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Abstract: Age-related macular degeneration (AMD) is the leading cause of irreversible

blindness among the elderly. Considering the relatively limited effect of therapy on early

AMD, it is important to focus on the pathogenesis of AMD, especially early AMD. Ageing is

one of the strongest risk factors for AMD, and analysis of the impact of ageing on AMD

development is valuable. Among all the ageing hallmarks, increased DNA damage accumu-

lation is regarded as the beginning of cellular senescence and is related to abnormal

expression of inflammatory cytokines, which is called the senescence-associated secretory

phenotype (SASP). The exact pathway for DNA damage that triggers senescence-associated

hallmarks is poorly understood. Recently, mounting evidence has shown that the cGAS/

STING pathway is an important DNA sensor related to proinflammatory factor secretion and

is associated with another hallmark of ageing, SASP. Thus, we hypothesized that the cGAS/

STING pathway is a vital signalling pathway for early AMD development and that inhibition

of STING might be a potential therapeutic strategy for AMD cases.

Keywords: age-related macular degeneration, cGAS/STING pathway, DNA damage,

inflammation

Background
Age-related macular degeneration (AMD) is the leading cause of irreversible

blindness among the elderly in developed countries.1 As a chronic, degenerative

disorder in the macular region of the retina, AMD leads to progressive central

vision loss from the early stage (medium-sized drusen and retinal pigment epithe-

lium abnormality) to the late stage (neovascular AMD and geographic atrophy).2

The number of patients with AMD is expected to be approximately 200 million

globally by 2020. There are a large number of elderly patients with visual impair-

ment caused by AMD, which is likely to increase with time. The levels of vision

described amount to considerable visual compromise and constitute a major public

health burden, resulting in increased social isolation, depression, restriction of daily

activities, risk of falling and hip fracture.3 And this condition will become a major

public health issue with substantial socio-economic losses.

Anti-vascular endothelial growth factor (VEGF) agents (such as ranibizumab,

aflibercept, or bevacizumab) are the main treatments for neovascular AMD and

provide significant therapeutic effects.4 Ranibizumab 0.5 mg (Lucentis®; Novartis
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Pharma AG, Basel, Switzerland, and Genentech, South

San Francisco, California, USA) was the first anti-VEGF

agent to be approved for this indication.5 Aflibercept is a

fusion protein containing both VEGFR-1 and VEGFR-2,

which binds to VEGF-A thus impeding its activity.6

Bevacizumab is a full-length monoclonal antibody

(149 kDa) that was developed for cancer therapy.7

Repetitive intravitreal injections can lead to a severe eco-

nomic burden and an increased risk of infection, and thus,

many clinical trials have been conducted to identify an

optimal therapeutic strategy.8,9 There are significant inter-

individual differences in response to an anti-VEGF agent.

The response to anti-VEGF therapy have been found to be

dependent on a variety of factors including patient’s age,

lesion characteristics, lesion duration, baseline visual

acuity (VA) and the presence of particular genotype risk

alleles.10 Some patients undergoing anti-VEGF treatment

demonstrated poor or even no response to the drugs, so

updated intervention drugs and strategies are still

required.11 Geographic atrophy, which is regarded as the

end stage of AMD, is estimated to account for one-fifth of

cases of legal blindness.

Over the past decade, there has been growing evidence

implicating a role for the complement system in AMD.12

Histopathologic studies have identified various comple-

ment components in drusen, in Bruch’s membrane, and

in the inner choroid.13 Several treatment strategies that

modulate the complement system in AMD are being inves-

tigated. These treatments inhibit complement activation by

targeting various effectors molecules, such as C3, C5, and

factor D.14 Complement inhibition has been reported as a

potential therapeutic intervention for geographic atrophy.15

Eculizumab and lampalizumab are inhibitors of the com-

plement cascade, but updated studies and analyses are still

required to determine the effect of these drugs.

