpaired Student’s t-test was performed to analyze the

significance.

Soft agar assay
The ability of colony formation was conducted on A375

and MV3 cells. 1×103 A375 or MV3 cells in the soft agar

contained 40 μM DHC or DMSO were used in this study.

The detailed method was described previously.27 Each

sample in this experiment was performed in triplicate,

and a two-tailed unpaired Student’s t-test was performed

to analyze the significance.

Tumor xenografts
Six 4-week old female nude mice (BALB/c-nu) were pur-

chased from Beijing HFK Bioscience Lo., Ltd (Beijing,

China) and housed in a pathogen-free room to acclimate for

about 7 days. Then, 1×106 A375 andMV3 cells suspended in

100 μLmediumwere subcutaneously injected into both sides

of the mice’s back, respectively. After two weeks, the tumors

were formed, and the mice were randomly divided into two

groups. Each group was orally administrated with 100 mg/kg

DHC or isometric DMSO every 24 h for 12 days. Tumor

length and width were measured by a digital caliper every

day to calculate the tumor volumewith the formula [volume=

(π/6)×length×width2]. Finally, the mice were sacrificed and

formed tumors were removed and weighed. All animal

experiments were pre-approved by the Experimental

Animal Care and Use Committees of the Institute of

Sericulture and Systems Biology and the Institutional

Animal Care and Use Committees of the Southwest

University, with the principles of the Declaration of

Helsinki, Experimental Animal Management Regulations

(State Scientific and Technological Commission of China

Dovepress Hu et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
5165

Powered by TCPDF (www.tcpdf.org)

http://rsb.info.nih.gov/nih-image/
http://www.dovepress.com
http://www.dovepress.com


[1988] No. 2, 2017 version) and Chongqing Experimental

Animal Management Regulations (Chongqing Municipal

People’s Government [2006] No.195).

Immunohistochemistry staining
The immunohistochemistry (IHC) staining assay was con-

ducted as previously reported.28 Each sample in this

experiment was performed in triplicate.

Results
Dehydrocorydaline inhibits cell

proliferation in melanoma cells
To assess the effect of DHC in cell proliferation inhibition,

we tested the cell viability using the MTT assay with six

different doses of DHC treatment for 48 h in melanoma cell

lines A375 and MV3 as well as a normal cell line PIG1.

According to the results, we calculated the IC50 of DHC in

inhibition of cell proliferation in A375, MV3, and PIG1 cells,

and the results showed that the IC50 of DHC in A375, MV3

and PIG1 were 39.73, 42.34, and 262.6 μM, respectively

(Figure 1). This result indicated that melanoma cells are

more sensitive to DHC treatment than normal melanocytes.

Then, different concentrations of DHC were used in two

different human melanoma cell lines A375 and MV3 for 48

h. Under the microscope, cells treated with different concen-

trations (20, 40 and 80 μM) of DHC resulted in cell prolif-

eration inhibition in a dose-dependent manner, determined

by using cell counting under a microscope (Figure 2A–C).

However, the MTT assay showed that DHC did not induce

significant cell proliferation inhibition in PIG1 cells after 20

and 40 μM DHC treatment for 48 h (Figure 2D). We further

investigated the cell growth curve by MTT assay for 7 days

after different concentrations of DHC treatment. The results

showed DHC at 40 and 80 μM dramatically suppressed cell

proliferation in these two cell lines (Figure 2E and F). BrdU

staining assay further showed that 40 μMDHC treatment for

48 h showed a significant decline in the ratio of BrdU-

positive cells compared to the control groups (Figure 2G).

These results suggested that DHC dramatically blocked cell

proliferation and growth in melanoma cells.

