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Objective: Acute myeloid leukemia (AML) is a malignant clonal disorder. Despite enormous

progress in its diagnosis and treatment, the mortality rate of AML remains high. The aim of this

study was to identify prognostic biomarkers by using the gene expression profile dataset from

public database, and to improve the risk-stratification criteria of survival for patients with AML.

Materials and methods: The gene expression data and clinical parameter were acquired

from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET)

database. A total of 856 differentially expressed genes (DEGs) were obtained from the

childhood AML patients classified into first complete remission (CR1) group (n=791) and

not CR group (n=249). We performed a series of bioinformatics analysis to screen key genes

and pathways, further comprehending these DEGs through Gene Ontology (GO) function

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.

Results: Six genes (SLC17A7, MSX2, CDC26, MSLN, CTSZ and DEFA3) identified by

univariate, Kaplan-Meier survival and multivariate Cox regression analyses were used to

develop the prognostic model. Further analysis showed that the survival estimations in the

high-risk group had an increased risk of death compared with the low-risk group based on

the model. The area under the curve of the receiver operator characteristic curve in the

prognostic model for predicting the overall survival was 0.729, confirming good prognostic

model. We also performed a nomogram to provide an individual patient with the overall

probability, and internal validation in the TARGET cohort.

Conclusion:We identified a six-gene prognostic signature for risk-stratifying in patients with

childhood AML. The risk classification model can be used to predict CR markers and may

assist clinicians in providing realize the individualized treatment in this patient population.

Keywords: childhood acute myeloid leukemia, remission induction, gene expression

profiling, prognosis, bioinformatics, survival analysis

Introduction
Acute myeloid leukemia (AML) is a malignant clonal disorder characterized by

abnormal proliferation of immature myeloid cells at various stages of maturation.1

About 4% of AML cases occur in children and adolescents. The 5-year overall

survival (OS) rate for patients under 19 is about 65%, but drops to 50%, 32%, and

6%, respectively, when the patients aged 20–49, 50–64, and 65 years and older.2

The cytogenetic karyotype and molecular abnormalities at diagnosis are considered

the most significant prognostic factors and are highly predictive of complete

remission (CR) rates, OS, risk of relapse and disease-free survival.3–5 During the
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last decades, accumulating evidence has proposed that

many abnormal expressions and mutations of genes are

involved in the progression and carcinogenesis of AML.

Mutated genes with prognostic significance that have been

reported include KIT, WT1, RUNX1, FLT3, KIT, CEBPA,

NPM1, and MYC.6,7 However, only aberrations in NPM1,

WT1, CEBPA and FLT3 are being widely utilized in clin-

ical practice.8 Despite extensive research that has been

carried out to identify find prognostic markers, the mor-

tality rate of AML remains high. Therefore, prognostic

risk stratification needs to be improved because it has the

potential to develop effective diagnostic and therapeutic

strategies.

With recent developments in microarray technology and

bioinformatic analysis, the complex molecular architecture

of AML has been widely used to inform disease classifica-

tion, prognostic stratification and novel drug target discov-

ery. Multiple studies have suggested that patients whose

leukemic blasts contain the NPM1 mutation without

FLT3-ITD have a favorable prognosis, whereas patients

with TET2 or AXSL1 mutation have a poor prognosis.9,10

In addition, patients with CBF rearrangements or CEBPA

mutations are assigned to the low-risk subgroup.11,12

Recently, Ng et al13 developed a risk-stratification model

that generates a prognostic score based on 17-gene expres-

sion for rapid determination in patients with acute leukemia,

Patel et al14 proposed a model of somatic mutations for risk

stratification based on microarray technology of a set of 18

genes. These models were found to have prognostic value

in their studies. However, even with these progresses,

pediatric AML risk classification remains suboptimal as a

large number of patients with AML have not achieved CR

regardless of the known high-risk factors.

To improve the risk-stratification criteria for predicting

prognosis in patients with childhood AML, our study

analyzed the differentially expressed genes (DEGs) based

on first CR15,16 using mRNA-seq datasets from the

TARGET. We performed a systematic evaluation of

mRNAs for the diagnosis of childhood AML by univariate

analysis of gene expression and Cox regression analysis.

We pooled the specificity and sensitivity of all genes in the

files and constructed a time-dependent receiver operator

characteristic (ROC) curve. We ranked and screened out

the genes with high diagnostic accuracy based on area

under the curve (AUC) values. The final risk-stratification

model represents a potentially useful tool for predicting,

CR but needs to be further evaluated in clinical practice.