Eculizumab is an inhibitor of terminal complement activa-

tion approved by the US Food and Drug Administration. It

is approved for the systemic treatment of paroxysmal

nocturnal hemoglobinuria and atypical hemolytic uremic

syndrome. Eculizumab successfully controls these diseases

by inhibiting C5 an preventing terminal complement acti-

vation and formation of membrane attack complex

(C5b-9).16 Lampalizumab is an intravitreally administered

inhibitor of complement factor D, an important component

of the alternative complement pathway.17 Additionally, a

new anti-complement therapy has been developed and

appears to be the most promising among all the molecules

for the treatment of atrophic AMD.18 These results are

promising for the detection of a potential method for the

prevention and delay of AMD progression. If we can

prevent the development of AMD from the early stage to

the late stage, the patient would be in the relatively asymp-

tomatic early stage and would show an improved visual

outcome and quality of life.

Several clinical trials have focused on the prevention of

AMD progression, and the data from Age-Related Eye

Disease Study 2 (AREDS2) showed that AREDS formula-

tion in primary analyses did not further reduce the risk of

progression to advanced AMD.19 Additionally, several

epidemiological studies and meta-analyses demonstrated

that omega-3 fatty intake was associated with a lower

risk of AMD; however, the conclusion should be validated

by more well-designed clinical studies.20,21 Clinical appli-

cation of nutrition supplementation for the treatment of

early AMD is still far from being a reality.

Considering the relatively limited therapeutic effect in

early AMD, it is important to focus on the pathogenesis of

AMD, especially early AMD. AMD is caused by multiple

biological processes, such as inflammation and oxidative

stress.22 As a multifactorial chronic disease, AMD inci-

dence is associated with both genetic and environmental

factors (genes, ageing, smoking, family history, dietary

habits, oxidative stress, and hypertension).23,24 What’s

more, several genetic and molecular studies have showed

the participation of inflammatory molecules, immune cells,

and complement proteins in the development and progres-

sion of the disease.25 In addition, different genes (IL-6, IL-

8, CFH, CFI, C2, C3, and ARMS2) that play an important

role in the inflammatory pathway have been related with

AMD risk. Also, the sample cohort has been subjected to a

large genotyping analysis of 20 genetic variants which are

known to be associated with AMD among European and

Asiatic populations. This study revealed that 8 genetic

variants (IL-8, CFH, TIMP3, SLC16A8, RAD51B,

ARMS2, VEGFA and COL8A1) were significantly related

with AMD susceptibility.26–28 Among all the associated

risk factors, ageing and smoking are by far the strongest

risk factors.29 The results from different observations

showed that smoking is significantly associated with the

incidence of AMD.6 And smoking cessation is unequivo-

cally cost-effective in terms of its impact on AMD devel-

opment and progression.30 Both in vivo and in vitro

experimental models based on smoke exposure and

tobacco extract are available.31–33 Thus, focusing on the

impact of ageing on the development of AMD is valuable.

More information about the ageing-associated or driven
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molecular progress of AMD would contribute to the suc-

cessful prevention or treatment of AMD, and this knowl-

edge might help in other human ageing diseases.

Ageing, which is a time-related, degenerative process

beginning in adulthood, occurs in most organisms and even-

tually ends life.34 Ageing is associated with a series of dis-

eases, including cardiovascular disease, neurodegeneration,

carcinoma, and osteoarthritis.35–38 In a previous review, the

hallmarks of ageing included genomic instability, telomere

attrition, epigenetic alterations, loss of proteostasis, deregu-

lated nutrient sensing, mitochondrial dysfunction, cellular

senescence, stem cell exhaustion, and altered intercellular

communication.39 Among all the ageing hallmarks,

increased DNA damage accumulation was regarded as a

beginning of cellular senescence and was related to abnormal

expression of inflammatory cytokines, which is called the

senescence-associated secretory phenotype (SASP).40 DNA

sensors can sense senescence-associated DNA damage and

trigger inflammation. cGMP-AMP (cGAMP) synthase

(cGAS) and the adaptor stimulator of interferon genes

(STING) were shown to be involved in the regulation of

senescence.41 In addition, a recent study by Nagaraj Kerur

et al indicated that cGAS responded to mitochondrial

damage-induced inflammasome activation and thus played

an important role in the regulation of geographic atrophy.42

However, the exact role of the cGAS/STING pathway in the

development of early AMD as a senescence-associated DNA

damage sensor remains unclear.

