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Abstract: While improvements made in the field of cancer therapy allow high survival

rates, gonadotoxicity of chemo- and radiotherapy can lead to infertility in male and female

pre- and postpubertal patients. Clinical options to preserve fertility before starting gonado-

toxic therapies by cryopreserving sperm or oocytes for future use with assisted reproductive

technology (ART) are now applied worldwide. Cryopreservation of pre- and postpubertal

ovarian tissue containing primordial follicles, though still considered experimental, has

already led to the birth of healthy babies after autotransplantation and is performed in an

increasing number of centers. For prepubertal boys who do not produce gametes ready for

fertilization, cryopreservation of immature testicular tissue (ITT) containing spermatogonial

stem cells may be proposed as an experimental strategy with the aim of restoring fertility.

Based on achievements in nonhuman primates, autotransplantation of ITT or testicular cell

suspensions appears promising to restore fertility of young cancer survivors. So far, whether

in two- or three-dimensional culture systems, in vitro maturation of immature male and

female gonadal cells or tissue has not demonstrated a capacity to produce safe gametes for

ART. Recently, primordial germ cells have been generated from embryonic and induced

pluripotent stem cells, but further investigations regarding efficiency and safety are needed.

Transplantation of mesenchymal stem cells to improve the vascularization of gonadal tissue

grafts, increase the colonization of transplanted cells, and restore the damaged somatic

compartment could overcome the current limitations encountered with transplantation.

Keywords: transplantation, fertility restoration, mesenchymal stem cells, germ-line stem

cells, spermatogonial stem cells, in vitro maturation

Introduction
Some years ago, fertility preservation (FP) emerged as a treatment aiming to preserve

future reproductive capacity of individuals facing therapies that could potentially affect

their gonads, the majority being patients diagnosed with cancer.1 Indeed, chemo- and

radiotherapy are associated with gonadotoxicity in both males and females.2 Other health

conditions canmotivate FP, such as genetic abnormalities or autoimmune diseases.3,4 For

adult men or adolescents, cryopreservation of ejaculated or surgically retrieved sperm is

routinely proposed before gonadotoxic therapies, while for prepubertal boys, cryopre-

servation of a testicular biopsy containing spermatogonial stem cells (SSCs) is now

ethically accepted as the only way to offer an FP strategy from the perspective of future

developments allowing parenthood.5 Several studies have broached the feasibility of

cryopreservation of immature testicular tissue (ITT),6–13 and some teams have developed

protocols for its clinical implementation.7,10,12,14 Although still at the research stage,

autotransplantation and in vitro maturation (IVM) of ITT or SSCs have been considered
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to restore fertility from cryopreserved ITT. Restoration of the

damaged SSC niche with mesenchymal stem cells (MSCs)

was also recently proposed to enhance or restore endogenous

spermatogenesis.15

For women, cryopreservation of oocytes or embryos is the

most common way to preserve fertility.16,17 However, while

oocyte cryopreservation may also be proposed to adolescent

girls, it cannot be proposed before puberty or to adult women

requiring urgent therapy. Cryopreservation of ovarian tissue

containing primordial folliclesmay be proposedwith an aim to

transplant it back to the patient after cure, a technique that has

already proved its efficacy with births of healthy babies.18

However, early postgrafting follicle loss has motivated

researchers to improve the procedure, and potential neoplastic

tissue contamination (making it unsafe for transplantation)

increases the need to find alternative FP methods.

While SSCs, originating from differentiation of gono-

cytes after birth, continuously divide asymmetrically to

give rise to new SSCs and differentiating germ cells,19

embryonic oogonia enter a resting stage (prophase of

meiosis I) and undergo final maturation only at the onset

of puberty, thus constituting a fixed ovarian reserve that

decreases during a lifetime.20 This classical scheme was

questioned during the last decade with the discovery of

potential female germ-line stem cells (FGSCs) in the

ovary, opening a debate that is not over yet.21

In this review, we present current FP approaches for

male and female patients facing gonadotoxic therapies and

methods that could be applied to improve their impaired

fertility using cryostored gonadal material and other

sources of stem cells (SCs) that may enhance in vitro

and vivo germ-cell differentiation or develop into gametes.

Materials and methods
Methods
A search was performed on PubMed using the following

combination of terms without time limitation: ([fertility]

AND [restoration OR preservation]) AND (stem cell OR

germline stem cell OR oogonia OR spermatogonial stem

cell OR spermatogonia). Articles in languages other than

English, guidelines, reviews, and scientific video protocols

were excluded.

Results
Literature search
Figure 1 shows a flowchart describing the selection of

papers. From the 458 results, 60 focusing on the main

topic were selected and 136 added for their relevance to

understanding and discussion.

SSCs to restore fertility in the male
SSCs are known as a subpopulation of spermatogonia

localized at the basement membrane of seminiferous

tubules (STs) and estimated to represent 0.03% of germ

cells in the adult mouse.22 These diploid SCs are able both

to self-renew and give rise to differentiated haploid cells at

the end of the spermatogenic process.19

Due to the smallness of testicular biopsies taken for cryo-

preservation in prepubertal boys, the scarcity of SSCs in the

testes,23 the low efficiency of the transplantation process

observed in mice and nonhuman primates,24,25 and the low

proportion of human haploid germ cells generated with

IVM,26 amplification of SSCs is an essential step for fertility

restoration.