Dehydrocorydaline induces cell cycle

arrest at G0/G1 phase in melanoma cells
Cell proliferation was suggested to be tightly related to cell

cycle progression. To detect the alterations of DHC on the

cell cycle, A375 and MV3 cells were stained with a fluor-

escent intercalating agent, propidium iodide (PI), for DNA

staining, and then cells were analyzed by BD Accuri C6 flow

cytometry. The results showed that 20, 40, and 80 μMDHC-

treated cells led to a significant G0/G1 phase arrest in a dose-

dependent manner, compared with the DMSO-treated cells

(Figure 3A and B). Furthermore, wemeasured the expression

of CDK6 and cyclin D1, which could promote cell cycle

progression. The results showed that protein levels of cyclin

D1 and CDK6 were decreased in DHC-treated cells in both

dose- and time-dependent manners (Figure 3C and D). In

addition, we also checked the effect of DHC on the cell cycle

of PIG1 cells, and the result showed that 40 μM DHC treat-

ment for 48 h did not induce significant cell cycle arrest in

PIG1 cells (Figure 3E). These results demonstrated that the

DHC-induced cell cycle arrest might be the reason for DHC-

inhibited cell proliferation in human melanoma cells.

Dehydrocorydaline inhibits cell migration

and invasion in melanoma cells
As metastasis is an important reason for the malignancy of

melanoma, we next explored the effect of DHC on the

regulation of cell migration and invasion in human mela-

noma cells. Firstly, cell migration abilities were tested by

wound-healing assay, and the results revealed that cells trea-

ted with 40 μMDHC treatment significantly blocked the rate

of wound closure, compared with control groups (Figure 4A
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and B). Consistently, the transwell migration assay further

showed that cells treated with 40 μM DHC exerted remark-

able inhibition of the cellular trans-migration ability com-

pared with the DMSO-treated cells (Figure 4C). Similarly, in

the transwell invasion assay, we further confirmed that DHC

treatment significantly downregulated the number of cells

that passed through the Matrigel-coated membrane (Figure

4D). Consistent with the above, the expression of E-cadherin,

an epithelial marker, was upregulated, and the expression of

the mesenchymal markers, including vimentin and β-catenin,
was downregulated, in both dose- and time-dependent man-

ners (Figure 4E and F). Therefore, these results demonstrated

that DHC inhibited cell migration/invasion possibly via

downregulating epithelial–mesenchymal transition (EMT)

in melanoma cells.

Dehydrocorydaline suppresses tumor

growth in xenograft model of melanoma

cells
To further assess the impacts of DHC on colony formation

of melanoma cells, we employed the soft agar assay. After

2 or 3 weeks (MV3 for 2 weeks and A375 for 3 weeks),

the colonies in DHC-treated cells were smaller and less

numerous than in the control groups (Figure 5A and B).

Then, A375 and MV3 melanoma cells were transplanted

subcutaneously into both flanks of the female BALB/c

nude mice. After about a week, the tumor plumped. The

mice were randomly divided into two groups and orally

administrated with 100 mg/kg DHC or isometric DMSO

every day 12 times. The results of tumor volume showed

that DHC treatment dramatically suppressed tumor growth

in vivo (Figure 5E and F). Then, the mice were sacrificed

on the final day, and the tumors in the mice were excised

and weighed. Consistent with the results above, DHC

dramatically blocked the weight of tumors that formed in

the nude mice (Figure 5G and H). Importantly, DHC

treatment did not affect the mean weight, the appearance

or the behavior of the mice, which suggested that DHC

had little toxicity to the mice (Figure 5C and D). H&E

staining showed that cell proliferation was inhibited in

DHC-treated xenograft tumor samples (Figure 6).

Besides, the expression of Ki-67, a cell proliferation mar-

ker, was downregulated in the A375 and MV3 xenograft
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tumor samples (Figure 6). Furthermore, immunohisto-

chemical staining revealed that Cyclin D1 and vimentin

expressions were significantly reduced in the melanoma

tumor samples (Figure 6), which were consistent with

previous results. These results further suggested that

DHC treatment led to tumor growth retardation in xeno-

graft models of melanoma cells.

