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Background: Chemoresistance is a major obstacle for chemotherapy failure in non-small-

cell lung cancer (NSCLC). lncRNAs are a class of pivotal regulators in various cancers, and

the lncRNA FOXD2-AS1 is implicated in the progression of NSCLC. However, it is still

unclear whether it regulates chemosensitivity.

Methods: Expression levels of FOXD2-AS1, miR185-5p, and SIX1 mRNA were identified

by reverse-transcription qPCR. CCK8 assay was performed to assess cell proliferation and

chemosensitivity of cisplatin-resistant A549/DDP and H1299/DDP cells. Colony-forming

assay was utilized to detect colony numbers. Cell migration and invasion ability were

measured by transwell assay. The protein levels of LRP, Pgp, MRP1, and SIX1 were

examined by Western blot assay. The correlation between FOXD2-AS1 and miR185-5p or

miR185-5p and SIX1 were validated by bioinformatic, dual-luciferase, and RNA immuno-

precipitation assays. Tumor xenografts were constructed to confirm the function and mechan-

ism of FOXD2-AS1 in chemosensitivity of DDP-resistant NSCLC.

Results: FOXD2-AS1 and SIX1 were upregulated and miR185-5p downregulated in DDP-

resistant NSCLC. Absence of FOXD2-AS1 enhanced drug sensitivity of A549/DDP and

H1299/DDP cells, reflected by the reduced colony formation, cell proliferation, migration,

invasion, and drug resistance–associated protein expression. FOXD2-AS1 acted as a mole-

cular sponge for miR185-5p and relieved the binding of miR185-5p and its target gene SIX1,

leading to the derepression of SIX1 in A549/DDP and H1299/DDP cells. Rescue experiments

validated the functional interaction among FOXD2-AS1, miR185-5p, and SIX1. Moreover,

FOXD2-AS1 interference receded the growth of DDP-resistant NSCLC tumors in vivo.

Conclusion: FOXD2-AS1/miR185-5p/SIX1 regulates the progression and chemosensitivity

of DDP-resistant NSCLC, suggesting a potential therapeutic target for cisplatin-resistant

NSCLC patients.
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Background
Lung cancer is the most common malignancy and remains the leading cause of

cancer-related deaths around the world,1 in which non-small-cell lung cancer

(NSCLC) accounts for almost 80%–85%.2 Although great advances have been

achieved in the treatment of NSCLC, the 5-year relative survival rate is still poor,

mainly due to delays in diagnosis.3 Currently, cisplatin-based chemotherapy is

applied as a first-line adjuvant-treatment strategy for NSCLC patients after surgical

resection.4 However, intrinsic or acquired chemoresistance has become a major
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obstacle for cancer treatment.5 As such, it is an urgent

matter to understand the molecular basis underlying

NSCLC progression and cisplatin resistance.

