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Purpose: TiS2-HSA-FA, a nanoagent based on titanium disulfide (TiS2), human serum

albumin (HSA), and folic acid (FA), was synthesized for potential use in synergistic photo-

thermal/radiation therapy for colon cancer.

Methods: TiS2 nanosheets were synthesized through a HSA-assisted exfoliation method and

then modified with PEGylated FA. The morphology, size, zeta potential, stability, cellular

uptake, cytotoxicity, biodistribution, and in vitro and in vivo biocompatibility of the nano-

particles as well as their suitability for synergistic photothermal/radiation colon cancer

therapy were investigated.

Results: The as-synthesized TiS2-HSA-FA nanoparticles showed excellent physiological

stability, as well as high absorption values in the near-infrared (NIR) and X-ray regions,

giving them superb activity as a photothermal and radiation sensitizer. In vitro and in vivo

experiments indicated that TiS2-HSA-FA showed high tumor targeting selectivity, blood

circulation time, biocompatibility, and suitability for synergistic tumor photothermal

radiotherapy.

Conclusion: A multifunctional nanoplatform based on TiS2 was developed and found to be

potentially suitable for synergistic photothermal/radiation therapy for colon cancer.

Keywords: titanium disulfide, tumor target, photothermal therapy, radiotherapy, synergistic

colon cancer therapy

Introduction
Although anti-tumor therapeutics have greatly improved in recent decades, malignant

tumors are still a major threat to human beings’ health worldwide.1,2 One of the most

commonly used treatment strategies is radiotherapy (RT), in which tumors are

exposed to ionizing radiation such as X-rays in an attempt to produce necrosis of

tumor tissue through DNA damage and generation of reactive oxygen species.3–5

However, in practice, RT has several drawbacks. One is that it can harm normal tissue

and thereby induce acute side effects such as nausea and vomiting, hair loss, etc.6,7

Another is that considerable dose must be used to ensure that all tumor cells are

killed, and yet X-ray irradiation has no tumor specificity. This necessitates exces-

sively large radiation doses, inevitably causing injury to healthy tissues. To overcome

these drawbacks, a series of radio-sensitizers such as the two-dimensional (2D)

layered transition metal dichalcogenides (TMDs) (MoS2, WS2, MoSe2, and ReS2)

and other inorganic materials have been prepared.8–13 Most TMDs were reported to

contain high-Z elements that can act as radio-sensitizers to promote the cancer RT
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effect by absorbing X-rays and concentrating the radiation

dose within tumors.14–16 For example, Shen and co-authors

have prepared uniform ultrathin rhenium disulfide

nanosheets for photothermal RT.16 However, the hypoxic

environment inside tumors is still considered a major chal-

lenge for successful use of radio-sensitizers in RT.17,18

Photothermal therapy (PTT) has attracted substantial inter-

est of late, as an alternative tumor treatment strategy.19,20 It is

minimally invasive, and its high specificity means minimal

side effects in normal tissues. PTT relies on photothermal

agents to convert absorbed light energy into heat to kill tumor

cells.21–23 Recently, various nanomaterials such as organic

small molecules,24,25 TMDs-based nanocomposites,19,26 pro-

tein-based nanoparticles,27,28 etc. have been developed as PTT

nanoagents.29–31 Among these, TMD-based nanoagents have

demonstrated great potential for PTT because of their strong

absorbance in the near IR (NIR) region and their large specific

surface area which facilitates their functional modification. In

addition, under NIR laser irradiation, TMD-based nanoagents

can increase intratumor blood circulation, thereby facilitating

oxygen availability inside the tumor, which could facilitate the

RT effect.16,32,33 It is, therefore, thought that some type of

TMD nanomaterial could be found which could act as an “all

in one” nanoagent, perfectly combining RT and PTT for opti-

mal therapeutic effect.

In this work, we prepared a new multifunctional nanoagent

for combined PTT and RT, using tumor-targeted molecule FA

and PEG modification of albumin exfoliated TiS2 nanosheets

(TiS2-HSA-FA). TiS2, as a new member of the TMD family,

has been reported to have a high NIR absorbance which makes

it an attractive candidate for PTT.34–36 Given its potential as a

dual-modality therapy nanoagent, its efficacy as a radio-sensi-

tizer is investigated here for the first time. The advantages of the

developed nanoplatform TiS2-HSA-FA include: 1) improved

stability and biocompatibility of TiS2 due to the PEG and HSA

modification; 2) great radio-sensitivity; 3) high photothermal

effect under NIR laser irradiation; and 4) remarkable tumor cell

targeting effect after sequential conjugation with FA. The in

vitro and in vivo results demonstrated that TiS2-HSA-FA are a

highly effective nanoagent for synergistic photothermal/radia-

tion therapy, which may ultimately prove to be suitable for

clinical use.