Materials and methods
Data sources and processing
Gene mRNA expression data and clinical parameters asso-

ciated with childhood AML patients up to April 29, 2019

were download from the NCI TARGET database (https://

ocg.cancer.gov/). Series matrix files were extracted to assess

mRNA expression, and mRNA-seq datasets preprocessed by

quantile normalization or log2 transformation. According to

the annotation platform file, we translated the mRNA IDs

into symbol names. Then, we divided the patients into CR1

group (791 samples) and not CR group (249 samples) based

on the sample annotation, see Table 1. The flow chart of the

analysis procedure is shown in Figure 1. The gene mRNA

expression data and clinical characteristics are publicly avail-

able and open to access, so this study did not need the

approval from the ethics committee.

Identifying genes of differential expression
All data were analyzed with the R 3.5.2 software (https://

www.r-project.org/). The differential expression of mRNA

in childhood AML (260 CR1 and 93 not CR samples with

full survival information along with mRNA-seq datasets)

was calculated by using R/Bioconductor package of

edgeR.17 We defined the cut-off criteria DEGs as |log2

fold-change(log2FC)|>1.5 and adjusted P-value (adj.P)

<0.01. Finally, hierarchical cluster analysis was used to

show the heat map and volcano plot of two groups by

using gplots package in R platform.

Functional and pathway enrichment

analysis
To explore the biological effects and pathways of the identified

DEGs. The top 10 of Gene Ontoloy (GO) Biological Process

analyses were conducted by using the R/Bioconductor pack-

age of Clusteprofiler.18 The significant results of biological

process (BP), cellular component (CC), and molecular func-

tion (MF) were based on the threshold of P<0.05. Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis19 was performed for the selected genes

using The Database for Annotation, Visualization and

Integrated Discovery (DAVID; https://david.ncifcrf.gov/). A

P<0.05 was considered statistically significant.

Integration of the protein–protein
interaction (PPI) network
The Search Tool for the Retrieval of Interacting Genes ver-

sion 11.0 (STRING; https://string-db.org/) was used for the
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exploration of potential DEGs interactions at the protein

level.20 In the present study, the parameter of interactions

was set as interaction score >0.55 could be considered sta-

tistically significant, hiding disconnected nodes in the net-

work. Then, the Cytoscape software (version 3.7.1; https://

cytoscape.org/) was used for constructing and visualizing a

PPI network of common DEGs.21 The plug-in Molecular

Complex Detection (MCODE) (version 1.5.1) of Cytoscape

was used to Cluster a given network based on topology to

Table 1 Clinical characteristics of patients with CR1 and not CR

ID CR1

(n=791)

Not CR

(n=249)

X2 P-value

Age 2.969 0.085

<14 549 (69.4%) 187 (75.1%)

≥14 242 (30.6%) 62 (24.9%)

Gender 0.609 0.435

Male 416 (52.6%) 138 (55.4%)

Female 375 (47.4%) 111 (44.6%)

White blood cell 4.567 0.033

<150 720 (91%) 215 (86.3%)

≥150 71 (9%) 34 (13.7%)

Bone marrow leukemic blast 0.386 0.534

<90% 603 (76.2%) 185 (74.3%)

≥90% 188 (23.8%) 64 (25.7%)

Peripheral blasts 1.657 0.198

<90% 715 (90.4%) 218 (87.6%)

≥90% 76 (9.6%) 31 (12.4%)

CNS disease 2.560 0.110

Yes 47 (5.9%) 22 (8.8%)

No 744 (94.1%) 227 (91.2%)

Chloroma 4.110 0.043

Yes 86 (10.9%) 39 (15.7%)

No 705 (89.1%) 210 (84.3%)

FAB category 24.741 0.001

MO 16 (2%) 15 (6%)

M1 86 (10.9%) 33 (13.3%)

M2 178 (22.5%) 52 (20.9%)

M3 2 (0.3%) 0 (0%)

M4 192 (24.3%) 33 (13.3%)

M5 148 (18.7%) 46 (18.5%)

M6 13 (1.6%) 4 (1.6%)

M7 31 (3.9%) 15 (6%)

Unknown 125 (15.8%) 51 (20.5%)

Primary cytogenetic code 25.819 <0.001

inv (16) 115 (14.5%) 12 (4.8%)

MLL 146 (18.5%) 44 (17.7%)

t (8;21) 123 (15.5%) 29 (11.6%)

Other 189 (23.9%) 85 (34.1%)

Normal 180 (22.8%) 68 (27.3%)

Unknown 38 (4.8%) 11 (4.4%)

FLT3/ITD positive 7.974 0.005

Yes 133 (16.8%) 62(24.9%)

(Continued)

Table 1 (Continued).