lncRNAs are defined as eukaryote transcripts >200

nucleotides, acting as pivotal regulators of gene expression

through chromatin modification, transcription, and post-

transcriptional mechanisms.6 Growing evidence has

demonstrated the regulatory roles of lncRNAs in various

diseases.7 Ectopic expression of lncRNAs is associated

with a variety of cancer progression through modulation

of cellular processes, including cell proliferation, apopto-

sis, migration, and invasion.8 Moreover, great efforts have

been made to elucidate the function and mechanism of

lncRNAs in drug resistance of a wide range of tumors,

including lung cancer. For instance, silencing of lncRNA

HOTAIR sensitizes SCLC to antitumor drugs via inactiva-

tion of HOXA1 methylation by decreasing DNMT1 and

DNMT3β expression.9 Subsequent study further confirmed

the sensitization of HOTAIR knockdown to temozolomide

through the blockade of autophagy by inhibiting ULK1

phosphorylation.10 Recently, a novel regulatory loopback

suggests that the mainstream regulative mode of lncRNA

on cancer phenotype is to serve as a ceRNA to suppress

miRNA expression, thus resulting in the derepression of

miRNA target genes.11,12 Hu et al, reported that lncRNA

CCTA1 acted as a molecular sponge for miR130a-3p,

triggering the upregulation of SOX4 and enhancing the

cisplatin resistance of NSCLC.13 Wang et al pointed that

lncRNA MEG3 resulted in the reduction of cisplatin resis-

tance of NSCLC by regulation of the miR21-5p–SOX7

pathway.14

FOXD2-AS1 is a widely known lncRNA identified in

various cancers and plays a central role in the regulation of

cancer progression and drug resistance. Upregulation of

FOXD2-AS1 is associated with poor prognosis of patients

with esophageal squamous-cell carcinoma.15 By sponging

miR185-5p, FOXD2-AS1 contributes to the proliferation

of colorectal cancer cells.16 FOXD2-AS1 functions as an

oncogene in bladder cancer through an FOXD2-AS1–Akt–

E2F1 feedback loop.17 In addition, FOXD2-AS1 reduces

the gemcitabine sensitivity of bladder cancer by acting as a

sponge for miR143.18 In NSCLC, patients with high

FOXD2-AS1 suffer a poor prognosis, and elevated expres-

sion of FOXD2-AS1 drives tumor formation via regulation

of Wnt–β-catenin signaling.19 Although the role of

FOXD2-AS1 in NSCLC progression has been validated,

its function and mechanism in drug resistance are still

unclarified.

In the present study, we proved the upregulation of

FOXD2-AS1 in DDP-resistant NSCLC tissue and cells.

Silencing of FOXD2-AS1 contributed to the sensitivity of

NSCLC to cisplatin. Moreover, FOXD2-AS1 was identi-

fied as a sponge for miR185-5p, leading to the derepres-

sion of the miR185-5p target SIX1. Therefore, our findings

highlight the underlying mechanism of FOXD2-AS1 in

DDP resistance of NSCLC.

Methods
Patients
A total of 40 fresh tumor tissue samples were collected

from NSCLC patients, who underwent surgical resection

at the Second Affiliated Hospital of Xi’an Medical

University between 2015 and 2017. These specimens

were divided into cisplatin (DDP)-sensitive (n=20) and

-resistant (n=20) groups dependent on patient outcomes

following cisplatin treatment. All fresh specimens were

rapidly frozen in liquid nitrogen and preserved in a freezer

at −80°C for following RNA extraction. Written informed

consent was obtained from all participants, and approval

from the Research Ethics Committee of the Second

Affiliated Hospital of Xi’an Medical University was

obtained.

Cell culture and transfection
The NSCLC cell lines A549 and H1299 were purchased

from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). The stable cisplatin-resistant cell line

A549/DDP was obtained from the American Type

Culture Collection. DDP-resistant H1299 cell lines

(H1299/DDP) were established through continuous expo-

sure with stepwise increasesin concentrations of cisplatin.

Briefly, H1299 cells grown in the logarithmic phase were

initially treated with 0.5 μg/mL DDP (Sigma-Aldrich, St

Louis, MO, USA). When cells had become resistant to

thatcurrent concentration, cisplatin gradually increased

until a final DDP concentration of 8 μg/mL. When the

induced cells had survived in 8 μg/mL of cisplatin for

about 2 months with a normal morphology and activity,

they were confirmed to be cisplatin-resistant. A549 and

H1299 cells were respectively cultured in specific Ham’s

F12K (Thermo Fisher Scientific, Waltham, MA, USA) or

RPMI 1640 medium (Thermo Fisher Scientific) in pre-

sence of 10% qualified FBS (Thermo Fisher Scientific).

A549/DDP and H1299/DDP were grown in RPMI 1640

medium plus 10% FBS and 2 µg/mL DDP to maintain
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drug resistance. All cells were maintained at 37°C in a

humidified chamber with 5% CO2 until the logarithmic

growth phase.

siRNA specially targeting FOXD2-AS1 (si-FOXD2-

AS1) or SIX1 (si-SIX1) and scramble control (si-NC),

miR185-5p mimics (miR185-5p), negative control

(miRNC), miR185-5p inhibitor (anti-miR185-5p) and inhi-

bitor control (anti-miRNC), shRNA targeting FOXD2-

AS1 (sh- FOXD2-AS1) and relative control (sh-NC)

were obtained from GenePharma (Shanghai, China).

FOXD2-AS1 or SIX1-overexpression plasmid (pcDNA-

FOXD2-AS1 or pcDNA-SIX1) was established through

inserting the full-length FOXD2-AS1 or SIX1 sequences

into pcDNA3.1 vector (Thermo Fisher Scientific), with

pcDNA3.1 empty vector (pcDNA) as a control.

