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Abstract: Liposarcoma is a malignant neoplasm of fat tissue. Well-differentiated and

dedifferentiated liposarcoma (WDL/DDL) represent the two most clinically observed histo-

types occurring in middle-aged to older adults, particularly within the retroperitoneum or

extremities. WDL/DDL are thought to represent the broad spectrum of one disease, as they

are both associated with the amplification in the chromosomal 12q13-15 region that causes

MDM2 and CDK4 overexpression, the most useful predictor for liposarcoma diagnosis. In

comparison to WDL, DDL contains additional genetic abnormalities, principally coamplifi-

cations of 1p32 and 6q23, that increase recurrence and metastatic rate. In this review, we

discuss the xenograft and transgenic animal models generated for studying progression of

WDL/DDL, highlighting utilities and pitfalls in such approaches that can facilitate or impede

the development of new therapies.
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Introduction
Liposarcoma is an often fatal cancer of adipose tissue that accounts for approximately

20% of all adult soft tissue sarcomas.1 It can arise in almost any body district, although

the most frequent sites are the extremities (24%) and the retroperitoneal region (45%),

with a peak occurrence around the 5th and 6th decade and a slight predominance in

males.1 Liposarcoma presents in 2 largest groups, indicated as well-differentiated

liposarcoma (WDL) and dedifferentiated liposarcoma (DDL), in addition to the less

frequent myxoid and pleomorphic subtypes. The diagnosis of each subtype is based on

anatomical location, clinical behavior, histology appearance, and cytogenetic features.2

Only WDL has no tendency to metastasize (unless it contains a dedifferentiated

component) and may be therefore considered as a low-grade tumor, whilst the other

subtypes show significant metastatic rates, ranging from 15% up to 50%.2 WDL/DDL

histotypes share similar genetics despite a different prognosis and embody the most

common cases observed clinically.3 WDL represents the largest group of malignant

adipocytic neoplasms, accounting for approximately 40–45% of all cases.2 WDL is a

slowly growing tumor distinguished by the presence of malignant adipocytes and

spindle cells showing fibroblastic/myofibroblastic differentiation and giving rise to

four subtypes, namely, adipocytic (or lipoma-like), sclerosing, inflammatory, and

spindle cell variants. The most important prognostic factor for this tumor is anatomical

location, which is also the main predictor of relapse. WDL arising at somatic soft tissue

sites, such as limbs or the trunk wall, is alternatively termed atypical lipomatous tumor

(ALT) since its complete surgical resection is usually curative. Instead, the term WDL
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is preferable used for tumors occurring in the retroperito-

neum or other visceral sites, since the risk of local recur-

rences is about 50% and associated to a dedifferentiation

process, causing an even higher mortality rate than that

associated with metastasis.2 The term DDL was first intro-

duced by Evans in 1979 to define the morphological progres-

sion from ALT/WDL to a non-lipogenic sarcoma.4 DDL

indeed is considered a biphasic tumor consisting of a WDL

component juxtaposed to either a high-grade undifferentiated

sarcoma with malignant fibrous histiocytoma or fibrosar-

coma-like features or with a lower-grade sarcoma having

the appearance of myxofibrosarcoma. DDL is more often

recurrent, requires multi-organ resection more frequently

and presents a shorter disease-free interval when compared

toWDL.5 DDL variants are more predisposed to metastasize,

while ALT/WDL subtypes do not metastasize without

dedifferentiation.6 DDL behavior is peculiar showing also

the tendency to develop heterologous myogenic (rhabdo-

myosarcomatous or leiomyosarcomatous), osteo/chondrosar-

comatous, and rarely angiosarcomatous differentiation in

approximately 5–10% of the cases.7,8 Both WDL and DDL

are poorly responsive to conventional chemotherapy, and

surgical resection represents the best management for oper-

able disease.9 Adjuvant radiation is employed to reduce risk

of local recurrence in case of high-grade DDL, whereas

a first-line chemotherapy consisting of single-agent doxoru-

bicin treatment is generally reserved for unresectable or

metastatic diseases.9

Genomic landscape in liposarcoma
Each liposarcoma subtype is characterized by a distinctive