SSC propagation
The development of SSC propagation–culture systems has

mainly been achieved through studies in rodents. In 2003,

Kanatsu-Shinohara et al reported the first long-term ampli-

fication of murine SSCs for >5 months in a specific med-

ium containing glial cell line-derived neurotrophic factor

(GDNF), epidermal growth factor (EGF), basic fibroblast

growth factor (bFGF), and leukemia inhibitory factor

(LIF), which were considered as essential for SSC

culture.27 Indeed, both in vivo and vitro studies brought

evidence that GDNF plays a pivotal role in SSC self-

renewal.28,29 Moreover, bFGF was shown to potentiate

the effect of GDNF, as addition of bFGF to culture

media containing GDNF increased the number of SSC

colonies compared to culture without bFGF,28 while LIF

and EGF were shown to act on SSC colony formation30

and diameter,31 respectively. Subsequently, several teams

attempted to find a culture system of dissociated testicular

cell suspensions (TCSs) able to propagate human SSCs in

vitro (Table 1).32–51 Sadri-Ardekani et al adapted the pro-

tocol developed by Kanatsu-Shinohara et al for human

testicular cells (TCs). Briefly, this culture system relies

on the capacity of somatic cells to adhere to the plate

while the germ-cell fraction stays in suspension, allowing

enrichment of SSCs after differential plating.32,33 This

technique led to an 18,450-fold enrichment of adult SSCs

after 64 days and to a 9.6-fold enrichment of prepubertal

SSCs after 11 days of culture using xenotransplantation as

the gold standard to identify SSCs able to migrate along

the basement membrane of the STs, colonize their niches,
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and generate germ-cell colonies. Among researchers who

have xenotransplanted long-term cultured human

SSCs,32,33,39,40,42,43,51 only Sadri-Ardekani et al and

Nickkholgh et al quantified SSCs in STs after transplanta-

tion and demonstrated SSC enrichment.32,33,43 However,

several other teams using the same protocol could not

reproduce such results due to the complexity and skills

needed to distinguish between SSCs and human embryo-

nic stem cell-like (hESC-like) cells,34 because of low

germ-cell survival and overgrowth of remaining somatic

cells.35,47 Indeed, the importance of the germ- versus

somatic-cell ratio in culture was demonstrated, showing

an impact on SSC proliferation.52,53 The influence of the

medium was also pinpointed when Gat et al observed

more germ-cell aggregate formation when using DMEM/

F12 instead of StemPro-34.54 Others also examined the

efficiency of differential plating to select germ cells from

TCSs, but did not find a difference in germ-cell numbers

recovered from whole TCSs and differentially plated cells

after 14 days of culture.55 To improve SSC propagation,

cell sorting prior to culture was further applied. Coculture

of SSCs sorted by fluorescence-activated cell sorting based

on their HLA–/EPCAM+ phenotype onto inactivated

somatic feeder cells resulted in putative SSCs coexpres-

sing DDX4 and UTF1, although their proliferation rate

was poor and no survival was found after 4 weeks.55

Other phenotypic markers, ie, GFRα1, GPR125, SSEA-4,
KIT–/ITGβ1–, CD9, ITGα6, THY1, and FGFR3,

have been used to select monkey or human

SSCs,38,43,44,48–50,56–65 but among 16 studies, only 5 cul-

tured the sorted SSCs.38,48–50,59 Lim et al succeeded in

long-term culture of CD9-sorted spermatogonia onto lami-

nin-coated plates, but reported a low proliferation rate

(20,000–80,000 cells in 130 days).49 However, when

GPR125 was used to select spermatogonia from testicular

tissue (TT) of patients diagnosed with obstructive azoos-

permia, a five fold enrichment was achieved in the first

month when cultured onto hydrogel without a feeder

layer.38 While the authors claimed an advantage of their

system over differential plating, as it avoided overgrowth of

somatic cells, the SC potential was not evaluated. Human

SSC sorting based on their SSEA-4 expression was per-

formed by two teams with contradictory results, since one

reported successful SSC amplification for 21 weeks onto

Matrigel,48 while the second achieved amplification only

onto γ-irradiated feeder cells and observed an inability of

SSCs to attach toMatrigel.59 Coculture of ITGα6+ SSCs onto
collagen-coated plates with Sertoli cells allowed a five fold

increase in colony numbers.50 Culturing unsorted cells prior

to cell selection has also been attempted, showing that 50

days in the same culture conditions followed by isolation of

ITGα6+ cells resulted in a seven fold enrichment of SSCs.43

Number of articles 
added for their 
relevance for
understanding or
disscussion 

136 60

225

458
Research in PubMed library using the
combination of keywords described in
Methods section

Exclusion of articles irrelevant to the
topic of the review (166)

Number of articles resulting from the
research included in the review

Total number of articles in the review196

Exclusion  of  articles in language  other 
than English (26), guidelines (6), reviews
(192), scientific video protocols (2), peer 
comments   (5),   PhD résumé  (1)   and
erratum (1)

Figure 1 Flowchart of paper selection.
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Together, these results point to the need to identify the

best method to propagate SSCs most efficiently. Recently,

Bhang et al discovered that human endothelial TCs

secreted GDNF, bFGF, stromal cell-derived factor-1

(SDF-1), macrophage inflammatory protein 2, and insu-

lin-like growth factor-binding protein 2 and could support

SSC growth for at least 150 days.51 It also appeared that

cells with MSC characteristics were able to support sper-

matogonia in vitro. Indeed, Smith et al showed that a

THY1+ fraction isolated from TCSs was of mesenchymal

origin and could support SSEA-4+ SSC growth, while

mouse embryonic fibroblasts and human placental and

fetal testicular stromal cells could not.59 Interestingly,

human umbilical perivascular cells (HUPVCs), which are

also of mesenchymal origin and share common properties

with somatic TCs (LIF, bFGF, and BMP4 secretion as well

as expression of testicular extracellular matrix markers)

also supported germ-cell proliferation and survival.66

SSC transplantation
Spermatogenesis restoration can be achieved both by

injection of isolated SSCs into germ-cell-depleted testes

and transplantation of an ITT piece where SSCs remain

within their intact niche or original microenvironment.67

Transplantation of isolated SSCs

The first success using SSC transplantation to restore

fertility was achieved in mice by Brinster and Avarbock

who reported complete spermatogenesis and offspring

after SSC injection into STs of busulfan-sterilized mice.68

In order to evaluate the capacity of transplanted SSCs to

colonize their niche, recipient mice were injected intraper-

itoneally with busulfan inducing germ-cell depletion and

improving donor SSC colonization (Figure 2). Recently, a

higher proportion of donor-derived offspring generation

was reported when busulfan was injected directly into

testes.69 The power of the technique for FP was further

demonstrated with offspring in several species, including

rats, goats, chickens, and sheep, and embryo development

in nonhuman primates.70–74 The spermatogenic process

has also been completed in bovines, pigs, and dogs, but

sperm functionality was not evaluated.75–77 In addition,

cryopreservation of mouse, rat, rabbit, and baboon SSCs

did not affect their viability neither their ability to colonize

mouse STs,78 and culture of thawed mouse78-80 and rat78

SSCs resulted in spermatogenesis after transplantation.