ID CR1

(n=791)

Not CR

(n=249)

X2 P-value

No 655 (82.8%) 187(75.1%)

Unknown 3 (0.4%) 0 (0%)

FLT3 PM 0.057 0.811

Yes 54 (6.8%) 16 (6.4%)

No 733 (92.7%) 233 (93.6%)

Unknown 4 (0.5%) 0 (0%)

NPM mutation 5.225 0.022

Yes 77 (9.7%) 13 (5.2%)

No 698 (88.2%) 236 (94.8%)

Unknown 16 (2%) 0 (0%)

CEBPA mutation 5.156 0.023

Yes 52 (6.6%) 7 (2.8%)

No 727 (91.9%) 241 (96.8%)

Unknown 12 (1.5%) 1 (0.4%)

WT1 mutation 12.147 <0.001

Yes 45 (5.7%) 31(12.4%)

No 731 (92.4%) 218(87.6%)

Unknown 15 (1.9%) 0 (0%)

c-Kit mutation exon 8 0.457 0.499

Yes 36 (4.6%) 5 (2%)

No 189 (23.9%) 37 (14.9%)

Not done 566 (71.6%) 207 (83.1%)

c-Kit mutation exon 17 2.321 0.128

Yes 24 (3%) 8 (3.2%)

No 200 (25.3%) 34(13.7%)

Not done 567 (71.7%) 207 (83.1%)

MRD at end of course 1 161.121 <0.001

Yes 126 (15.9%) 143 (57.4%)

No 492 (62.2%) 68 (27.3%)

Unknown 173 (21.9%) 38 (15.3%)

Abbreviations: CR, complete remission; FAB, French-American-British; MRD,

minimal residual disease.
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find densely connected regions. The criteria for selection

were as follows: degree cut-off=2, node score cut-off=0.2,

k-core=2, and max depth=100.

Hub genes selection and analysis
To identify DEGs predictive of clinical factors and survival

outcomes, the information of 138 hub genes in the training

dataset was utilized to perform univariate Cox regression

analysis using the Survival package of R software (Version

2.44-1.1). The HR with 95% CI were calculated and log-rank

test (P<0.01) was conducted to further select the most signifi-

cant candidate genes. TheOSanalyses of candidate geneswere

performed usingKaplan–Meier plots by using Bioconductor R

package. Gene expression value was labeled as high or low

using a dichotomy method, with P<0.05 being considered

significantly different. Multivariate Cox proportional hazards

regression model was used to calculate the risk score (RS)

based on the 12 potentially relevant genes in the preliminary

screening, and the impact of OS information. The RS of each

sample was calculated using the formula of RS=β1Exp1
+β2Exp2+…+βxExpx (βi: the coefficient value, Expx: the

gene expression level). The childhood AML patients were

classified into low-risk and high-risk groups according to the

median RS survival analysis and log-rank test were performed

to evaluate the differences between the two groups. The ROC

analyses were performed by using SurvivalROC package of R

(Version 1.0.3) based the prognostic model that incorporates

genes expression factors to predict the probability of 3- and 5-

year OS. Then, identifying prognostic genes between CR1 and

not CR samples, according to this research, we used performed

the nomogram-based model to predict the survival probability

by using the R package “rms” (Version 5.1-3.1).22 We divided

the patients into eight groups by the French-American-British

(FAB) category from database to analyze the six candidate

genes expression level in different subtypes of childhood

AML. The statistical analysis this study is performed by

using the GraphPad Prism (Version 8.0.2; GraphPad

Software, Inc., La Jolla, CA, USA).

Results
Identification of differential molecules in

childhood AML
A gene expression database generated by RNA-Seq was

downloaded from TARGET. The database included the

expression levels detected in childhood AML samples with

clinical information on whether the patient achieved first CR

or not. A total of 856 differential genes met the criteria of

|log2FC|>1.5 and adj-P<0.01, including 543 up-regulated

genes and 313 down-regulated genes in childhood AML

compared with CR1 group. The heat map and volcano plots

Figure 1 Flow diagram of the analysis procedure.

Abbreviations: OS, overall survival; ROC, receiver operator characteristic; WHO, World Health Organization.
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that demonstrated significant differential distribution among

each data set are shown in Figure 2A and B.

DEGs functional and pathway enrichment

analysis
To explore the biological functional implication of DEGs,

the top 10 GO enrichment analysis of up-regulated and

down-regulated DEGs was performed, see Figure 3A and B.