Oligonucleotides (50 nM) or 0.5 µg plasmids were tran-

siently transfected into A549/DDP and H1299/DDP using

Lipofectamine 3000 (Thermo Fisher Scientific).

RT-qPCR
Total RNA was extracted from tumor tissue or cells

using RNAiso Plus reagent (Takara, Dalian, China)

according to the manual, and then reverse transcription

(RT) of lncRNA, miRNA, and target genes was per-

formed using an M-MLV RT Kit (Thermo Fisher

Scientific) or TaqMan miRNA RT kit (Thermo Fisher

Scientific). For detection of RNA levels, qPCR analyses

were carried out in triplicate using SYBR Green PCR

Master Mix (Thermo Fisher Scientific) and run on

Thermo Fisher Scientific 7500 real-time PCR systems

(Thermo Fisher Scientific). Relative expression was cal-

culated by the 2−ΔΔCt method, with GAPDH or U6

snRNA as the endogenous control.

Sequences of the RT primers were 5ʹ-GTCGTATCC
AGTGCAGGGTCCGAGGTATTCGCACTGGATACGA-

CTCAGGA-3ʹ for miR185-5p and 5ʹ- AACGCTTCAC

GAATTTGCGT-3ʹ for U6 snRNA. qRT-PCR primers

were FOXD2-AS1, 5ʹ- TGGACCTAGCTGCAGCTCCA

3-3ʹ (forward) and 5ʹ-AGTTGAAGGTGCACACACTG-

3ʹ (reverse); miR185-5p, 5ʹ-GCGCGATTGGAGAGAA

AGGCAGT-3ʹ (forward) and 5ʹ- ATCCAGTGCAGGG

TCCGAGG-3ʹ (reverse); SIX1, 5ʹ-AAGGAGAAGTCGA

GGGGTGT-3ʹ (forward) and 5ʹ- TGCTTGTTGGAG

GAGGAGTT-3ʹ (reverse); GAPDH, 5ʹ-TATGATGATAT

CAAGAGGGTAGT-3ʹ (forward) and 5ʹ-TGTATCCAAAC

TCATTGTCATAC-3ʹ (reverse); and U6, 5ʹ-CTCGCTTCG

GCAGCACA-3ʹ (forward) and 5ʹ-AACGCTTCACGAA

TTTGCGT-3ʹ (reverse).

CCK8
Treated or transfected cells (3×103/well) in 100 μL culture

medium were seeded into 96-well plates and treated with

varying concentrations of DDP (total volume 50 mg; Tocris

Bioscience, Ellisville, MO, USA) for 24 hours or trans-

fected with oligonucleotides or plasmids for various peri-

ods. Afterward, CCK8 assay was performed by adding 10

µL CCK8 reagent (Beyotime, Haimen, China) into each

well and incubated for another 2 hours, followed by detec-

tion of absorbance at 450 nm on a microplate reader

(Thermo Fisher Scientific). Cell growth–inhibition rate

was calculated — (1 – OD values of drug group/OD values

of control group) ×100%— followed by assessment of IC50

values.

Colony-forming assay
A549/DDP and H1299/DDP cells in logarithmic growth

phase were digested with 0.25% trypsin (Thermo Fisher

Scientific), dispersed into single cells by repeated pipet-

ting, and suspended in RPMI 1640 medium supplemen-

ted with 10% FBS. Suspensions were diluted by

gradient dilutions and seeded into a 10 mL culture

dish preheated to 37°C. Following incubation at 37°C,

5% CO2 for 2–3 weeks, visible colonies were fixed with

4% paraformaldehyde (Sigma-Aldrich) and stained

using 0.1% crystal violet (Sigma-Aldrich). Having

been washed with PBS three times and air-dried, the

culture dish was inverted and overlaid onto a grid of

transparency to count clones larger than ten cells on

microscopy (low magnification), followed by calculation

of colony-formation rate.