Methods
Materials
Titanium disulfide (TiS2, Crystal, 99.995%) and Cell counting

kit-8 (CCK-8) were purchased from Sigma-Aldrich (St. Louis,

Mo, USA). FA-PEG5,000-NHS and CH3-PEG5,000-NHS were

obtained fromXi ‘an Kaixin Biotech. Co. Ltd (China). Human

serum albumin (HSA) and Fluorescein isothiocyanate (FITC)

were obtained from Aladdin (Shanghai, China). Calcein-AM

(CA)-propidium iodide (PI) stain were purchased from Sigma-

Aldrich (St. Louis, Mo, USA).

Preparation and characterizations of Tis2-

HSA-FA
In detail, 20 mg bulk TiS2 was added into 10 mL distilled

water, following 2 hrs ultrasonication (2s on and 3s off) in

a sonicator Omni Sonic Ruptor 4000 (Omni International,

Kennesaw, GA, USA). After that, 10 mg HSA was added

to the mixture and sonicated at the same condition for

further 6 hrs. After centrifugation at 7000 rpm for 18

mins, the supernatant was collected and centrifuged at

10,000 rpm for 20 mins, resulting in TiS2 nanosheets

solution. Next, 10 mL TiS2 nanosheets (1 mg/mL) is

mixed with FA-PEG5,000-NHS (10 mg) and stirred for 2

hrs to be TiS2-HSA-FA. As a contrast, FA-PEG5,000-NHS

was replaced by CH3-PEG5,000-NHS to form TiS2-HSA.

Lastly, the resulted mixture was purified by dialysis in

distilled water over 24 hrs to obtain TiS2-HSA and TiS2-

HSA-FA. The morphology, size, zeta potential, XRD, and

UV-VIS spectra of the resulted products were detected on

atomic force microscopy (AFM, multimode, digital instru-

ments, Veeco Company, USA), FEI transmission electron

microscope (Eindhoven, The Netherlands), ZetaSizer

Nano ZS (Malvern Instruments Ltd., UK), X-ray diffract-

ometer (D8 ADVANCE, Bruker, Germany), UV-VIS spec-

trophotometry (UV-Vis 1800, Shimadzu, Kyoto, Japan),

Fourier transform infrared spectroscopy (FT-IR, Bruker

Optics GmbH, Ettlingen, Germany), respectively.

Cell culture
CT26 cells (mice colon cancer cell line) were obtained

from Type Culture Collection of Chinese Academy of

Science (Shanghai, China). CT26 cells were cultured in

RPMI 1640 medium supplemented with 10% fetal bovine

serum, 1% penicillin and streptomycin in an atmosphere of

5% CO2 at 37°C.

Cellular uptake and in vitro biocompatibility
According to previous literatures, a classic small molecule

dye, FITC, was applied to label the nanoparticles by simple

physical absorption. After 24 hrs incubating, CT26 cells were

cultured with free FITC, TiS2-HSA, TiS2-HSA-FA + FA, and
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TiS2-HSA-FA for 4 hrs, respectively. And then, the treated

cells were successively washed by phosphate buffer saline

(PBS) for three time slightly and fixed by glutaraldehyde,

stained with DAPI for 10 mins. A commercial confocal laser

scanning microscope was used to observe the fluorescence

signals inside cells. Moreover, the treated cells were homo-

genized, and treated with 1 mL aqua regia solution for 5 hrs.

An inductively coupled plasma−atomic emission spectrome-

try (ICP-AES, Hitachi P4010, Japan) was applied to detect

the Ti content in the cells.

The in vitro biocompatibility of TiS2-HSA and TiS2-

HSA-FA on cells was evaluated by a standard CCK-8

assay. In detail, CT26 cells (1×105 cells/mL, 0.5 mL)

were cultured in 96-well plate for 24 hrs and then, the

cells were treated with different concentration of TiS2-

HSA and TiS2-HSA-FA. After 24 hrs incubation, the cell

viability was detected by CCK-8 assay.

In vitro synergistic PTT/RT
CT26 cells were treated with different concentration of

TiS2-HSA and TiS2-HSA-FA (0, 10, 30, 50, 100, 150 μg/
mL) and were cultured in 37°C incubator for 5 hrs. After

washing the nanoparticles outside the cells, they were

irradiated with NIR irradiation (808 nm laser at a power

density of 0.8 W/cm2 for 5 mins) or RT (5Gy), or their

combination. And then, the treated cells were further cul-

tured for 24 hrs. During the 5 mins NIR irradiation, a

handheld thermal camera (Ti27, Fluke, USA) was used

to record the temperature change of the cells. The cell

death rate was calculated using a typical CCK-8 assay.