set of genetic signatures.10–13 Myxoid tumor type harbors

the recurrent translocation t(12;16)(q13;p11) associated to

the FUS-DDIT3 gene fusion product,14 whereas pleo-

morphic tumor is a complex-karyotype sarcoma frequently

characterized by loss of TP53, RB1, and NF1.15 Nearby all

WDL/DDL tumors are associated with the presence of one

or more supernumerary circular (“ring”) and/or giant rod

chromosomes.16 This leads to high-level amplifications in

the chromosomal 12q13-15 region that causes overexpres-

sion of MDM2, the most observed amplification in WDL/

DDL (close to 100%), and CDK4 (over 90% of the

cases).17,18 The diagnostic detection of MDM2 and

CDK4 by fluorescence in situ hybridization represents

a reliable tool to discriminate WDL/DDL from other adi-

pocytic tumors.19 Unsurprisingly, WDL shows high

expression of genes associated with lipid metabolism and

adipocytic differentiation, while DDL is characterized by

upregulation of genes involved in proliferation and DNA

repair as a result of additional genetic abnormalities,

including losses, fusion transcripts, and amplifications.20–22

Unlike WDL, DDL frequently contains 1p32, 6q23, and

12q amplifications causing oncogenic overexpression of

AP-1, HMGA2, GLI1, MAP3K12, CDK2, ALX1, and

TBX5.23–27 Over the last years, novel gene amplifications

(UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R),

deletions at chromosome 1p (RUNX3, ARID1A), chromo-

some 11q (ATM, CHEK1), and chromosome 13q14.2

(MIR15A, MIR16-1),28 and recurrent mutations in members

of PI3KCA, PTEN, WNT, ERBB, MAPK, and JAK-STAT

pathways have been detected in DDL.28,29 Finally, an

important role for epigenetic mechanisms in the dediffer-

entiation process is emerging, since CEBPα methylation

was found in 24% of the DDL30 and CDKN2A gene pro-

moter hypermethylation was observed in DDL but not in

recurrent WDL.31

The development of animal models recapitulating

tumor progression, resistance, recurrence, and metastasis

is vital for drug screening and biomarker analysis. Such

approach includes two strategies, ie, the use of xenograft

models and the development of transgenic models. Here

we review the main liposarcoma models generated so far

and discuss the advantages and limitations of such

approaches.

Xenograft models of liposarcoma
The engraftment of human tumor cells into immunocom-

promised hosts (xenograft), despite being a limitation for

studying the role of the immune system on tumor progres-

sion, is widely used to study cancer.32 For liposarcoma,

this strategy represents the best option, given the difficulty

to develop transgenic animal models (as highlighted in the

next paragraph). As depicted in Figure 1, tumor samples

obtained from surgical specimens are dissociated to single-

cell suspensions for in vitro study or for cell-derived

xenograft (CDX) injection into immunocompromised

hosts. This can be done either under the skin (ectopic

xenograft) or into the organ type in which the tumor

originated (orthotopic xenograft). Orthotopic models

ensure a more appropriate microenvironment but are

more technically complex compared to ectopic models.

A more personalized solution for patients with cancer is

the use of tumor tissue fragments engrafted into immuno-

compromised mice. These patient-derived xenograft

(PDX) tumors preserve the characteristics of the live

tumor and better recapitulate tumor biology and intratumor
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heterogeneity of patient tumors.33 The process of PDX

generation for individualized care in advanced sarcoma

has been set up: it takes 1 to 6 months, and approximately

75% of the implanted tumors grow successfully in mice.34

In this manner, while patients are receiving surgery and

treatment with first-line therapy, the tumor is expanded

across more generations of mice to test more appropriate

treatments. The PDX models generated from surgical spe-

cimens maintain the tumor microenvironment present in

the human host and the genetic features associated to

intratumor heterogeneity, including gene expression pro-

file, copy number variants, and treatment susceptibility.