Transwell assay
Cell migration and invasion ability of transfected A549/

DDP and H1299/DDP cells were assessed by transwell

assay. For migration assay, cells resuspended in serum-

free medium were seeded into the upper chamber

(Corning, NNY, USA) and complete medium containing

10% FBS added into the bottom chamber. After incubation

for 8 hours at 37°C, migrating cells on the basal side of the

membrane were fixed with 4% paraformaldehyde and

stained using 0.5% crystal violet. Finally, migrating cells

in five random visual fields were observed and counted on

microscopy (Olympus, Tokyo, Japan). For invasion assay,

the chambers were coated with matrigel (BD Biosciences,

San Jose, CA, USA) and cell-invasion ability detected

using a similar approach.
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Western blot
Total proteins were extracted from NSCLC cells and

tumor tissue using RIPA buffer (Beyotime) mixed with

1% protease inhibitor mixture (Sigma-Aldrich), followed

by the detection of protein concentration using a Pierce

BCA protein assay kit (Thermo Fisher Scientific). Proteins

(30 μg) denatured at 97°C for 5 minutes were divided by

SDS-PAGE and transferred onto polyvinylidene difluoride

membranes (Millipore, Billerica, MA, USA). After block-

ade of aspecific signals using 5% non-fat milk powder,

membranes were incubated overnight at 4°C with specific

primary antibodies against LRP, MDR1, MRP1, SIX1, and

β-actin (Abcam, Cambridge, UK) and then further incu-

bated with HRP- conjugated secondary antibody (Abcam)

for another 1.5 hours at 37°C. Ultimately, protein blots

were visualized using an enhanced-chemiluminescence

reagent (Beyotime) and band densities analyzed using

Image Lab software (Bio-Rad, Hercules, CA, USA).

Luciferase assay
Wild-type FOXD2-AS1 sequences containing predicted

miR185-5p-binding sites or mutants of each site were

cloned into psiCHECK-2 plasmid (Promega, Madison,

WI, USA) and named FOXD2-AS1-WT or FOXD2-

AS1-Mut reporter. Similarly, partial fragments of SIX1

3ʹUTR containing putative miR185-5p-binding sites or

mutants of each site were cloned into psiCHECK-2 plas-

mid (Promega, Madison, WI, USA), named SIX1 3ʹUTR-

WT or SIX1 3ʹUTR-MUT reporter. Then, luciferase

reporter was transfected into A549/DDP cells along

with miR185-5p, anti-miR185-5p, or relative controls.

About 48 hours after transfection, luciferase activities

were measured using a dual luciferase–reporter assay

system (Promega).

RNA immunoprecipitation
RNA immunoprecipitation (RIP) assay was carried out

using a Magna RIP RNA-binding protein immunopreci-

pitation kit (Millipore). In short, cell extracts in RIP

buffer were incubated with protein A/G magnetic

beads conjugated with primary antibodies against Ago2

(Cell Signaling Technology, Beverly, MA, USA) and

IgG (Cell Signaling Technology). Finally, the RNA in

the immunoprecipitant complex was isolated and enrich-

ment levels of FOXD2-AS1 and miR185-5p measured

by RT-qPCR.

Tumor xenograft
All animal procedures were performed following the

Guidelines for Care and Use of Laboratory Animals with

approval of the Ethics Committee of the Second Affiliated

Hospital of Xi’an Medical University. Six-week-old male

BALB/c nude mice were purchased from Vital River

Laboratory Animal Technology (Beijing, China). A549/

DDP cells (6×106) transfected with sh-FOXD2-AS1 or

sh-NC were subcutaneously injected into nude mice.

When tumor volume had reached almost 60 mm3, nude

mice wre intraperitoneally administered 3 mg/kg DDP

every 3 days. At 35 days after inoculation, tumors were

measured every week with slide calipers and volume cal-

culated as (length × width2)/2. About 35 days after implan-

tation, mice were killed and tumor specimens weighed and

collected for molecular analyses.

Statistical analysis
All experiments performed in this study were repeated

three times. Statistical analysis was performed using

SPSS 20.0, and results were shown as means ± SD. All

comparisons between groups were assessed using paired-

samples t-test and one-way ANOVA, with P<0.05 repre-

senting statistical significance.

Results
FOXD2-AS1 was upregulated in cisplatin-

resistant NSCLC tissue and cells
Firstly, we observed that the abundance of FOXD2-AS1

was higher in cisplatin-resistant NSCLC tissue than cis-

platin-sensitive NSCLC tissue, which was detected by RT-

qPCR (Figure 1A). To explore the role of FOXD2-AS1 in

drug sensitivity of NSCLC cells, cisplatin-resistant

NSCLC cell lines A549/DDP and H1299/DDP were

employed. CCK8 assay showed that increasing cisplatin

concentrations resulted in the inhibition of cell viability

(Figure 1, B and C). Moreover, within the mass concen-

tration range of 0–10 µg/mL DDP, cell viability and IC50

in A549/DDP and H1299/DDP cells were markedly higher

than in A549 and H1299 cells (Figure 1, B and C).