As above, the cells were treated with TiS2-HSA and TiS2-

HSA-FA, following by irradiation with NIR irradiation and X-

ray at the same condition. According to the previous literatures,

the cells were further stained with calcein-AM/PI and γ-H2AX,
respectively, to evaluate the cell death. The fluorescence signal

of stained cells was observed by a confocal laser scanning

microscope (LSM 510 NLO META, Zeiss, Germany).

Animal model
We have revised the ethics statement: All animal experi-

ments were strictly complied with the guideline of Animal

Protection and Care Committee of Sichuan University. All

animal experimental procedures involved in this work

were approved by the Ethics Committee of Sichuan

University. For CT26 tumor xenograft models, 106 CT26

cells in 150 μL PBS were subcutaneously injected into the

right back of mice. After 7–10 days of inoculation, the

tumor size was detected by a caliper.

In vivo synergistic PTT/RT
To investigate the synergistic PTT/RT, tumor-bearing mice

were randomly divided into 5 groups (n=5): group 1: control

+ NIR + RT; group 2: TiS2-HSA-FA + RT; group 3: TiS2-

HSA-FA + NIR; group 4: TiS2-HAS + RT+NIR; and group 5:

TiS2-HSA-FA +RT+NIR (with 6mg/kg of TiS2). NIR irradia-

tion used 808 nm wavelength laser with 0.8 W/cm2. RT

applied 5 Gy X-ray for 5 mins. The temperature change of

the tumor region when irradiated by NIR was recorded using

an infrared thermal camera. Every three days treatment, the

tumor size was recorded and the tumor volume was calculated

according to the equation: V = length × width2/2. The relative

tumor volume was calculated as V/V0 (V: current volume, V0:

initial tumor volume). After the whole treatment, the major

organs of these mice were collected for hematoxylin and eosin

(H&E) staining. In addition, the blood was collected and the

index including white blood cell (WBC), red blood cells

(RBC), hemoglobin (HGB), mean corpuscular hemoglobin

(MCH), hematocrit (HCT), mean corpuscular hemoglobin

concentration (MCHC), mean corpuscular volume (MCV),

and platelet (PLT) were detected.

Statistical analysis
All data were presented as mean with standard deviation

(SD). Statistical analysis was analyzed with OriginPro 2016

via Students’s t-test. The differences were considered sig-

nificant for *P<0.05 and highly significant for **P<0.01.

Results and discussion
Preparation and characterization of TiS2-

HSA-Fa
TiS2 nanosheets were first prepared by HSA-assisted ultraso-

nication, and their sheet structure was confirmed by AFM

image (Figure S1). They were then modified by PEGylated

FA to produce TiS2-HSA-FA. TEM imaging shows that TiS2-

HSA-FA has a sheet-like structure with a lattice plane spacing

of 0.24 nm (Figure 1A). As shown in Figure 1B, the sharp and

narrow XRD peaks in TiS2-HSA-FA indicate good crystal-

linity of the prepared TiS2-HSA-FA, consistent with observa-

tions from HRTEM (Figure 1A, inset). In addition, both bulk

TiS2 and TiS2-HSA-FA showed the same phase structure,

demonstrating that the exfoliation process has no significant

influence on the crystalline structure of the material.37

According to DLS analysis, the zeta potential and average

diameter of TiS2-HSA-FA nanoparticles were approximately

−31.2mVand 135.3 nm, respectively (Figure 1C andD). After

15 days of storage in physiological solution, the size of the
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TiS2-HSA-FA nanoparticles displayed no notable changes

(Figure 1E). This stability is likely due to the absorption of

HSA onto the surface of the particles, and subsequent mod-

ification with PEG. The UV-Vis spectrum of TiS2-HSA-FA in

Figure 1F shows high absorbance across all wavelengths from

UV to NIR. The extinction coefficient of TiS2-HSA-FA at 808

nm was found to be 30.1 L/g cm. In addition, as shown in

Figure S2, themore intense ~1650 cm−1 peak in TiS2-HSA-FA

indicated the existence of the amido bond between TiS2-HSA

and FA.

Photothermal effect of TiS2-HSA-FA
To test the photothermal properties of TiS2-HSA-FA,

different concentrations (0, 50, 100, and 150 mg/mL) of

the nanoparticles were irradiated by NIR laser (808 nm,

0.8 W/cm) for 5 mins. The results showed that laser

irradiation produced significant concentration-dependent

temperature increases in TiS2-HSA-FA (Figure 2A). The

highest temperature that could be reached was 65.3°C.