The up-regulated genes were mostly associated with the BP

terms response to lipopolysaccharide, molecule of bacterial

origin, leukocyte chemotaxis, and chemokine-mediated sig-

naling pathway, while the down-regulated genes were mostly

enriched in cell fate commitment, pattern specification pro-

cess, regionalization, and morphogenesis of a branching

Figure 3 GO enrichment analysis of aberrantly diferentially expressed genes with no complete remission. The top 10 up-regulated (A) and down-regulated (B) genes GO
analysis (The size of each dot represents the count of genes, the color represents the adj-P).

Figure 2 (A) Heat map for potential mRNAs based on the expression profles of signifcantly diferentially expressed genes. (B) Volcano plot of genes detected in childhood

AML, red dots represent upregulated and green dots represent downregulated.
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structure. In addition, CC analysis showed that the up-regula-

tion genes were related to extracellular matrix, receptor com-

plex, proteinaceous extracellular matrix, and apical plasma

membrane, and the down-regulated genes were mostly found

in the postsynapse, extracellular matrix, neuron projection

membrane, and dendrite membrane. Additionally, for MF

terms, up-regulated genes were enriched in channel activity,

passive transmembrane transporter activity, and G-protein

coupled peptide receptor activity, while the down-regulated

genes were relevant to transcriptional activator activity, RNA

polymerase II transcription regulatory region sequence-speci-

fic DNA binding, and passive transmembrane transporter

activity.

KEGG pathway enrichment analysis was performed

using DAVID. Table 2 shows the most significant KEGG

pathway of the up-regulated and down-regulated DEGs,

including cytokine-cytokine receptor interaction, neuroac-

tive ligand-receptor interaction, cell adhesion molecules

(CAMs), hematopoietic cell lineage, and signaling path-

ways regulating pluripotency of stem cells, etc.

PPI network construction and module

analysis
The STRING was used to construct PPI networks of DEGs,

see Figure 4A. The plug-in MCODE of the Cytoscape soft-

ware was used to identify the most significant module.

Ultimately, 138 nodes and 885 edges were established from

the most significant genes with differential expression, includ-

ing 88 up-regulated genes and 50 down-regulated genes, see

Figure 4B, which possibly play an important role in childhood

AML progression and can be used as a predictor of CR.

Prognostic gene marker screening
To assess the prognostic value of the most significant

module form 138 genes, we performed Cox regression

analysis, OS analysis and ROC curve analyses along

with calculations of the area under the curve (AUC).

The results of log-rank test showed that 17 genes were

significantly associated with OS evidenced by positive

coefficients in the Cox regression, suggesting that they

may have a low risk of recurrence, see Table 3.

Secondly, we analyzed the association between these

candidate gene expression of patients with childhood

AML by Kaplan-Meier analysis. The results showed

that 12 genes expression (RAMP3, LYPD2, CHIT1,

CXCR2, SLC17A7, MSX2, DEFA4, CDC26, MMP8,

MSLN, CTSZ, DEFA3) was associated with OS for

childhood AML, see Figure 5.

Genetic risk score model construction

and ROC curve analysis
Among the 12 prognostic genes identified for which multiple

stepwise Cox regression was performed to explore the effect

of these genes on the survival time and the patient’s outcome,

six gene markers were found to be independent predictors in

childhood AML patients, see Table 4. As a result, six genes

were finally selected to build a predictive model. Patient RSs

were determined using the formula below.

Risk score ¼ ð0:1089 � ExpSLC17A7Þ
þð0:1107 � ExpMSX2Þ þð0:3190 � ExpCDC26Þ
þð�0:0486 � ExpMSLNÞ þð�0:0681 � ExpCTSZÞ
þð0:0456 � ExpDEFA3Þ:

A total of 295 patients were classified into a high-risk

group and a low-risk group by using the median of the RSs as

a cut-off point. The survival estimated for childhood AML

patients in the high-risk group and those in the low-risk group

were significantly different, with an increased risk of death in

the high-risk group. The results show that the 3- and 5-year

survival rate were significantly different between the high-

risk group and low-risk group, see Figure 6A. The prognostic

capacity of the six-gene signature was evaluated by using the

AUC of a time-dependent ROC curve. The AUC of genes

biomarker prognostic model was 0.729, see Figure 6B. The

RS, expression heat map, and patients’ survival status dis-

tribution of the 6 prognostic genes in two groups are shown

in Figure 6C, indicating that the predictive model had a high

sensitivity and specificity. We developed a nomogram to

predict the probability of the 1-, 3- and 5-year OS. The

predictors of the nomogram included six independent prog-

nostic factors including SLC17A7, MSX2, CDC26, MSLN,

CTSZ and DEFA3, see Figure 7. We analyzed the six candi-

date genes expression level in different subtypes of child-

hood AML based on the FAB category, but M3 data are

scarce, see Figure 8.