However, it should be advised that one recent study has

reported that PDX models of varied tumor types develop

mutations with serial passages that diverge from those

observed in the patients.35 Recently, 5 PDX models were

successfully established from surgical specimens and biop-

sies of 31 DDL patients.36 The tumors fragments were

implanted bilaterally into the subcutaneous space of

immunodeficient mice. Fragments from collected tumors

were bilaterally re-implanted and passaged over multiple

generations. Bilateral tumor engraftment and cryopreser-

vation approaches of PDX models were used to reduce the

number of mice required over time. Cryopreserved PDX

tumors were successfully re-engrafted in mice.36 Such

strategies are not avoid of limitations, including the need

of a sufficient amount of fresh tumor tissue, the time of

propagation and the failure rate of about 20% of the tumor

implantation that, however, may predict lower aggressive-

ness. As reported in Table 1, several xenograft DDL mod-

els have been generated, while the engraftment of WDL

lines is more difficult to obtain.37,38 In this regard, it has

been proposed to keep the tumors inside a vascularized

chamber during their growth into host mice to improve the

engraftment success.39

MDM2/CDK4
As stated before, MDM2/CDK4 coamplification is the

most observed genetic signature featuring WDL/DDL.

The E3 ubiquitin ligase Mdm2 is a negative regulator of

p53 tumor suppressor,40–43 whereas Cdk4 promotes cell

cycle G1 phase progression through Rb protein phosphor-

ylation. A CDX model was established to test a dual

inhibitors strategy based on RG7388 and palbociclib com-

pounds, inhibiting the p53-Mdm2 complex and Cdk4

activity, respectively.44 Over a 3-week treatment, the

tumor volume was decreased and the progression-free

survival was increased without evident toxic effects.44 In

a PDX model established from a tumor specimen of a man

presenting a high-grade DDL of the mesentery,34 genome

sequencing showed MDM2/CDK4 coamplification and

mutation on JAK2. Though, a limited clinical benefit was

observed for the patient receiving Cdk4 inhibitor

(P1446A-05) and further supplementation with Jak2 inhi-

bitor (ruxolitinib). Since prospective drug sensitivity in the

PDX model revealed the efficacy of ifosfamide treatment,

Patient

Liposarcoma
tumor tissue

Derived cell line

From 1 to 8 weeks

From 1 to 6 months
Grafted tumor

Tumor engraftment

Serial engraftment

Cryo-
preservation

MDM2/CDK4
RTKs

•
•
•
•
•
•
•

•
•
•
•
•

PI3K/Akt/mTOR
AXL
MET
IL-6
miR-155

MDM2/CDK4

RTKs
PI3K/Akt/mTOR

JAK2

miR-193b

PDX

CDX

Figure 1 Xenograft animal models of liposarcoma. Surgically resected tumors are dissociated to obtain cell suspensions that are injected into immunocompromised mice to

generate CDX tumors. This technique is simple, the success of tumor engraftment is relatively high and the time of growth ranges from 1 to 8 weeks. However, the tumor

dissociation into cell line disrupts tumor microenvironment and alters intratumor heterogeneity. Alternatively, small fragments (~2–3 mm in diameter) of resected tumor are

entirely xenotransplanted into immunocompromised mice to generate PDX tumors that can be further used for serial engraftments. Alternatively, grafted tumors are

cryopreserved prior to further utilization. The PDX technique usually requires more time, but it preserves the tumor characteristics, allowing a preclinical drug testing for

personalized therapies. The genetic abnormalities of CDX and PDX liposarcoma tumors are highlighted in the boxes.