The safety of the procedure was studied in mice, and

although differences in histone acetylation of germ cellsT
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were observed,81 no modifications in the genomes of off-

spring were found.82 In addition, propagation of moue

SSCs before transplantation did not increase the incidence

of cancer or decrease the survival of mice that had under-

gone SSC transplantation.83

In view of these encouraging results, SSC transplantation

is considered a potential fertility-restoration method for future

clinical application (Figure 3). Using cadaver testes, ultra-

sound-guided injection in the rete testis has been determined

as the best technique for cell transplantation in larger

testes.84,85

So far, only one report has described autotransplan-

tation of cryopreserved human TCSs in patients cured of

non-Hodgkin’s lymphoma, but no follow-up was

published.86 An important clinical concern is the risk

of cancer-cell contamination of the TCSs to be trans-

planted, since transplantation of only 20 leukemic cells

in rats has resulted in cancer relapse.87 To address this

issue, several teams searched for extracellular markers

allowing separation of human SSCs from cancer cells

but completely safe purification is not yet possible using

cell-sorting techniques.56,58,88–90 However, the culture

protocol developed by Sadri-Ardekani et al allowed

elimination of malignant cells added to the cell suspen-

sion, and may represent a good alternative to sorting

approaches.46

Furthermore, long-term culture of human SSCs did not

show increased chromosomal abnormalities in another

study, but methylation assays demonstrated demethylation

of three paternally imprinted genes and increased methyla-

tion of two maternally imprinted genes after 50 days.44 The

impact of such modifications on offspring are not known

and difficult to predict. While it is possible that once trans-

planted, SSCs and generated spermatozoa could retrieve a

normal methylation pattern, it was also hypothesized that

cultured and transplanted human SSCs might be unable to

enter meiosis or lead to embryos that will degenerate

because of their inability to pass cellular checkpoints.44

SSCs

SSC depletion

C

A B

D

Busulfan

Differentiating germ cell

Spermatozoa

Sertoli cell

Leydig cell

Peritubular cell

SSC isolation and
propagation

SSC transplantation Fertility restoration

Figure 2 Classic mice model used for fertility restoration by SSC transplantation. (A) SSCs are located along the basement membrane of STs and surrounded by nursing

Sertoli cells. Spermatogonia differentiate progressively into spermatozoa toward the lumina of STs. Myoid cells create a wall around the STs while Leydig cells reside in the

testicular interstitium. (B) SSCs can be isolated and propagated in vitro. (C) Germ-cell depletion by busulfan treatment favors stem cell–niche colonization. (D)

Transplantation of SSC to STs of germ cell-depleted mice to restore spermatogenesis.

Abbreviations: SSC, spermatogonial stem cell; ST, seminiferous tubule.
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Transplantation of ITT (SSCs within their niche)

The main aim of tissue transplantation rather than cell

transplantation is that cellular interactions within the SC

niche are preserved, which is important for germ-cell pro-

liferation and maturation.91 However, as grafting of

thawed ITT contaminated by leukemic cells has resulted

in development of generalized leukemia in rats,92 this

technique must be restricted to nonhematological or non-

metastasizing cancers and to benign disorders requiring

gonadotoxic therapies.

Xenotransplantation of mouse, rabbit, porcine,

Japanese quail, and cynomolgus monkey ITT to nude

mice leads to offspring generated with sperm retrieved

from the in vivo matured grafts.93–96 With regard to

human ITT, experiments have shown a blockade of differ-

entiation at the pachytene spermatocyte stage, probably

due to the phylogenetic distance between the mice and

humans.11,97 Different grafting sites have been put for-

ward. Intratesticular grafting was proposed as a grafting

site, assuming that it could be advantageous to transplant

the tissue into its natural environment with high testoster-

one levels and that breeches created in the parenchyma to

insert the graft favor donor SSC colonization, although

human germ-cell differentiation was still arrested at the

spermatocyte stage.98,99 For obvious microbiological rea-

sons, xenotransplantation cannot be considered for clinical

purposes. Autologous transplantation of ITT, however,

suppresses such animal contamination risks (Figure 3).

Initially, ectopic transplantation in monkeys showed meio-

tic arrest.100,101 Importantly, Jahnukainen et al reported

sperm maturation after autologous grafting of cryopre-

served ITT into the scrota of busulfan-treated monkeys,

suggesting that the technique could be translated to the

clinic.13 Very recently, this potential was further supported

by successful production of sperm and generation of a

healthy baby following autologous transplantation of rhe-

sus macaque ITT. Interestingly, offspring were obtained

with sperm recovered from a scrotal graft, but the authors

SSC isolation Propagation

IVM

IVM

Cryopreserved ITT

Cryopreservation of
sperm from:

Somatic cell iPSC
derivation

Fertility restorationCryostorage

•    Ejaculate
•    Epididymis
•    Testis

Transplantation

Transplantation

Natural fertility
restoration

OffspringART

Figure 3 Fertility preservation in males.

Notes: As they do not produce sperm, prepubertal boys can benefit from cryopreservation of a testicular tissue biopsy that could be used in the future for: 1) SSC isolation and

propagation, with a view to restoring fertility of the patient by transplantation into own STs or for IVM to produce competent sperm for ART; 2) IVM in organotypic or microfluidic

culture systems, with the aim to obtain sperm usable in ART; and 3) transplantation back into the patient to inducematuration and generation of spermatozoa that can be recovered

and used for ART. Alternatively, derivation of iPSCs from different sources of somatic cells could lead to generation of competent spermatozoa. *Processes that could be improved

with use of MSCs. Red arrows represent techniques that are still considered experimental. Blue arrows indicate methods that are already implemented in clinical practice.