According to previous literatures,38–40 the photothermal

conversion efficiency of TiS2-HSA-FA was calculated to

be ~58.9%. The photothermal stability of TiS2-HSA-FA

was also investigated (Figure 2B); TiS2-HSA-FA were

clearly very stable throughout five cycles of NIR

irradiation. In addition, the Hounsfield unit values of

TiS2-HSA-FA, detected by computed tomography, were

positively correlated with concentration (Figure 2C),

demonstrating that TiS2-HSA-FA is a very effective

radio-sensitizer.

Cellular uptake and in vitro

biocompatibility
After labeling by FITC, the behavior of TiS2-HSA and

TiS2-HSA-FA in cells was tracked by fluorescence

microscopy. The fluorescence images showed that

cells treated with TiS2-HSA-FA showed much more

fluorescence signal in cytoplasm than those treated

with TiS2-HSA-FA + FA, TiS2-HSA, and free FITC

(Figure 3A). ICP-AES quantitative analysis confirmed

these results (Figure 3B). This indicates that FA con-

jugation significantly accelerated endocytosis of TiS2-

HSA-FA. In addition, the in vitro biocompatibility of

the TiS2-HSA-FA was evaluated by standard CCK-8

assay. As shown in Figure 3C, no significant cytotoxi-

city of TiS2-HSA-FA was found even at high concen-

trations up to 0.8 mg/mL, indicating good in vitro

biocompatibility for both TiS2-HSA and TiS2-HSA-FA.
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Figure 1 Preparation and characterization.

Notes: (A) TEM image of TiS2-HSA-FA. Inset was the high-resolution TEM image. (B) XRD pattern of bulk TiS2 and TiS2-HSA-FA. (C) The zeta potential distribution of TiS2-HSA-

FA. (D) The size distribution of TiS2-HSA-FA. (E) The size change of TiS2-HSA-FA in physiological solution over 15 days. (F) The absorbance spectra of TiS2-HSA-FA.
Abbreviations: TiS2, titanium disulfide; HSA, human serum albumin; FA, folic acid; TEM, transmission electron microscopy; XRD, X-ray diffraction.

Cao et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:126340

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


In vitro synergistic PTT/RT
As shown in Figure 4A, CT26 cells treated with TiS2-HSA-FA

showed28.5°Cof temperature increase after 5mins ofNIR laser

irradiation (808 nm, 0.8 W/cm2), which was higher than that of

either TiS2-HSA-treated or control-treated cells. Since the data

from Figure 2C suggested that TiS2 has potential as a radio-

sensitizer, the in vitro RT efficacy of TiS2-HSA-FAwas tested:

as seen in Figure 4B, cell viability decreased with increasing X-

ray dose. TiS2-HSA-FA+RTexhibited greater inhibition of cell

viability than either TiS2-HSA-treated or control-treated cells.

This is likely because TiS2-HSA-FA is more effectively endo-

cytosed, and thus can absorb the energy of X-ray radiationmore

effectively inside tumor cells and channel it into the formation of

secondary Auger electrons to damage DNA.41–43
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The effect of combined PTT/RT treatment was then

investigated. Cells were treated with control + NIR + RT,

TiS2-HSA-FA + RT, TiS2-HSA-FA + NIR, TiS2-HAS +

NIR + RT, or TiS2-HSA-FA + NIR + RT. As shown from

the standard CCK-8 assay, under NIR and RT treatment,

TiS2-HSA-FA displayed the highest cell inhibition rate

(93.4%) of all the groups (Figure 4C).

Calcein-AM/PI staining and γ-H2AX immunofluorescence

were further used to evaluate the combined effect of PTT and

RT. The RT- and PTT-treated cells were stained by calcein-AM/

PI. As shown in Figure 4D, almost all the cells were killed in the

TiS2-HSA-FA + NIR + RT group, while few were killed in the

PBS, PBS + NIR, and TiS2-HSA-FA groups. Figure 4E shows

the results of γ-H2AX immunofluorescence. In PBS + RT, PBS

+NIR,TiS2-HSA-FA, andTiS2-HSA-FA+NIR-treatedgroups,

negligible γ-H2AX immunofluorescencewas seen. By contrast,

the TiS2-HSA-FA + RTand TiS2-HSA-FA + NIR + RT-treated

groups exhibited strong γ-H2AX immunofluorescence signals,

suggesting that TiS2-HSA-FA can enhance the radio-sensitivity

of cells and produce more DNA damage.