Abbreviations: CDX, cell-derived xenograft; PDX, patient-derived xenograft.
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this revealed a good efficacy in the patient.34 In 5 PDX

models generated from surgical specimens of 31 DDL

patients,36 FISH analysis revealed MDM2 amplification

throughout passages. Some of these PDX models have

already been successfully used for in vivo testing of

a tyrosine kinase inhibitor (pazopanib)45 and a cytotoxic

prodrug PhAC-ALGP-doxorubicin (ALGP-doxo).46 In two

bilaterally transplanted PDX models, treatment with

ALGP-doxo, that is converted to doxorubicin by pepti-

dases present in tumor cells and/or tumor microenviron-

ment, showed a significantly higher antiproliferative effect

compared to doxorubicin.46

RTKs and downstream pathways
WDL/DDL show high expression of several RTKs,

including DDR2, ERBB3, NTRK1, FGFR3, ROS1, MET,

AXL, KIT, and IGFR.37,47 This leads to high activation of

downstream signaling primarily through the Mapk and

PI3K/Akt/mTOR pathways.48 The overactivation of Akt

pathway in WDL/DDL frequently occurs because of the

loss of PTEN49,50 or the presence of activating mutations

in the PI3K gene (E542K and H1047R amino acid

substitutions).51 This pathway, eliciting protein synthesis

via mTOR,52 supports many cellular functions, including

growth, metabolism, and survival.53 Moreover, oncogenic

signal transduction through the PI3K-Akt pathway can

enhance Mdm2-mediated p53 suppression.54 In PDX

models, treatment with a tyrosine kinase inhibitor (pazo-

panib) has been reported to delay tumor growth primarily

through angiogenesis inhibition.45 In addition, dual com-

bination with a multikinase inhibitor (sorafenib) and an

mTOR inhibitor (rapamycin) yielded a reduction of

tumor growth that was more consistent compared to

rapamycin treatment alone.50 In CDX tumors, concomi-

tant inhibition of the PI3K/Akt/mTOR and Mdm2 path-

way, mediated by BEZ-235 and RG7388 compounds,

promoted a significant reduction of tumor growth.55

Reduced tumor growth and metastatic rate of CDX

tumors were also reported upon knockdown of AXL,56

a member of the TAM family that signals through PI3K/

Akt/mTOR and Mapk pathways and whose inhibition

represents a promising avenue for the treatment of

a wide number of cancers.57 Another emerging therapeu-

tic target is the Met receptor, highly expressed in

liposarcoma.37 After binding to Hgf ligand, Met receptor

transactivates Stat3, SFKs, and Mapk pathways.58

Consistent with this, treatment with a novel Met inhibitor

(EMD1214063) was reported to abrogate tumor growth

in CDX models.59

IL-6
IL-6 is a cytokine often overexpressed in cancer and

associated to a poor prognosis and chemoresistance.60

IL-6 expression is under the control of a number of tran-

scription factors including NF-κB activator, AP-1, and

CEBPs.61 Especially in adipose tissue, CEBPs play

a pivotal role as they regulate several biological responses

like proliferation, differentiation, adipocytes maturation,

and cytokines production.62 To test the potential role of

IL-6 on liposarcoma pathogenesis, DDL cells were intra-

muscularly injected into nude mice.63 Tumor growth was

then monitored in both voluntary-active or inactive mice

with open or restricted access to activity-wheels to test the

potential effects of physical activity on tumor progression.

The authors found a greater amount of the circulating IL-6

(6-fold increase) in tumor-bearing mice that was correlated

with CEBP-α/β and Ppar-γ activities in comparison to

controls.63 Of note, in mice subjected to a physical activity

the levels of IL-6 were enhanced, inducing tumor growth,

body weight loss, and lung metastasis dissemination

through the activation of the autophagy program.63 The

negative effect of regular physical activity was then con-

firmed using an orthotopic tumor model characterized by

intramuscular tumor growth,64 indicating that patients with

lower-extremities liposarcoma could be advised to mini-

mize the physical activity during the preoperative period.