However, cell-growth inhibition in DDP-resistant cells

was lowerthan in DDP-sensitive cells (Figure S1), indicat-

ing the successful establishment of cisplatin-resistant

NSCLC cells. Next, RT-qPCR assay revealed that

FOXD2-AS1 expression in A549/DDP and H1299/DDP
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cells presented a significant increase compared to their

counterparts (Figure 1D).

FOXD2-AS1 depletion enhanced

chemosensitivity of cisplatin-resistant

NSCLC cells
si-FOXD2-AS1 was transfected into A549/DDP and

H1299/DDP cells to suppress FOXD2-AS1 expression

(Figure 2A). Next, loss-of-function experiments were

performed to probe the regulatory role of FOXD2-AS1

in DDP-tolerant NSCLC cells. Results of colony-forming

assays revealed that colony numbers of A549/DDP and

H1299/DDP cells decreased remarkably following si-

FOXD2-AS1 transfection (Figure 2B). In addition,

CCK8 and transwell analyses suggested that FOXD2-

AS1 interference significantly repressed the proliferation

(Figure 2, C and D), migration (Figure 2E), and invasion

ability (Figure 2F) of A549/DDP and H1299/DDP cells

compared to respective controls. Moreover, expression

levels of MRP1, Pgp, and LRP detected by Western

blot assay had obviously declined in si-FOXD2-AS1–

transfected A549/DDP and H1299/DDP cells relative to

the si-NC–transfected group (Figure 2, G and H).

FOXD2-AS1 served as a molecule sponge

for miR185-5p
Growing evidence is appearing on the correlation between

lncRNAs and microRNAs in various cancers by complemen-

tary base pairing.20 Here, using the bioinformatic tool

miRTarBase,weverified the existence of complementary bind-

ing sites between FOXD2-AS1 and miR185-5p (Figure 3A).

Afterward, luciferase and RIP analyses were carried out to

confirm the true interaction between the two RNAs. Results

showed that transfection of miR185-5p suppressed and anti-

miR185-5p induced the luciferase activity of FOXD2-AS1-

WT reporter in A549/DDP cells, whereas efficacy was lost in

response to FOXD2-AS1-Mut (Figure 3, B and C). Moreover,

FOXD2-AS1 and miR185-5p were highly enriched by Ago2,

while IgG showed little efficacy of enrichment (Figure 3D).

Seeing thatmiR185-5pwas targeted byFOXD2-AS1, levels of

miR185-5p in DDP-sensitive and -resistant NSCLC tissue and

cells were determined by RT-qPCR. Results displayed a

remarkable decrease in miR185-5p in DDP-tolerated NSCLC

tissue and cell lines compared to their counterparts (Figure 3, E

and F). To verify whether FOXD2-AS1 could modulate the

expression of miR185-5p, pcDNA-FOXD2-AS1 or si-

FOXD2-AS1 was transfected into A549/DDP and H1299/
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DDP cells to overexpress or inhibit FOXD2-AS1 (Figure 3G),

followed by the detection of miR185-5p expression. Results

showed that addition of FOXD2-AS1 impeded miR185-5p

expression and knockdown of FOXD2-AS1 conferred

miR185-5p expression (Figure 3H).

miR185-5p was required for FOXD2-

AS1-mediated drug sensitivity of cisplatin-

tolerated NSCLC cells
To validate whethermiR185-5pwas responsible for FOXD2-

AS1-mediated drug sensitivity of cisplatin-tolerated NSCLC

cells, miR185-5p mimics were transfected into DDP-resis-

tant NSCLC cells to overexpress miR185-5p, with miRNC

as a negative control (Figure 4A). After that, rescue experi-

ments were performed by transfection with miRNC,

miR185-5p, miR185-5p + pcDNA, and miR185-5p +

pcDNA-FOXD2-AS1 in A549/DDP and H1299/DDP cells.