Presentation of the hypothesis
Ageing, which is one of the strongest risk factors of AMD,

influences both the anatomy and function of the retina.43,44

Retinal pigmented epithelium (RPE) cells, which are a

monolayer of cells that provide trophic support to photo-

receptors, are regarded as one of the earliest influenced

cells in the retina.45 RPE dysregulation is associated with

various kinds of retinal diseases, including AMD, diabetic

retinopathy and proliferative vitreoretinopathy.46–48 The

abnormal expression of growth factors and cytokines

secreted by RPE cells is involved in the dysfunction of

RPE cells. As reported in previous studies, these growth

factors include vascular endothelial cell growth factor

(VEGF), pigment epithelium-derived factor (PEDF), and

transforming growth factor beta 2 (TGF-β2).49,50 The

cytokines include interleukin-6 (IL-6), interleukin-8

(IL-8), interleukin-17A (IL-17A) and interleukin-1β
(IL-1β).51–53 SASP is regarded as a key hallmark of age-

ing, and abnormal expression of various factors, such as

IL-1α, IL-1β, IL-6, IL-8, and matrix metalloproteinases

(MMP1 and MMP3), is involved.54 There was a wide-

ranging overlap between RPE dysfunction-associated fac-

tors and SASP-associated factors. Thus, the dysfunction of

RPE was, at least partly, caused by cell senescence, and

the abnormal expression of growth factors and cytokines

were signs of SASP.

Throughout an organism’s lifespan, DNA is exposed to

both exogenous and endogenous harmful factors, such as

chemicals, radiation and different kinds of metabolic pro-

ducts, leading to different types of DNA damage and

genomic instability.55 Many different factors, such as

tobacco smoking, which is a strong environmental risk

factor, has been reported to be associated to increased

DNA damage in retina.56 DNA damage is regarded as

both an important hallmark and a key trigger of senes-

cence. A persistent DNA damage response (DDR) in age-

ing cells leads to senescent DNA damage foci (SDF) and

telomere dysfunction-induced foci (TIF).57 DNA damage

includes nuclear DNA and mitochondrial DNA (mtDNA)

damage. There is a modulated balance between DNA

damage and DNA repair in normal cells, and the absence

of this balance leads to the accumulation of damaged

DNA.58 mtDNA is a closed-loop DNA molecule indepen-

dent of nuclear DNA in cells. Mitochondrial DNA, which

exists without the protection of histone and DNA binding

proteins, is vulnerable to oxygen free radical damage. In

addition, mtDNA is not easily repaired due to the lack of a

repair system. Therefore, mtDNA is more easily affected

by influencing factors and accumulates more harmful

mutations compared with nuclear DNA.59 A published

review has focused on the role of DNA damage in the

effect of cellular senescence in AMD. It concluded that

oxidative stress can induce DDR and cell senescence,

promoting AMD incidence.60 Thus, how the DNA damage

signal is detected by the cell could answer questions about

the progression of ageing or senescence-associated signs.

Increasing evidence has demonstrated the important role

of the cGAS/STING pathway as a cytoplasmic DNA sensor,

and its classical function is to promote the production of type

I interferons (IFNs) and immune factors, which is important

in antiviral and antineoplastic processes.61 Advanced studies

have also shown that this pathway is involved in the inci-

dence and progression of autoimmune diseases, carcinoma

and ageing.54,61–63 When cellular senescence was consid-

ered, the regulatory effect of the cGAS/STING pathway

also demonstrated a significant effect. Activation of the

cGAS/STING pathway leads to two independent
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downstream pathways: type I IFNs through interferon reg-

ulatory factor 3 (IRF3) and proinflammatory responses

through NFκB16.64 Both the IRF3- and NF-κB-dependent
pathways lead to the production of inflammatory growth

factors and cytokines, leading to SASP.

Based on the above absorbing viewpoints and studies, we

hypothesized that the cGAS/STING pathway is the sensor of

senescence-associated DNA damage and trigger of inflam-

mation in early AMD (Figure 1). cGAS/STING functioned

as an important bridge to connect ageing-related DNA

damage and AMD incidence, and thus, the inhibition of this

pathway would help in drug development in the future.