In vivo biodistribution and blood circulation
Titanium content of the major organs post-injection of TiS2-

HSA and TiS2-HSA-FAwere evaluated. The majority of the

two nanoparticles were distributed in liver and kidney.

Much more TiS2-HSA-FA was collected in tumor tissue

than TiS2-HSA (Figure 5A). The concentration of TiS2-

HSA-FA in tumor tissue peaked at 24 hrs post-injection

(Figure 5B). The accumulation of TiS2-HSA-FA in tumor

was likely due to the FA modification, which is known to

facilitate tumor targeting.44,45 As shown in Figure 5C, after

intravenous injection, blood distribution half-life (t1/2α) and
blood terminal elimination half-life (t1/2β) of the TiS2-HSA-
FA were 1.21±0.11 hrs and 17.52±0.62 hrs, respectively. It

has been reported that PEG and HSA modifications can

prolong blood circulation and reduce macrophage clearance

of nanoparticles from the reticuloendothelial system.46,47

In vivo synergistic PTT/RT
For in vivo synergistic PTT/RT, NIR (5 mins, 808 nm,

0.8 W/cm2) and X-ray (5 mins, 5Gy) irradiation were applied
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24 hrs after intravenous injection. The temperature of the tumor

region was recorded by a thermal imager. Figure 6A and B

showed a roughly 25°C increase inTiS2-HSA-FA+NIR-treated

mice, compared to those treated with control or TiS2-HAS +

NIR. The weight of the mice increased normally over the dura-

tion of the 21-day treatment (Figure 7A). The best tumor growth

inhibition effect was observed with combined PTT/RT in group

5 (TiS2-HSA-FA + NIR+RT). The results demonstrated that

PTT/RT delivered by TiS2-HSA-FA have an obviously syner-

gistic therapeutic outcome compared to PTT or RT alone

(Figure 7B).

After the treatment, the heart, liver, spleen, lung, kidney,

and whole blood were collected for HE section staining and

complete blood panel assays to evaluate the biocompatibil-

ity of the nanoparticles. As seen in Figure 8A and B, no

obvious differences were observed between the TiS2-HSA-

FA group and the control group. This indicates that TiS2-

HSA-FA has good in vivo biocompatibility.

Conclusion
In summary, we have prepared a biocompatible PTT/RT

nanoplatform TiS2-HSA-FA by using simple ultrasonication

to create albumin exfoliated TiS2 nanosheets that were then

modified with PEG and FA. The TiS2-HSA-FA nanoparticles

showed strong NIR light absorbance, good stability, and

remarkable efficacy as a radio-sensitizer. In vitro and in

vivo characterization showed TiS2-HSA-FA to have a high

specificity for targeting tumors, likely due to its modification

with FA. The nanoparticles also produced a remarkable,

synergistic, cytotoxic effect under PTT/RT irradiation, and

showed great biocompatibility in vitro and in vivo. This

multifunctional nanoplatform shows great promise for future

use as a new tumor therapeutic agent.
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region of TiS2-HSA- and TiS2-HSA-FA-treated mice at different time points. (C) Ti concentration in blood at different time points after injection of TiS2-HSA-FA.

Abbreviations: TiS2, titanium disulfide; HSA, human serum albumin; FA, folic acid.

ControlA B

34.5 °C

36.1 °C

37.2 °C
45.6 °C

59.8 °C

34.9 °C

41.7 °C

34.8 °C

49.3 °C

Control + NIR
TiS2-HSA + NIR
TiS2-HSA-FA + NIR

0 
m

in
1 

m
in T 
(°

C
)

5 
m

in

TiS2-HSA TiS2-HSA-FA 70

65

60

55

50

45

40

35

0 50 100 150
Time (s)

200 250 300

Figure 6 In vivo photothermal performance.

Notes: (A) In vivo thermal images of mice after intravenous injection of saline, TiS2-HSA and TiS2-HSA-FA under 5 mins NIR irradiation (808 nm, 0.8 W/cm2). (B) The
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Notes: (A) HE-stained images of heart, liver, spleen, lung, and kidney collected from mice after 21 days treatment (scale bar =100 μm). (B) Blood biochemistry of mice after

21 days treatment.
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Figure S1 (A) The AFM image and (B) height analysis of TiS2 nanosheets.

Abbreviations: AFM, atomic force microscopy; TiS2, titanium disulfide.
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Figure S2 The FT-IR spectrum of TiS2-HSA and TiS2-HSA-FA.

Abbreviations: TiS2, titanium disulfide; HSA, human serum albumin; FA, folic acid.
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