Abbreviations: ART, assisted reproductive technology; iPSCs, induced pluripotent stem cells; ITT, immature testicular tissue; IVM, in vitro maturation; MSCs, mesenchymal

stem cells; SSC, spermatogonial stem cell.
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did not detect any differences in the percentage of STs

displaying complete spermatogenesis between grafting

sites (back skin and scrotum).102

In vitro maturation of SSCs
The aim of IVM is to promote in vitro differentiation of

SSCs into spermatozoa able to fertilize an oocyte during

an assistedreproductive technology (ART) procedure

(Figure 3). This strategy presents an advantage over trans-

plantation to avoid the risk of disease relapse in cases of

tissue contamination with neoplastic cells.

IVM of dissociated TCs

In mammals, in vitro differentiation of germ cells seems to

require a 3D rather than 2D environment considering

promising results obtained in monkeys103 and humans104

using soft-agar and methylcellulose-culture systems. With

regard to human SSCs, postmeiotic cells in 2 of 6 imma-

ture TCSs cultured in a methylcellulose system and sper-

matozoon-like cells (based on mitochondria localization)

in 1 out of 6 cultured TCSs were obtained in one study.104

In another, spermatozoon-like cells were also generated

using chitosan cylinders to culture dissociated STs from

adult transsexual patients after hormonal therapy.105

However, whether differentiated germ cells originate

from SSCs or spermatogonia already committed to differ-

entiation remains unknown. Recently, the fertilization

capacity of round spermatids obtained after IVM of

human GPR125+ spermatogonia was demonstrated using

mouse oocytes with subsequent 8-cell stage embryo

development.106

IVM of intact ITT (SSCs within their niche)

Organotypic culture of ITT allows preservation of cell inter-

actions inside the niche and leads to germ-cell differentiation

up to the haploid stage in rodents, with generation of off-

spring in mice.107,108 Recently, a long-term organotypic cul-

ture of human ITT able to preserve ST integrity and Leydig

cell functionality and achieve Sertoli cell maturation with

partial establishment of the blood–testicular barrier109,110

eventually led to the generation of haploid germ cells.26 As

a decrease in spermatogonial numbers and only a few post-

meiotic germ cells were observed, the next hurdles to over-

come before clinical translation are enhancing the efficiency

of the technique and demonstrating the fertilizing capacity

and genetic integrity of in vitro matured cells. Recently,

Ogawa developed a microfluidic culture system allowing

growth of mice ITT for up to 6 months and resulting in

higher spermatogenesis efficiency compared to standard

organotypic culture, which could eventually address issues

that have been encountered with human tissue.111 In this

well-designed system, a porous polydimethylsiloxane

(PDMS) membrane separated mouse ITT from flowing med-

ium, allowing physiological exchanges between the chamber

and the media as secreted molecules were maintained for a

longer period in the chamber compared to free diffusion

occurring in the classical organotypic culture system.

Moreover, diffusion of oxygen through the PDMSmembrane

resulted in a reduction in oxygen toxicity compared to direct

exposure. Later, the same group modified their culture sys-

tem by suppressing the need for a pump, making its use

simpler.112,113

Using other SCs to restore male fertility
In vitro spermatogenesis from embryonic and

induced pluripotent SCs

Different SC sources have been considered to generate hap-

loid germ cells in vitro. In mice, while the first generation of

spermatids derived from ESCs led to abnormal offspring,114

viable offspring with normal karyotype and methylation

status were achieved a decade later.115 Differentiation of

hESCs into germ cell-like cells was first reported in

2004.116 However, ESCs are genetically unrelated to

patients, and their procurement is complicated by ethical

issues on embryo destruction. Researchers thus focused on

human-induced pluripotent stem cells (hiPSCs) derived from

skin and cord-blood cells that were also differentiated in

haploid germ cells, though with incomplete imprinting rees-

tablishment (Figure 3).117 Other teams derived male germ

cells from hESCs or hiPSCs, but most of the differentiated

cells remained at early stages, suggesting low efficiency of

the process.118–124 Lower efficiency has been observed for

differentiation of skin-derived iPSCs into haploid cells for

patients with azoospermic factor C deletion.125 One group

suggested the existence of another source of SCs they called

“very small embryonic stem cells (VSELs)” residing in the

testes, where they undergo asymmetric divisions, giving rise

to A (dark) spermatogonia that proliferate and differentiate

into A (pale) and B spermatogonia.126 In humans, the poten-

tial of these cells to differentiate in vitro has never been

investigated, although based on the nuclear expression of

OCT4 and cytoplasmic expression of SSEA-4 and

STELLA, their presence was suggested in testes of childhood

cancer survivors aged 23 to 35 years.127 However, a large

part of the scientific community is not convinced about the

existence of VSELs, and researches refuted their SC
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properties.128,129 While researchers are currently actively

working on these approaches, it is important to note that

besides a high degree of uncertainty regarding functionality

and safety, the fertilizing capacity of human in vitro differ-

entiated ESCs and iPSCs has not been evaluated.