MicroRNA signatures
MicroRNAs (miRs) are evolutionarily conserved noncod-

ing small RNAs of 18- to 24-nucleotides involved in

post-transcriptional gene expression regulation through

mRNA degradation, translational inhibition, or chroma-

tin-based silencing mechanisms.65 The miR expression

profiles are markedly altered in cancer and their signa-

tures in human tumors are associated with diagnosis,

staging, progression, prognosis, and response to

treatment.66 Early detection of recurrent or metastatic

disease through miR predictors could improve patient

prognosis. MiR signatures that are unique to liposarcoma

subtypes have been proposed.67,68 For example, miR-155

upregulation was detected in all liposarcoma tumors69

and its plasma levels have been reported as a diagnostic

marker for DDL.70 On the other side, miR-25-3p and
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miR-92a-3p are secreted by liposarcoma cells through

extracellular vesicles and may be useful as potential dis-

ease biomarkers.71 Using a miR array platform, an

expression signature consisting of 4 overexpressed and

31 downregulated miRs was found to differentiate WDL/

DDL from normal fat.72 The most statistically significant

upregulated miR in DDL was confirmed to be miR-155,

which promoted tumor cell growth by targeting CK1α
that led to increased β-catenin signaling and cyclin D1

expression.72 Consistent with these results, miR-155

knockdown in CDX tumors delayed tumor growth.72

MiR-193b has lower expression in WDL/DDL compared

to adipose tissue samples73 and its injection into PDX

tumors significantly delayed tumor volume only after 3

weeks of treatment.73 Since miR-193b was found to

target the FAK proteins, the tumor treatment with

a FAK inhibitor (PF-271) reduced tumor growth via

increased cell apoptosis.73

Transgenic animal models of
liposarcoma
Transgenic animal models are mainly originated through

genetic knock-in or knock-out approaches to express and/

or inactivate specific genes in a tissue-specific and time-

dependent manner. The procedures for their generation are

expensive and time consuming; however, the availability of

animal models developing tumor in response to genomic

alterations is of great help for scientists and clinicians.

Given the rarity of liposarcoma, the number of transgenic

animal models developed so far is limited. Perhaps, one of

the major difficulties in such approach is represented by the

choice of the cell precursor in which the genetic lesions

have to be introduced. In this context, it has been proposed

that WDL/DDL may share a common ancestral cell of

origin and that the gradual accumulation of genetic lesions

could drive the progression of WDL to DDL.74

Alternatively, both WDL/DDL could arise from the same

cell precursor but at different time points along the multi-

step process of adipogenic differentiation.75 Since approxi-

mately 5% cases of DDL show heterologous cellular

composition of myogenic cells (leiomyosarcoma or

rhabdomyosarcoma),8 potential candidate cells are the mul-

tipotent stem cells that can differentiate into different

mesenchymal precursors. Furthermore, it must be men-

tioned that cell transdifferentiation processes are possible,

as it has been observed that the aberrant activation of the

Shh signaling in mature adipocytes is sufficient to convert

them into myogenic tumor cells.76 As depicted in Figure 2,

four transgenic animal models developing liposarcoma have

been generated through gene manipulation in mesenchymal

cell progenitors or adipocytes, as described below.

Akt signaling
Oncogenic gene mutations in receptors (FGFR, EGFR) or

transducers (KRAS, PI3K)77 commonly elicit deregulation

of PI3K/Akt/mTOR pathway, as analogously observed in

liposarcoma.28,29 A transgenic model of WDL has been

generated via targeted expression of an active myristoy-

lated Akt2 form in mesenchymal cell progenitors of zebra-

fish carrying p53 homozygous mutation. Following

embryo microinjection with a DNA construct carrying

Akt2,49 solid tumors classified as WDL (91%) and osteo-

sarcomas (9%) developed between 1 and 4 months of age,

with the highest tumor incidence rate observed in p53-

homozygous mutants (about 29%) (Figure 2A). The treat-

ment of transgenic zebrafish with a dual PI3K/mTOR

inhibitor (BEZ235) was efficacious to counteract tumor

growth via increased apoptosis,49 therefore confirming

that this pathway synergizes with p53 loss to drive lipo-

sarcoma genesis.