Dehydrocorydaline downregulates MEK1/

2-ERK1/2 cascade in melanoma cells
The mitogen-activated protein kinase (MAPK) signaling

network is one of the most important major signalings that

contribute to cell proliferation and survival of cancer

cells.29 The MAPK pathway is comprised of MAP3 kinase

(MAP3K, BRAF), MAP-extracellular signal-regulated

kinase 1/2 (MEK1/2) as well as extracellular signal-regu-

lated kinase 1/2 (ERK1/2).30 Since the BRAF-MEK-ERK

pathway plays a central role in determining cell fate, they

have become primary targets for the treatment of

tumors31.31 For example, dabrafenib, a BRAF inhibitor,

and trametinib, a MEK inhibitor, are significantly more

active in patients with BRAF mutant melanoma.32 In our

study, we found that DHC treatment induced downregula-

tion of phosphorylation of MEK1/2 (Ser221, 2338) and

ERK1/2 (Thr202/Tyr204, 4370), both in a dose- and time-

dependent manner, compared with the control groups

(Figure 7A and B). Besides, ERK activator t-butylhydro-

quinone (tBHQ, 50 μM) treatment recovered DHC

induced cell proliferation inhibition (Figure 7C). This evi-

dence indicated that DHC downregulated MAPK cascade

and might be a candidate drug to treat melanoma.

Discussion
Metastatic melanoma still remains as a highly aggressive

disease, despite the breakthrough introduction of targeted

therapies such as BRAF inhibitors33 and immune check-

point blockade therapies such as PD-1 and CTLA-4

inhibitors.34,35 There is a need to find novel potential

drugs and therapies for further improving the treatment

outcomes of melanoma malignancies. Alkaloids are novel
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Figure 3 Dehydrocorydaline induces cell cycle arrest at G1 phase in human melanoma cells. (A and B) The cell cycle of A375 and MV3 cells was analyzed by flow cytometry

after treating with DMSO or the indicated concentrations of DHC for 48 h. (C and D) Western blot assay was performed to assess the cell cycle-related protein levels in
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treatment strategies that are emerging as an effective and

promising treatment option against several types of can-

cers. The alkaloid DHC inhibited cells proliferation in

breast cancer cells20 and suppressed the metastatic poten-

tial of NSCLC cells.21 However, the effect of DHC in

melanoma remains to be further explored.

In this study, we tried to evaluate the activities of DHC

in melanoma cells. The results showed that DHC inhibited

melanoma cell growth both in vitro and in vivo (Figures 1,

2 and 5). Besides, DHC treatment induced conspicuous

cell cycle arrest at G0/G1 phase in melanoma cells

(Figures 3 and 6). However, we did not see any cellular

apoptosis after DHC treatment in melanoma cells (Figure

S1). In breast cancer MCF-7 cells, DHC dose-dependently

promoted Bax expression and decreased Bcl-2

expression.20 Another study showed that DHC exerted

little cytotoxicity and inhibited the protein expression of

Bcl-2 in NSCLC cells.21 However, in our previous study,

Bcl-2 expression was extremely high in MV3 melanoma

cells while very low in A375 cells.26 In MV3 cells, over-

expressed Bcl-2 suppressed apoptosis induced by DHC

treatment; while in A375 cells, Bcl-2 was not a fateful

factor. That might be the reason why DHC did not induce

apoptosis in MV3 and A375 melanoma cells.