Using SCs to rescue damaged SSC niches

From the perspective of future clinical application, the

question of whether SSC transplantation in a chemother-

apy/radiotherapy-damaged niche may restore fertility

arises, as Sertoli and Leydig cell defects have both been

reported after gonadotoxic therapy.130,131 As healthy

Sertoli cells present in the TCSs were shown to enhance

SSC engraftment and bring adequate signals to surviving

endogenous SSCs,132,133 the use of SCs as supporting cells

was considered to improve SSC-transplantation outcomes

(Figure 3). In this regard, MSCs can be considered deal

candidates, since several studies have suggested that male

fertility can be improved, thanks to their paracrine secre-

tions (Table 2). Indeed, umbilical cord-derived MSCs

secrete factors known to play an important role in sperma-

togenesis such as granulocyte-colony stimulating factor,

vascular endothelial growth factor, and GDNF,134 as well

as enhanced expression of meiotic genes, when injected

into busulfan-sterilized mice.135 Also, SDF-1 is another

MSC-secreted factor136 involved in SSC migration and

homing, as deletion of the CXCR4 in mouse germ cells

reduces SSC homing, but not their proliferation or

survival.137 It can thus be hypothesized that cotransplanta-

tion of MSCs with SSCs could improve colonization effi-

ciency, previously reported as low.24 Moreover, in one

study HUPVCs shared molecular properties with adult

somatic TCs, notably secretion of LIF, bFGF, and BMP4,

known as regulators of spermatogenesis, and their trans-

plantation promoted ST regeneration after exposure to

mono-2-ethylhexyl phthalate, while all STs were damaged

in controls.66 The authors assumed that the mesenchymal

origin shared by Sertoli cells and HUPVCs explained the

common properties of the two cell types and their ability

to support SSCs. In the same way, adipose-derived stem

cell (ASC) transplantation in efferent ducts of busulfan-

sterilized hamsters allowed resumption of

spermatogenesis.138 Furthermore, in a rat model of testi-

cular torsion, injection of MSCs from human fat orbital

tissue into the testes of animals not only resulted in rescue

of germ cells from apoptosis but also in higher levels of

testosterone, suggesting that MSCs may also support

Leydig cells.139

Moreover, pure MSCs (CD45–Sca1+Lin–) isolated

from bone marrow of GFP+ mice injected into testes of

busulfan-treated GFP– mice resulted in more STs present-

ing spermatogenesis (70%) compared to injection of

hematopoietic SCs (CD45+Sca1+Lin–) (18%) or DMEM

(19%).15 Pretreatment of MSCs before transplantation was

also evaluated with the objective of improving SSC-trans-

plantation efficiency. Interestingly, while cotransplantation

of SSCs with or without TGFβ1-treated MSCs in sterilized

mice testes resulted in an equivalent resumption of endo-

genous spermatogenesis, a higher proportion of STs con-

taining donor-derived spermatogenesis was observed when

TGFβ1-treated MSCs were cotransplanted with SSCs.

This observation could be explained by the lower expres-

sion of genes involved in inflammation and cell migration

in TGFβ1-treated MSCs, resulting in reduced lymphatic

migration toward other organs.140

SCs to restore fertility in the female
Current evidence of SCs in the ovary

The conventional view that mammalian ovaries do not

produce oocytes after birth has been challenged in recent

decades with the discovery of FGSCs in ovaries of juve-

nile and adult mice.21 Mathematical calculations demon-

strated that the rate of follicular atresia did not coincide

with the age at which mice exhausted their follicular

reserve, suggesting that neo-oogenesis occurred in ovarian

tissue to reestablish the follicle pool and ensure reproduc-

tive potential during adulthood.21 Indeed, it was demon-

strated that FGSCs isolated from mice ovaries maintained

proliferative activity in vitro and led to offspring after

transplantation to sterile mice.21,141–145 Their presence

was also demonstrated in prepubertal rat146 and pig147

and adult pig148 and human149 ovaries. Indeed, when

FGSCs isolated from adult minipig ovaries were infected

by an EGFP lentivirus and injected into human ovarian

cortex pieces, EGFP+ oocytes were observed after 3 weeks

in ovarian cortical xenografts.148 In addition, FGSCs iso-

lated from human cortical tissue (based on DDX4 expres-

sion) and transduced with a GFP-expression vector were

shown to reform structures resembling follicles in culture

with dispersed adult ovarian cells and to differentiate into

oocytes when injected into human cortical tissue before

xenotransplantation to nude mice.149 In that study, the

authors attributed FGSCs not being detected earlier by

other teams to their smallness size (5–8 μm) and propor-

tion (0.014±0.002%) of total ovarian cells. Ding et al also

reported oocyte differentiation of FGSCs obtained from
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small cortical tissue fragments present in IVF patients’

follicular aspirates.150 However, the existence of FGSCs

is not accepted universally. Even more controversy on the

subject arose when Johnson et al published a study

suggesting an extragonadal source from bone marrow

and peripheral blood.151 Eventually, with transplantation

and parabiotic mouse models, the hypothesis that circula-

tory bone-marrow cells can generate ovulated oocytes both

Table 2 Studies that attempted to restore male fertility using stem cells of mesenchymal origin

Type of stem cells Transplantation method and cell

numbers

Outcome

Yang

et al135
HUC-MSCs Injection of 105 HUC-MSCs, 105 HEK293 cells

or saline solution under the tunicae albuginae

of busulphan-treated mice

Higher expression of 10 meiosis-associated

genes and higher protein levels of Miwi,

DDX4, and SCP3 compared to controlateral

uninjected testis; no difference between

injected and uninjected testes in saline and

HEK293 control groups

Hsiao

et al139
OFSCs from human orbital fat

tissue

Injection of 3×104 OFSCs or PBS 30 mins

before detorsion of testis

Higher Johnsen score in testes injected with

OFSCs than those injected with PBS; reduced

oxidative stress and apoptosis in OFSC-

injected testes compared to controls

Maghen

et al66
HUCPVCs from human umbili-

cal cord

Intratesticular injection of 5×104 HUCPVCs

or saline solution in mice presenting mono-2-

ethylhexyl phthalate-induced ST damage

Increased proportion of intact STs (2%– 22%

from week 1 to 3) compared to absence of

intact STs in controls; DAZL- and ACR-posi-

tive cells detected after 3 weeks only in

HUCPVC-injected group

Anand

et al133
BMSCs isolated from GFP+ mice Injection of 104–105 BMSCs or Sertoli cells