Testing the hypothesis
1. To demonstrate the feasibility and stability of this

hypothesis, we will first detect the association

between RPE cellular senescence and the incidence

of ageing and early AMD. Young rats (2 months),

ageing rats (24 months) and early AMD rat models

(24 months + smoke exposure) will be obtained.

Smoke expose will be conducted using a smoking

machine for 2 months and following experiments

will conducted as a smoke expose group. The average

concentration of total suspended particulates was

130 mg/m3 and was monitored twice daily. The retinal

structure will be conducted using retina sections and

retinal function would be detected with multifocal

visual electrophysiology examining system. Next gen-

eration sequence will be conducted to detect the gen-

eral RNA expression in the three groups. The

expression of the cell senescence biomarkers SA-β-
Gal activity and p16Ink4a will be detected by immu-

nohistochemistry of retinal tissues and Western blot

analyses of extracted RPE cells. This aim will be

provided evidence for the relationship between RPE

cell ageing and the incidence of AMD.

2. Second, the DNA damage was linked to the AMD-

like phenotype both in-vivo and in-vitro. Both the

extracted primary cultured RPE cells from young,

old and AMD rat models and in vitro cellular models

(normal or tobacco extracted treatment group) will be

obtained for detection. Cytoplasmic dsDNA will be

detected by staining with a primary antibody against

dsDNA. Mitochondrial DNA PCR will be obtained

Exogenous stress
Chemicals

radiation
light

Nuclear

ER

STING

Mitochondria

Cellular
senescence

Endogenous
ROS

Metabolic products

cGAMP

dsDNA

SASPcGAS

RPE cell

IRF-3

NFKB

IKK

TBK-1

Figure 1 Molecular mechanisms of the cGAS/STING pathway as a senescence-associated DNA damage sensor and inflammation trigger. DNA is exposed to both

exogenous and endogenous harmful factors, such as chemicals, radiation and different kinds of metabolic products. DNA damage includes nuclear DNA and mitochondrial

DNA (mtDNA) damage. The cGAS/STING pathway is a cytoplasmic DNA sensor, and activation of the cGAS/STING pathway leads to two independent downstream

pathways: type I IFNs through IRF3 and proinflammatory responses through NFκB16. Both the IRF3- and NF-κB-dependent pathways lead to the production of

inflammatory growth factors and cytokines, leading to SASP.

Abbreviations: SASP, senescence-associated secretory phenotype; RPE, retinal pigmented epithelium; ER, endoplasmic reticulum; ROS, reactive oxygen species.
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for the detection of cytoplasmic mtDNA. Both cyto-

plasmic dsDNA and damaged mtDNA will be upre-

gulated in ageing retina and early AMD models.

3. Third, cGAS/STING and its downstream IRF3- and

NF-κB-dependent pathway-related key proteins will

be detected in an in vitro model. Tobacco extract

treatment will be used in the in vitro model construc-

tion, and the dose-response effect of tobacco extract

will be also detected. For the SASP-associated factors,

the cellular and secreted growth factors, including IL-

1α, IL-1β, IL-6, IL-8, and matrix metalloproteinases

(MMP1 and MMP3), will be detected by Western

blots and ELISAs.

4. In the end, we assessed inhibition of the cGAS/STING

pathway as a treatment of early AMD.As reported in a

recent study, covalent small molecules can inhibit

STING,65 and the specific STING inhibitors will be

used both in-vivo and in-vitro to test their potential

therapeutic effects. If an inhibitor could reverse retinal

ageing signs and release SASP markers, these mole-

cules will be a potential drug for early AMD.

Conclusion
Ageing is one of the strongest risk factors for AMD

incidence, but the exact role of ageing remains unclear.

DNA damage, including nuclear and mtDNA damage, is

important in the progression of senescence. The extract

pathway for DNA damage in the trigger of senescence-

associated hallmarks is poorly understood. Recently,

mounting evidence has shown that the cGAS/STING

pathway is an important DNA sensor related to proin-

flammatory factor secretion and is associated with

another hallmark of ageing, SASP. Thus, we hypothe-

sized that the cGAS/STING pathway is a vital signalling

pathway for early AMD development and that inhibition

of STING might be a potential therapeutic strategy for

AMD cases.
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