Colony-forming analysis showed that supplementation of

miR185-5p decreased colony numbers of DDP-tolerated

NSCLC cells, which was reversed following pcDNA-

FOXD2-AS1 transfection (Figure 4B). Moreover, CCK8

and transwell analyses revealed that restoration of FOXD2-

AS1 abolished the inhibitory effects of miR185-5p on cell

proliferation (Figure 4, C and D), migration (Figure 4E), and

invasion (Figure 4F) in A549/DDP and H1299/DDP cells.

Western blot assay further validated that reexpression of

FOXD2-AS1 overturned andmiR185-5p-suppressed expres-

sion of LRP, Pgp, and MRP1 proteins in A549/DDP and

H1299/DDP cells (Figure 4, G and H).

SIX1 was directly targeted by miR185-5p
Here, bioinformatic analysis validated the existence of putative

binding sites between miR185-5p and SIX1 3ʹUTR using

TargetScan software (Figure 5A). To elucidate whether

miR185-5p directly targeted SIX1, luciferase-reporter plas-

mids containing wild -ype or mutant SIX1 3ʹUTR–binding

sites were constructed. The results of luciferase-activity assays

showed that overexpression of miR185-5p decreased and

knockdown of miR185-5p increased the luciferase activity of

SIX1 3ʹUTR-WT reporter in A549/DDP cells (Figure 5, B and

C). Next, we determined levels of SIX1 inDDP-sensitive and -

resistant NSCLC tissue and cell lines. Results displayed that

SIX1 expression at mRNA and protein levels were remarkably

increased in DDP-tolerated NSCLC tissue and cell lines
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compared to their counterparts (Figure 5, D–F). Moreover,

supplementation of miR185-5p suppressed and absence of

miR185-5p conferred SIX1 protein expression (Figure 5G).

FOXD2-AS1 attenuated chemosensitivity

of cisplatin-resistant NSCLC cells via

miR185-5p–SIX1 axis
Ee initially observed decreased levels of miR185-5p and

SIX1 in A549/DDP and H1299/DDP cells following

anti-miR185-5p or si-SIX1 transfection (Figure 6, A–C),

hinting that anti-miR185-5p and si-SIX1 could be used to

inhibit miR185-5p and SIX1 in DDP-tolerant NSCLC cells.

To further investigate the potential mechanism underlying

miR185-5p-mediated drug sensitivity of DDP-tolerant

NSCLC cells, si-SIX1 was transfected into A549/DDP and

H1299/DDP cells together with anti-miRNC or anti-

miR185-5p, while pcDNA-SIX1 and its control pcDNA-

NC were transfected into A549/DDP and H1299/DDP

cells. The results showed that overexpressed SIX1

H1299/DDP H1299/DDP
A549/DDP A549/DDP

FOXD2-AS1 WT

FOXD2-AS1 MUT
FOXD2-AS1 WT

FOXD2-AS1

hsa-miR-185-5p

C

FE

HG

D

B

A

R
el

at
iv

e 
lu

ci
fe

ra
se

ac
tiv

ity

R
el

at
iv

e 
lu

ci
fe

ra
se

ac
tiv

ity

R
el

at
iv

e 
en

ric
hm

en
t

R
el

at
iv

e 
ex

pr
es

si
on

le
ve

l o
f m

iR
-1

85
-5

p

R
el

at
iv

e 
ex

pr
es

si
on

le
ve

l o
f m

iR
-1

85
-5

p

R
el

at
iv

e 
ex

pr
es

si
on

le
ve

l o
f m

iR
-1

85
-5

p

R
el

at
iv

e 
ex

pr
es

si
on

le
ve

l o
f F

O
X

D
2-

A
S

1

miR-185-5p
miR-NC1.5

0

1

2

3

2.0

0

8

16

24

32

00

1
1

2
2

3

3

4

1.5

1.5

1.0

1.0

1.0

0.5

0.5
0.5

0.0

0.00.0

Anti-IgG

Input
Anti-Ago2

Anti-miR-185-5p
Anti-miR-NC

miR-185-5p

FOXD2-AS1 WTFOXD2-AS1 MUT FOXD2-AS1 MUT

H12
99

H12
99

/D
DP

A54
9/D

Dp
A54

9

si-
Nc

si-
Nc

si-
Nc

si-
Nc

pc
DNA

pc
DNA

pc
DNA

pc
DNA

pc
DNA-FOXD2-A

S1

pc
DNA-FOXD2-A

S1

si-
FOXD2-A

S1

si-
FOXD2-A

S1

si-
FOXD2-A

S1

si-
FOXD2-A

S1

Cis 
res

ist
an

t

Cis 
se

ns
itiv

e

pc
DNA-F

OXD2-A
S1

pc
DNA-F

OXD2-A
S1

Figure 3 FOXD2-AS1 bound to miR185-5p and negatively regulated its expression.