expressing GFP or vehicle into testicular

interstitia of busulfan-sterilized mice

GFP+-transplanted cells detected only in the

interstitia; spermatogenesis recovery in all

groups; more STs showing spermatogenesis,

PCNA, and MVH expressions in BMSC-trans-

planted mice

Kadam

et al15
MSCs enriched from bone mar-

row or hematopoietic stem cells

(HSCs), both isolated from

GFP+ mice

Injection of 1×105 MSCs enriched by bone

marrow (CD45−Sca1+Lin−) or HSCs

(CD45+Sca1+Lin−) or DMEM into the rete

testis of busulfan-treated GFP− mice

Higher percentage of STs with spermatogen-

esis in MSC-injected group (70%) compared to

HSCs (18%) and DMEM (19%); detection of

cells coexpressing GFP with Leydig (StAR) and

Sertoli (WT1) cell markers but not the germ

(MVH)-cell marker

Kadam

et al140
MSCs isolated from mice bone

marrow and transfected to

express RFP. SSCs isolated from

GFP+ mice

Injection of 2×105 SSCs, MSCs, SSCs + MSCs

or SSCs + TGFβ1-treated MSCs into the rete

testes of mice sterilized with busulfan and

CdCl2

Higher percentage of STs (TFI) with endo-

genous spermatogenesis in all transplanted

testes; cotransplantation of MSCs or TGFβ1-

treated MSCs with SSCs did not result in

better TFI than transplantation of SSCs alone

for endogenous spermatogenesis; improved

TFI of donor-derived SSCs for cotransplanta-

tion of SSCs with TGFβ1-treated MSCs com-

pared to other groups

Karimaghai

et al138
ASCs derived from hamster

adipose tissue

Injection 1×106 ASCs or PBS into efferent

ducts of busulfan-sterilized hamsters

Presence of spermatozoa in STs of mice from

the ASC-transplanted group, but not in

controls

Abbreviations: ACR, acrosin; ASC, adipose tissue-derived stem cell; CdCl2, cadmium chlorure; DAZL, deleted in azoospermia like; DDX4, DEAD-box helicase 4; FSH-R,

follicle stimulating hormone receptor; GFP, green fluorescent protein; HEK293, human embryonic kidney 293 cells; HUC-MSC, human umbilical cord mesenchymal stem

cell; HUCPVC, first trimester human umbilical cord perivascular cell; MIWI, Piwi-like protein 1; MVH, mouse vasa homolog; P450scc, cytochrome P450 side-chain cleavage

enzyme; PCNA, proliferating cell nuclear antigen; RFP, red fluorescent protein; ST, seminiferous tubule, SCP1, synaptonemal complex protein 1; SCP3, synaptonemal

complex protein 3; StAR, steroidogenic acute regulatory protein; TFI, testicular fertility index; WT1, Wilms tumor protein 1.
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in the steady state and after induced damage was discre-

dited by several teams.152,153 Later, Lei and Spradling

concluded that FGSCs could be dedifferentiated cells

able to become germ cells under specific conditions as

they did not detect these cells in mouse ovaries using a

cell lineage–labeling system and demonstrated that the

pool of primordial follicles generated during fetal life is

sufficient to sustain adult oogenesis without a source of

renewal.154 Subsequently, other studies corroborated this

hypothesis, as different teams were not able to detect

FGSCs in mouse and human ovarian tissue using DDX4

lineage tracing, RT-PCR, or immunohistochemistry.155–157

Reizel et al carried out an interesting study in which

somatic mutations accumulated in microsatellites were

used to reconstruct cell-lineage trees, which gave informa-

tion on lineage relationships among different cell types.

Reconstructed cell trees showed that oocytes formed clus-

ters distinct from bone-marrow cells in both young and

adult mice, suggesting that the two cell types belong to

separate lineages. A second interesting observation was

that oocyte depth increased with mouse age. In other

words, oocytes of older mice had undergone more mitotic

divisions than those of younger mice, which could be

explained by either depth-guided selection of oocytes for

ovulation or postnatal renewal.158

Use of SCs to treat ovarian reproductive failure

MSCs have been shown to act on the somatic compart-

ment of the ovary, leading to reactivation and differ-

entiation of “dormant” SCs (Figure 4). Notably,

transplanted menstrual blood-derived endometrial

MSCs (MenSCs) are able to migrate to the ovarian

cortex and differentiate to granulosa cells, which

improves FGSC renewal and restores fertility of ster-

ilized mice.159,160 Other studies have demonstrated fer-

tility restoration of sterilized mice or rats using SCs

isolated from bone marrow,161–166 adipose tissue,167,168

amniotic fluid,169 amnion,170 and chorion (Table 3).171

Moreover, repeated bone marrow–derived MSCs

(BMSCs) infusions through the tail vein not only post-

pone age-related ovarian failure in mice but improve

the survival rate of offspring, suggesting a potential

effect on egg quality.172 With regard to humans, one

team investigated transplantation of BMSCs into ovar-

ies of 10 women diagnosed with premature ovarian

failure and reported recovery of menstruation in two

cases and one pregnancy with delivery of a healthy

baby.173 Even if promising, these results should be

further confirmed and viewed with caution, since risks

of transformation and tumorigenicity in MSC-based

therapies are still debatable.174

Use of SCs to improve ovarian transplantation

outcomes

Orthotopic autotransplantation of freeze–thawed pre- and

postpubertal ovarian tissue already proved its efficacy,

with more than 100 live births reported thus far18,175–178

and a cumulative success rate of 57% (Figure 4).179

Although these results are encouraging, an important

loss of primordial follicles has been reported after

transplantation.180 To overcome this issue, several types

of SCs have been used to improve graft oxygenation and

follicle survival (Figure 4). Aware that MSCs play an

important role in angiogenesis and stabilization of the

blood-vessel network, Xia et al cotransplanted MSCs and

ovarian tissue, both encapsulated in Matrigel and demon-

strated that MSCs promoted neoangiogenesis and pre-

vented loss of primordial follicles in grafts.181

Angiogenin, which plays a role in angiogenesis and

endothelial cell proliferation, has been further identified

as a key MSC-secreted factor involved in follicle survival

and revascularization of xenografted human ovarian

tissue.182 ASCs as another source of MSCs, with the

advantage of easier access compared to BMSCs, have

also been evaluated. After encapsulation of human ovarian

tissue using a mix of ASCs and fibrin, higher graft oxyge-

nation and vascular density with improved survival of

primordial follicles was achieved compared to tissue trans-

plantation only.183 These results highlight the potency of

MSCs in promoting graft revascularization.