Notch signaling
The evolutionarily conserved Notch signaling pathway

plays a pivotal role in cell commitment, tissue develop-

ment, and tumorigenesis.78,79 The Notch cascade is

initiated when one of the five ligands belonging to

DSL family (Jag1, −2 and Dll1, −3, −4) binds to one

of the four Notch receptors.80 This interaction induces

sequential cleavages in Notch receptor mediated by dif-

ferent proteases (Adam metalloproteases, γ-secretase
protease complex) that cause the release of the Notch

intracellular domain, which then translocates into the

nucleus to activate the transcription of several target

genes.80 The activation of Notch signaling in mature

adipocytes, obtained through the Cre/LoxP

technology,81 has been shown to elicit DDL formation

by shaping gene expression and promoting dedifferen-

tiation via suppression of fatty acid metabolism and

Ppar-γ function (Figure 2B).82 Mice with activated

Notch1 exhibited a lipodystrophy phenotype in the pre-

neoplastic state, characterized by hepatic steatosis,

hyperglycemia, and severe insulin resistance.82 The

authors further demonstrated that the treatment of

a human LPS246 xenograft model with a Notch inhibi-

tor (dibenzazepine) was effective to reduce tumor

growth.82 A selective Notch inhibitor (LY3039478)
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was recently tested in a phase 1a/b trial showing

a modest clinical activity and a safety profile towards

several sarcomas, including liposarcoma.83 Interestingly,

it has been shown that Mdm2 can synergize with

Notch1 to inhibit apoptosis and promote

proliferation,84,85 indicating that targeting the Notch

pathway may be helpful for overcoming WDL/DDL

development and progression.

IL-22 overexpression
WDL formation has been observed in transgenic mice over-

expressing IL-22 in adipocytes (Figure 2C).86 Interestingly,

Akt2 overexpression in mesenchymal progenitors Notch1 overexpression in adipocytes

One-cell stage embryos

Akt2 construct
(Rag2 promoter)

Akt2/p53 mut/ mut

29%
WDL

Embryonal
stem cells

Blastocysts

Notch1flox

(Adipoq-cre promoter)

Notch1flox chimera Adipoq promoter:Cre

Cre/LoxP-Notch1 construct

100%
DDL

p53 wt / mut p53 wt / mut

100%
WDL

IL-22 overexpression in adipocytes

Fertilized oocyte
IL-22 construct
(Ap2 promoter)

No
tumors

Normal diet
Long-term feeding
with high fat diet

IL-22

Embryonal
stem cells

Blastocysts

Atglflox chimera

Atglflox + Fabp4 promoter:Cre Hslflox + Fabp4 promoter:Cre

Fabp4 promoter:Cre Fabp4 promoter:Cre

Hslflox chimera

100%
DDL

Double Atgl and Hsl knockout in adipocytes
Cre/LoxP-Atgl construct Cre/LoxP-Hsl construct

Double Atglflox and Hslflox

(Fabp4-Cre promoter)

A B

C D

Figure 2 Transgenic animal models of liposarcoma. (A) The fertilized oocytes derived from zebrafish with heterozygous background for p53 mutation (M214K substitution)

were microinjected with Akt2 construct. Akt2 activation in mesenchymal progenitors drove WDL development. (B) Adipocyte-restricted Notch1 overexpression in mice

was obtained through an inducible Cre/LoxP approach. Embryonal mesenchymal stem cells carrying a construct in which Notch1 is flanked with two loxP sites (Notch1flox

allele) were injected into mouse blastocysts. The arisen Notch1flox mice were breaded with mice expressing Cre recombinase under the Adipoq promoter, resulting in high

Notch1 signaling in fat cells that caused DDL formation. (C) IL-22 construct was microinjected in mouse fertilized oocytes. Only transgenic mice fed with a long-term high

fat diet developed WDL. (D) Mice double knockout for Atgl and Hsl were obtained through an inducible Cre/LoxP approach. Embryonal mesenchymal stem cells carrying

Atglflox or Hslflox cassettes were injected into mouse blastocysts. The arisen Atglflox and Hslflox mice were breaded with mice expressing Cre recombinase under the Fabp4

promoter to knockout Atgl or Hsl in fat cells. Double knockout mice generated from their breeding developed DDL.