EMT is a cellular process in which cells lose cell

polarity and release cell–cell adhesion, while obtaining

metastatic properties to show mesenchymal features,

which are more likely to migrate from primary focus to a

metastatic focus.36,37 Cells in EMT procession upregulate

many factors, such as N-cadherin, vimentin, and β-catenin,
and downregulate E-cadherin, so these can be used as

markers of EMT.38 Importantly, we found that DHC

remarkably inhibited the migration or invasion of mela-

noma cells and promoted the expression of E-cadherin,

while attenuating the expression of vimentin and β-catenin
(Figures 4 and 6). A previous study also showed that DHC

could inhibit the metastatic potential of NSCLC cells by

downregulating MMP7 and MMP9.21 These indicated that
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Figure 4 Dehydrocorydaline inhibits cell migration and invasion in melanoma cells. (A) Cell migration rate detected by wound-healing assay of A375 and MV3 cells after

treating with DMSO or 40 μM DHC for the indicated time. Scale bar, 100 μm. (B) The effect of 40 μM DHC on the wound closure in A375 and MV3 cells. (C) The effect of
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DHC might inhibit cell migration/invasion via influencing

the EMT.

Nearly 50% of metastatic melanoma patients have consti-

tutively activated BRAFV600 mutations, which mostly excite

the ERK1/2 signaling pathway to drive cancer cell prolifera-

tion andmetastasis.39 Vemurafenib, dabrafenib, and trametinib

are effective drugs for BRAFV600-mutant metastatic

melanoma.40 However, resistance to these drugs has occurred

in some melanoma patients hitherto.41 In our study, we found

that DHC reduced phosphorylation of MEK and ERK in a

dose- and time-dependent manners both in BRAFV600E

mutant A375 cells and in BRAF wild MV3 cells (Figure 7A
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and B), and activated ERK1/2 by tBHQ retrieved DHC-

induced cell proliferation inhibition (Figure 7C). Activated

ERK also directly or indirectly regulated cell cycle-related

proteins, such as CDKs and cyclins controlling G1 to S-

phase transition42 and pro-metastatic factors, such as E-

cadherin,43 and β-catenin.44 Phosphorylation of ERK was

also facilitated by vimentin,45 which was also downregulated

by DHC in our study (Figures 4E and 4F). This evidence
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Figure 6 Dehydrocorydaline decreases the expression of cell cycle and metastatic markers in xenograft model of melanoma cells. The images of the H&E staining and

immunohistochemistry analysis of d Ki-67, cyclin D1, and vimentin expression are presented.

Abbreviations: DHC, dehydrocorydaline; DMSO, dimethyl sulfoxide.
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suggested that DHC might be a new therapeutic drug to block

MEK-ERK signaling and to treat melanoma, especially

BRAFV600E mutant metastatic melanoma. However, more

efforts should be made to evaluate its effects and mechanisms.

In summary,we found thatDHC inhibited the progression of

metastatic melanoma cells and led to cell cycle arrest via sup-

pressing MEK-ERK cascade (Figure 8). Our results indicated

that DHC might be a promising and effective therapeutic agent

for the treatment of patients with metastatic malignant

melanoma.

Abbreviation list
MM, malignant melanoma; DHC, dehydrocorydaline;

tBHQ, t-butylhydroquinone; EMT, epithelial–mesenchymal

transition; MMP2, matrix metalloproteinase-2; NSCLC,

non-small cell lung carcinoma; IL-1β, interleukin-1β; IL-6,
interleukin-6; MEK, mitogen-activated protein kinase

kinase; ERK, extracellular regulated protein kinase;

MAPK, mitogen-activated protein kinase; GAPDH, glycer-

aldehyde 3-phosphate dehydrogenase; CDK6, cell division

protein kinase 6; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide; CTLA-4, cytotoxic T-lym-

phocyte-associated protein 4; PD-1, programmed cell death

protein 1; P/S, penicillin–streptomycin; DMSO, dimethyl

sulfoxide; BrdU, 5-bromo-2ʹ-deoxyuridine.
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Figure S1 DHC treatment induces no significant cellular apoptosis (sub-G1 phase) in A375 and MV3 melanoma cells.

Abbreviations: n.s.=not significant; DHC, dehydrocorydaline; DMSO, dimethyl sulfoxide.
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