Use of stem cells to improve follicle IVM

As autotransplantation has the potential risk of reintrodu-

cing cancer cells, succeeding in IVM of primordial folli-

cles recovered from cryopreserved ovarian tissue is of

paramount importance.184 IVM of preantral and antral

follicles isolated from thawed human ovarian tissue until

a competent oocyte stage has been achieved,185–187

although with lower efficiency for prepubertal tissue,188

which could be explained by the higher proportion of

abnormal follicles before puberty.189 In an attempt to

improve follicle IVM, MSCs have been exploited (Figure

4). Experiments conducted in vitro demonstrated that con-

ditioned medium from human umbilical cord MSCs

increased microvessel density and decreased apoptosis of

in vitro cultured cortical tissue compared to serum-free
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culture.190 Human menstrual blood–derived endometrial

MSCs increased follicular growth and IVM rates when

cocultured with mouse alginate-encapsulated preantral

follicles.191 In the same way, coculture of BMSCs with

human alginate-encapsulated follicles improved follicle

growth and viability in a dose-dependent manner, suggest-

ing that the number of MSCs influences culture

outcomes.192

Generation of oocytes from embryonic and induced

pluripotent stem cells

Hübner et al reported for the first time derivation of oocyte-

like cells from mouse ESCs.193 In 2012, Hayashi et al

demonstrated that it was possible to differentiate female

ESCs and iPSCs into primordial germ cell–like cells

(PGCLCs) and that their aggregation with ovarian somatic

cells allowed reconstitution of an ovarian structure in which

the PGCLCs exhibited meiotic potential.194 Moreover,

transplantation of such reconstituted ovaries under the

mouse ovarian bursa resulted in maturation of PGCLCs to

vesicle-stage oocytes that were fertilized following IVM

(Figure 4). Offspring were generated after in vitro fertiliza-

tion of PGCLC-derived oocytes and embryo transfer to

foster-mother mice, but epigenetic abnormalities were

observed in half the generated eggs. The entire cycle of

mouse oogenesis was later reproduced in vitro from ESCs

POF treatment

Natural fertility
restoration

Ovarian
transplantation

IVM ART Offspring

Ovarian tissue
cryopreservation

Oocyte
cryopreservation

Oocyte
retrieval

ART Embryo
cryopreservation

Cryostorage Fertility restoration

iPSC
derivation

Figure 4 Fertility preservation in females.

Notes: Women at reproductive age can cryopreserve oocytes or embryos with aim of using it in the future. Women who have no time for ovarian stimulation and

prepubertal girls can cryopreserve ovarian tissue, which can be transplanted back to the patient to restore her fertility or to obtain competent oocytes for ART. Generation

of competent oocytes by IVM of follicles originating from the cryopreserved tissue could also be an option. Treatment of women who developed a POF due to cancer

therapy could potentially restore their ovarian functions and fertility. Alternatively, derivation of iPSCs from different sources of somatic cells could lead to generation of

competent oocytes. *Processes that could be improved with use of MSCs. Red arrows represent techniques that are still considered experimental. Blue arrows indicate

methods that are already implemented in clinical practice.

Abbreviations: ART, assisted reproductive technology; iPSCs, induced pluripotent stem cells; IVM, in vitro maturation, MSCs, mesenchymal stem cells; POF, premature

ovarian failure.
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Table 3 Studies that attempted to improve female fertility using stem cells of mesenchymal origin

Type of stem cells Transplantation method and cell numbers Outcome

Lee et al161 BMSCs isolated from

mice femurs and tibiae

Injection of 2–3×107 cells into tail vein of busul-

phan- and cyclophosphamide-sterilized mice

More pregnancies in mice of the transplanted

group compared to mice injected with only

busulphan and cyclophosphamide

Fu et al162 BMSCs isolated from rat

femurs and tibiae

Injection of 2×106 MSCs or saline solution into

both ovaries of cyclophosphamide-treated rats

Decreased granulosa-cell apoptosis 2 weeks after

transplantation; improved ovarian function in

MSC-treated rats demonstrated by restoration of

the estrous cycle; increased estradiol level and

follicle numbers 4 weeks after transplantation

Selesniemi

et al172
BMSCs isolated from

mice femurs and tibiae

Injection of 1.5–3×107 BMSCs or PBS every 4

weeks via tail vein of mice

Extended fertility demonstrated by more preg-

nancies at age of 14.5–17.5 months and higher

survival of offspring than controls

Santiquet

et al164
BMSCs isolated from

GFP+ mice femurs

Injection of 107 BMSCs in the blood circulation or

2×104 into ovaries of mice treated with cyclo-

phosphamide and busulphan

Higher fertility (based on average number of pups

per litter) after injection of BMSCs into the blood

circulation compared to non-injected group; no

improvement of fertility for BMSC injection into

the ovary

Lai et al169 HAFSCs isolated from

human amniotic fluid

recovered during

amniocentesis

Injection of 2–5×103 HAFSCs with MSC-like

properties or culture medium (control group) into

both ovaries of busulphan- and cyclophosphamide-

sterilized mice

Presence of follicles at all stages at histology in

transplanted mice, but not in control group; differ-

entiation of HAFSCs-derived MSCs into granulosa

cells, supporting oocyte maturation; restoration of

AMH expression in ovaries of mice grafted with

HAFSCs-derived MSCs, but not in controls

Wang

et al170
HAECs isolated from

human placenta

Injection of 2×106 GFP+ HAECs or culture med-

ium into the tail vein of busulphan- and cyclopho-

sphamide-sterilized mice.

Follicles at all stages in the transplanted group but

not in controls; transplanted cells expressing GFP

migrated to the ovary and differentiated in gran-

ulosa cells; partial restoration of ovarian function

indicated by AMH expression in primary follicles

of mice of the transplanted group

Takehara

et al167
ASCs recovered from rat

adipose tissue

Injection of 2×106 ASCs or saline solution into the

ovary of cyclophosphamide-sterilized rats

Induction of angiogenesis and increased corpus

lutea, follicles, StAR expression, and number of

litters in the transplanted compared to control

group

Liu et al163 BMSCs from rat tibiae Injection of 4×106 EGFP-labelled BMSCs in the tail