Abbreviations: WDL, well-differentiated liposarcoma; DDL, dedifferentiated liposarcoma.
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these mice had neither apparent phenotype nor metabolic

alteration, but developed spontaneous tumors in adipose

tissue after long-term feeding with high fat diet. IL-22 is

a T-cell secreted cytokine that modulates inflammatory

response in nonhematopoietic tissues such as epithelium

and liver87 via primary activation of Jak1 and Tyk2 and

Stat3 pathway but also of Mapk and PI3K/Akt/mTOR

pathways.88 The oncogenic role of IL-22/Stat3 signaling

axis has been reported in a number of tumors, such as

hepatocarcinoma.89 In response to high IL-22 levels, the

adipose tissue of transgenic mice became inflamed and char-

acterized by higher levels of IL-1β, IL-6, IL-10, TNF-α, and
Erk pathway activation. This work confirms the important

role of diet and inflammation in tumorigenesis, since the

increased secretion of steroid hormones and insulin resis-

tance in the presence of a persistent inflammatory state, as

observed in obesity, may increase tumorigenesis risk.90–92 It

has been estimated that obesity in children from 2 to 14 years

resulted associated with increased cancer risk in adulthood

by 40% and also with a worse survival with respect to control

patients.93

Epistatic gene interaction between the

adipose triglyceride lipase and

hormone-sensitive lipase
Epistasis refers to the observation of an unexpected phenoty-