Notes: (A) Putative binding regions of FOXD2-AS1 in miR185-5p predicted with biological software. (B, C) Luciferase activity of wild-type or mutant FOXD2-AS1 in A549/

DDP cells following miRNC, miR185-5p, anti-miRNC, or anti-miR185-5p transfection determined by luciferase reporter assay. (D) Correlations between FOXD2-AS1 and

miR185-5p detected by RIP assay. (E, F) Expression of miR185-5p in DDP-resistant non-small-cell lung cancer (NSCLC) tissue and cell lines detected by RT-qPCR assay. (G,
H) Expression of FOXD2-AS1 and miR185-5p in A549/DDP and H1299/DDP cells, initially transfected with pcDNA, pcDNA-FOXD2-AS1, si-NC, or si-FOXD2-AS1,

determined by reverse-transcription (RT) qPCR assay. *P<0.05.

Dovepress Ge et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
6111

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


significantly increased cell proliferation, migration, and inva-

sion (Figure S2). Following rescue experiments revealed that

interference of SIX1 resulted in reductions in colony number

(Figure 6D), cell proliferation (Figure 6, E and F), migration

(Figure 6G), and invasion (Figure 6H), as well as the down-

regulation of LRP, Pgp, and MRP1 (Figure 6, I and J) in

A549/DDP and H1299/DDP cells. Further introduction of

anti-miR185-5p reversed the inhibitory effects of si-SIX1 on

colony forming, cell proliferation, migration, invasion, and

drug resistance (Figure 6, D–J). To explore whether FOXD2-

AS1 was required for the drug sensitivity of DDP-resistant

NSCLC cells through regulation of the miR185-5p–SIX1

axis, anti-miRNC or anti-miR185-5p was transfected into

FOXD2-AS1–inhibited A549/DDP and H1299/DDP cells.

After that, the abundance of SIX1 was determined, and

results displayed that miR185-5p deficiency weakened si-

FOXD2-AS1–inhibited SIX1 expression (Figure 6K).

Altogether, these data indicated the implication of the

FOXD2-AS1–miR185-5p–SIX1 pathway in the regulation

of DDP resistance in NSCLC cells.

Knockdown of FOXD2-AS1 attenuated

DDP resistance of NSCLC in vivo
To further probe the effect of FOXD2-AS1 on chemosensi-

tivity of NSCLC in vivo, sh-NC or sh-FOXD2-AS1–trans-

fected A549/DDP cells were inoculated into BABL/c nude

mice. As a result, tumor volume progressively increased

with time (Figure 7A). Knockdown of FOXD2-AS1

reduced tumor growth compared with the control group
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(Figure 7A). Tumor weight was obviously inhibited by

FOXD2-AS1 interference (Figure 7B). Furthermore,

expression levels of FOXD2-AS1 (Figure 7C) and SIX1

(Figure 7, E and F) were evidently decreased, while

miR185-5p (Figure 7D) was remarkably enhanced in

tumor tissue in the sh-FOXD2-AS1 group relative to the

control group. These findings uncovered that lack of

FOXD2-AS1 inhibited the growth of DDP-resistant tumors

through the miR185-5p–SIX1 axis in vivo.

Discussion
A growing body of evidence has revealed that aberrant expres-

sion of lncRNAs participates in the chemoresistance of multiple

malignancies, including NSCLC. Here, we showed that knock-

down of FOXD2-AS1 retarded the progression and enhanced

the sensitivity of DDP-resistant NSCLC cells via sponging

miR185-5p by downregulating SIX1. We initially provided

evidence that the FOXD2-AS1–miR185-5p–SIX1 axis was

involved in the regulation of drug resistance in NSCLC.
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FOXD2-AS1 has been identified as an oncogene in different

types of cancer, such as colorectal cancer,16 nasopharyngeal

carcinoma,21 and gastric cancer.22 Also, FOXD2-AS1 has

been demonstrated to be associated with the chemoresistance

of bladder cancer.18 In this study,we focused on the function and

mechanism of FOXD2-AS1–mediated DDP resistance in

NSCLC. Results showed that FOXD2-AS1 was upregulated

in DDP-resistant NSCLC tissue and cells. Functionally, silen-

cing of FOXD2-AS1 reduced tumor progression in DDP-resis-

tant NSCLC in vitro and in vivo. Moreover, the sensitivity of

DDP-resistant NSCLC cells was enhanced following FOXD2-

AS1 knockdown, as reflected by the decreased levels of LRP,

Pgp, and MRP1 proteins.