vein of cisplatin-sterilized rats

More antral follicles and E2 level in transplanted

compared to non-transplanted rats

Liu et al159 MenSCs derived from

human menstrual blood

Injection of 104 MenSCs labelled with DiO or PBS

into ovaries of mice sterilized with

cyclophosphamide

Higher expression of AMH, FSHR, and Ki67 and

increase over time of ovarian weight, E2 levels, and

follicle number in the transplanted compared to

control group

Lai et al160 MenSCs derived from

human menstrual blood

Injection of 2×106 MenSCs or culture medium in

the tail vein of busulphan- and cyclophosphamide-

sterilized mice

Recovered estrous cyclicity and fertility in trans-

planted mice; transplanted cells migrated to the

ovarian stroma, differentiated in granulosa cells,

and reduced depletion of germ-line stem cells

caused by chemotherapy

Edessy

et al173
Human iliac-crest-

derived BMSCs

Injection of autologous BMSCs into ovaries of 10

women diagnosed with POF

2 women recovered menstruation and one of

them get pregnant

(Continued)
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and iPSCs, although a low success rate of full-term devel-

opment was reported for ESC-derived embryos.195

However, with regard to hESCs, development of structures

resembling primary ovarian follicles was the most advanced

stage of differentiation that could be reached.196

Conclusion
Development of methods to preserve and restore fertility

of patients subjected to gonadotoxic therapies has become

an urgent matter in these last few decades. On the male

side, SSCs constitute a pool of SCs able to differentiate

into spermatozoa. Restoration of male fertility with SSCs

is still at the research stage, but experiments in animals

suggest that autotransplantation of propagated and selected

SSCs into the rete testis or autografting of ITT will be

possible in future. In vitro differentiation of human sper-

matozoa with the aim of using in vitro matured sperm in

ART can also be an option, especially when there is a risk

of malignant contamination of ITT but needs further

development with regard to efficiency of haploid-cell gen-

eration, completion of spermatogenesis and safety issues.

The classical scheme that the female germ-cell pool is

fixed after birth is under debate. Several studies lean

toward the existence of SCs, but it cannot be excluded

that FGSCs derive from dedifferentiated cells.

Development of germ cells from other sources of SCs

such as ESCs and iPSCs has also been proposed to restore

fertility in both males and females, but the genetic stability

of the cells and capacity to generate healthy offspring is

uncertain. Finally, the use of MSCs to act against follicular

loss in grafts or restore the damaged male or female

somatic germ-cell environment has shown promising

results, but long-term risks associated with MSC trans-

plantation or culture still need to be evaluated.

Abbreviation list
ART, assisted reproductive technology; ASC, adipose-

derived stem cell; bFGF, basic fibroblast growth factor;

Table 3 (Continued)

Type of stem cells Transplantation method and cell numbers Outcome

Su et al168 ASCs recovered from rat

adipose tissue

Injection of 2×106 GFP+ ASCs with or without

collagen or PBS into ovaries of rats with fertility

impaired by Tripterygium glycosides

GFP signal was higher in the ASC+collagen group,

suggesting better retention of ASCs in the tissue

compared to ASCs without collagen; improved E2

levels and higher pregnancy rate with transplanta-

tion of ASCs+collagen compared to PBS; higher

number and proliferation rate of antral follicles in

ovaries of rats transplanted with ASCs and ASC

+collagen compared to PBS

Herraiz

et al165
BMSCs and PBMNCs

recovered from blood

circulation of women

Injection of PBS, 106 PBMNCs, or 106 BMSCs

(both labeled with MIRB) via tail vein of busul-

phan- and cyclophosphamide-treated mice

Mice transplanted with BMSCs recovered cyclicity

by exhibiting proestrous and estrous phases; more

apoptotic and pyknoctic bodies in ovaries of con-

trol and PBMNC-transplanted mice. BMSCs were

localized within the theca cells of follicles, while

only three PBMNCs were found in 1 of 16 sam-

ples; more antral and preovulatory follicles after

BMSCs transplantation

Li et al171 CP-MSCs derived from

human chorionic plate of

placenta

Injection of 2×106 CP-MSCs or saline solution in

the tail veins of cyclophosphamide-sterilized mice

Recovery of normal serum concentrations of FSH

and E2 and more follicles, estrous cycles, and

ovulated oocytes compared to controls

Mohamed

et al166
Human iliac crest–

derived BMSCs

Injection of 5×105 BMSCs or PBS into both ovar-

ies of cyclophosphamide- and busulphan-treated

mice

Distribution of BMSCs mostly around growing

follicles; higher E2 and AMH levels in blood circu-

lation; more follicles and AMH and inhibin

expression into ovaries; more pregnancies

Abbreviations: AMH, anti-Mullerian hormone; ASC, adipose tissue-derived stem cell; BMSC, bone marrow-derived MSC; CP-MSC, chorionic plate-derived MSC; DiO, 3,

3′-dioctadecyloxacarbocyanine perchlorate; E2, estrogen; EGFP, enhanced green fluorescent protein; FSHR, follicle stimulating hormone receptor; GFP, green fluorescent

protein; HAEC, human amniotic epithelial cell; HAFSC, human amniotic fluid stem cell; MenSC, menstrual blood-derived MSC; MIRB, molday ion rhodamine b; MSC,

mesenchymal stem cell; PBMNCs, peripheral blood mononuclear cells; StAR, steroidogenic acute regulatory protein; WT, wild type.
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BMP4, bone morphogenic protein 4; BMSC, bone marrow-

derived stem cell; ESC, embryonic stem cell; FACS, fluor-

escence-activated cell sorting; FGSC, female germline stem

cell; FP, fertility preservation; hiPSC, human-induced plur-

ipotent stem cell; HLA, human leukocyte antigen; HUPVC,

human umbilical perivascular cell; HUPVC, human umbili-

cal perivascular mesenchymal stem cell; ITT, immature tes-

ticular tissue; IVF, in vitro fertilization; IVM, In vitro

maturation; LIF, leukemia inhibitory factor; Lin, lineage;

MEF, mouse embryonic fibroblast; MenSC, menstrual

blood-derived endometrial mesenchymal stem cell; MSC,

mesenchymal stem cell; PDMS, polydimethylsiloxane;

PGCLC, primordial germ cell-like cell; POF, premature

ovarian failure; SSC, spermatogonial stem cell; SSEA-4,

stage-specific embryonic antigen-4; ST, seminiferous tubule;

TCS, testicular cell suspension; UC-MSC, umbilical cord-

derived mesenchymal stem cell.
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