pic outcome when combining two genetic alleles.94

A synergistic epistatic interaction determinant for liposarcoma

development has been observed between two genes of the

lipolysis pathway, the adipose triglyceride lipase (Atgl) and

the hormone-sensitive lipase (Hsl) (Figure 2D).95 Lipolysis

has been implicated in cancer since it provides a source of fatty

acids for tumor growth.96 Atgl enzyme, encoded by the

PNPLA2 gene, catalyzes the hydrolysis of triglycerides to

diglycerides, 97 whereas Hsl, encoded by the LIPE gene,

catalyzes the second step of lipolysis, the cleavage of digly-

cerides to monoglycerides. Of note, deletion of PNPLA2 is

reported in WDL and sarcoma,22,98 and deletions of the chro-

mosome 19p13 region containing LIPE are frequent in DDL

and correlate with poor prognosis.22 Mice lacking both Atgl

and Hsl showed near-complete deficiency of lipolysis and

were unable to maintain their blood glucose values over

a normal postprandial fasting due to rapid depletion of carbo-

hydrates reserves in the absence of lipid stores in adipose

tissue.95 While no malignant tumors were found in white

adipose tissue of transgenic mice, the brown adipose tissue

was characterized by hypertrophic brown adipocytes with

formation of liposarcoma tumors between 11 and 14 months

of age. Expression profiling analysis in premalignant brown

adipose tissue of transgenic mice revealed downregulation for

the gene sets of fatty acid, triacylglycerol and ketone body

metabolism, the tricarboxylic acid cycle and respiratory chain

and genes of lipid metabolism. In contrast, genes involved in

the immune response were upregulated. Among the differen-

tially expressed genes, liposarcoma tumors showed highest

expression ofGPNMB, which encodes a circulating glycopro-

tein identified in several cancers,99 and lowest expression of

G0S2, the endogenous inhibitor of Atgl.100 By comparing the

gene expression profiles between transgenic animals and

a number of 58 DDL patients,101 the authors found that

LIPE, PNPLA2, and G0S2 are also among the five most

downregulated genes in human liposarcoma.95

Conclusions
The generation of animal models of liposarcoma is crucial

for identification of early markers, diagnosis, and develop-

ment of new therapies. To date, a major obstacle in this

process is the limited number of appropriate animal models

recapitulating the complexity and heterogeneity of liposar-

coma malignancies, resulting in poor efficiency in translating

the findings of basic research to clinical applications. Surely,

the generation of animal models is complicated by the choice

of the potential cell of origin to be used as a recipient for the

genomic editing phase. In this context, the use of PDX

models allows to personalize the treatment options for

patients and therefore represents an important alternative.

Hopefully, the establishment of novel clinically relevant dis-

ease transgenic models will be vital for identification of the

molecular mechanisms underlying liposarcoma genesis and

progression and for validation of new therapies.

Abbreviation list
ADAM, A disintegrin and metalloprotease; AKT, Ak strain

transforming murine thymoma viral oncogene; ALX1,

Aristaless-like homeobox protein 1; AP-1, Activator protein

1; ARID1A, AT-rich interactive domain 1A; ATM, Ataxia-

telangiectasia-mutated gene; CDK, Cyclin-dependent

kinase; CDKN2A, Cyclin-dependent kinase inhibitor 2A;

CEBPs, CCAAT/enhancer-binding proteins ; CHEK1,

Checkpoint kinase 1; CK1α, Casein kinase 1 alpha; CPM,

Carboxypeptidase M; DDR2, Discoidin domain receptor 2;

DLL, Distal-less; DSL, Delta/serrate/lag-2; EGFR,

Epidermal growth factor receptor;ERbB, Erb-b2 receptor

tyrosine kinase; ERK, Extracellular signal-regulated kinase;

FAK, Focal adhesion kinase; FGFR, Fibroblast growth
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factor receptor; FUS-DDIT3, Fusion-DNA damage-induci-

ble transcript 3; G0S2, G0/G1 switch gene 2; GLI1,

Glioma-associated oncogene homolog 1; GPNMB,

Glycoprotein nonmetastatic melanoma protein B; HGF,

Hepatocyte growth factor; HMGA2, High-mobility group

AT-hook protein 2; IL, Interleukin; IGF2, Insulin-

like growth factor 2; IGFR, Insulin-like growth factor

receptor; JAG1, Jagged-1; JAK, Janus kinase; KIT, receptor

tyrosine kinase; KRAS, Kirsten rat sarcoma viral oncogene

homolog; LAMA4, Laminin subunit alpha 4; LIPE, Lipase

E; MAPK, Mitogen-activated protein kinase; MDM2,

Mouse double minute 2 homolog; MET, Mesenchymal-

epithelial transition factor; mTOR, Mammalian target of

rapamycin; NF1, Neurofibromin 1; NF-κB, Nuclear factor

kappa B; NOTCH1, Neurogenic locus notch homolog pro-

tein 1 ; NTRK1, Neurotrophic tyrosine receptor kinase type

1 ; PI3KCA, Phosphatidylinositol-4,5-bisphosphate 3-kinase

catalytic subunit alpha; PNPLA2, Patatin-like phospholipase

domain containing 2; PPAR-γ, Peroxisome proliferator-acti-

vated receptor gamma; PTEN, Phosphatase and tensin

homolog; RB1, Retinoblastoma 1; ROS1, C-ros oncogene

1; RTKs, Tyrosine kinase receptors; RUNX3, Runt-related

transcription factor 3; SFKs, Src family protein kinases;

SHH, Sonic hedgehog; STAT, Signal transducer and activa-

tor of transcription; TAM, Tyro3, Axl, Mertk; TBX5, T-box

transcription factor 5; TNF-α, Tumor necrosis factor-alpha;

TP53, Tumor suppressor protein p53; TYK2, Tyrosine

kinase 2; UAP1, UDP-N-acetylglucosamine pyrophosphor-

ylase 1; WNT, Wingless-integrated.
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