An increasing amount of evidence shows that lncRNAs can

function as molecular sponges for miRNAs to impede the bind-

ing ofmiRNAsand their targetmRNAs, leading to the release of

target mRNAs. Here, we confirmed that the true interaction

between FOXD2-AS1 and miR185-5p was through comple-

mentary binding. mir185-5p is a cancer-related miRNA, which

is usually found to be dysregulated in various cancers, leading to

the inhibition of cancer progression. For example, miR185-5p is

negatively correlated with malignant clinical features of breast

cancer, and enforced expression of this miRNA reverses epithe-

lial–mesenchymal transition by suppressing RAGE.23

Supplementation of miR185-5p inhibits oral squamous-cell car-

cinoma progression via targeting cyclin D2.24 Also, miR185-5p

inhibited by ZNF139 plays a key role in the modulation of

multidrug resistance in gastric cancer.25 Via targeting ABCC1,

miR185-5p contributes to cisplatin sensitivity and cell apoptosis,

but restrains cell proliferation in NSCLC.26 In line with these

studies, we also demonstrated that introduction of miR185-5p

inhibited cell progression and improved the sensitivity of

NSCLC to cisplatin, but FOXD2-AS1overexpression abolished

the effects ofmiR185-5p on cell growth and cisplatin sensitivity.

SIX1, located in a cluster of related genes on chromosome

14, plays instrumental functions in the regulation of cancer

progression, including cervical,27 ovarian,28 and breast cancer.29

It is important to note that SIX1 significantly triggers VEGFC

expression, resulting in lymphangiogenesis and distant metasta-

sis of breast cancer cells.29 Li et al reported that elevated
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expressionofSIX1 inpancreatic cancer obviously inhibited cell-

cycle arrest and facilitated proliferation by upregulatingcyclin

D1.30 Xu et al pointed that SIX1 induced stimulatory effects in

tumor growth and metastasis by promoting angiogenesis and

recruiting tumor-associated macrophages.31 In this study, we

provide the first evidence that SIX1 is a target of miR185-5p

and knockdown of SIX1 retards tumor progression and

diminishes chemoresistance of DDP-resistant NSCLC cells.

Similarly, a previous study showed that depletion of SIX1 con-

ferred sensitivity of drug-resistant breast cancer cells to

paclitaxel.32 Enhanced sensitivity of hepatoma cells to paclitaxel

has been confirmed to be attributable to the inhibition of SIX1.33

Also, enforced abundance of SIX1 is associated with the poor

prognosis of esophageal squamous-cell carcinoma patients, and

should be responsible for the radioresistance of this cancer.34

Furthermore, we found that knockdown of miR185-5p substan-

tially weakened si-SIX1 inhibition of cell growth and DDP

resistance. Absence of FOXD2-AS1 resulted in a reduction

SIX1, and miR185-5p knockdown abrogated the inhibitory

effect of si-FOXD2-AS1 on SIX1 expression.

In conclusion, our study indicated that FOXD2-AS1 sti-

mulated tumor progression and DDP resistance of NSCLC

cells via modulation of the miR185-5p–SIX1 axis, hinting at

the central role of the FOXD2-AS1–miR185-5p–SIX1 net-

work in cisplatin resistance of NSCLC cells. These findings

suggest that FOXD2-AS1 may be an effective target for over-

coming cisplatin resistance during chemotherapy for NSCLC.
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Figure S2 Overexpression of SIX1 attenuated drug sensitivity of DDP-resistant NSCLC cells. A549/DDP and H1299/DDP cells were transfected with pcDNA-NC or

pcDNA-SIX1. (A) SIX1 expression was determined by RT-qPCR. (B and C) CCK-8 assay was performed to detect cell proliferation. (D and E) Transwell analysis was

carried out for the detection of cell migration and invasion. *p<0.05.
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