In order to validate the prognostic model, we incorpo-

rate WHO risk-stratification criteria such as cytogenetics

and genetics.23 A total of 295 patients was analyzed with

favorable or adverse factors for internal validation, see

Table 5. The results show that the CR rate was lower in

children in the high-risk group (68.7%) than in those in

low-risk group (87.8%) (P<0.01). In addition, the distribu-

tion of some favorable or adverse factors8 such as RUNX1-

RUNX1T1, CBFB-MYH11, CEBPA mutation, cytogenetic

complexity, and FLT3-ITD combined with WT1 mutation

was consistent with the results of previous studies.
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Discussion
AML is one of the most common malignancies, with multi-

ple types of molecular and cellular heterogeneity in

childhood.3 Hematopoietic stem cell transplantation com-

bined with chemotherapy are the basic means to treat

AML, but the prognosis of childhood AML remains subop-

timal due to high recurrence and high mortality.24,25 In parti-

cular, refractory acute leukemia has poor response to

treatment, a short survival period and low-induced relieving

rate in the second CR2 after relapse.26 Recently, many stu-

dies had reported that the prognosis of childhood AML is

partly driven by genetic factors, and the expressions of multi-

ple genes maybe beneficial to predicting prognosis and select

treatment regimens.8,27,28 The clinical implementation of an

improved child AML risk classification model is likely to

provide more relevant information for clinical decisions and

improve the prognosis of child AML patients by refining

patient’s risk stratification.29,30 Therefore, understanding

Figure 4 (A) PPI network of signifcantly diferentially expressed genes. (B) The most significant module was established from PPI network with 138 nodes and 885 edges, up-

regulated genes are marked with light red; down-regulated genes are marked with light blue.

Abbreviation: PPI, protein–protein interaction.

Table 3 Univariate Cox regression analysis for the candidate genes in the training dataset

Gene HR Lower 95% CI Upper 95% CI z P-value

RAMP3 1.107431 1.035415 1.184456 2.974399 0.002936

LYPD2 0.896117 0.834845 0.961886 −3.035332 0.002403

FBXO2 1.127005 1.032227 1.230485 2.667657 0.007638

CHIT1 1.100148 1.032955 1.171711 2.968346 0.002994

CXCL1 1.114886 1.043231 1.191462 3.208677 0.001333

FBXO21 1.198487 1.062074 1.352422 2.936787 0.003316

CXCR2 1.153750 1.069802 1.244286 3.710558 0.000207

SLC17A7 1.094191 1.024202 1.168963 2.669037 0.007607

FFAR2 1.099628 1.023025 1.181966 2.577853 0.009942

MSX2 1.071317 1.020138 1.125063 2.758274 0.005811

DEFA4 1.055876 1.013570 1.099949 2.605988 0.009161

CDC26 1.390649 1.168735 1.654700 3.717825 0.000201

DEFA1B 1.082348 1.028912 1.138560 3.063311 0.002189

MMP8 1.071428 1.026945 1.117837 3.188925 0.001428

MSLN 0.940093 0.908923 0.972332 −3.590855 0.000330

CTSZ 0.908571 0.846955 0.974670 −2.676011 0.007450

DEFA3 1.053126 1.015175 1.092494 2.764295 0.005705
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the etiological factors and molecular mechanisms of child-

hood AML progression is essential for the diagnosis and

treatment of this disease. Microarray technology has been

widely applied to identify potential therapeutic targets.

Previously, Luo et al31 analyzed the GSE8970 dataset and

revealed that ubiquitin-conjugating enzyme E2E1 (UBE2E1)

as a prognostic factor may be involved in AML. Zhang et al32

analyzed the GSE12417 dataset and suggested that the long

non-coding RNA H19 may serve roles in AML. Niu et al33

analyzed the TCGA dataset and constructed a risk prediction

model based on relapse information, with the limitations that

the number of AMLs cohorts was small and more specimens

should be included to validate the ability of model. On the

other hand, the TARGET database has the advantage of

having large AML samples and complete clinical informa-

tion for children. To reduce mortality and improve the risk-

stratification criteria, there is an urgent need for themolecular

screening of biomarkers of childhood AML.

Figure 5 Prognostic value of twelve key genes (A) RAMP3 (B) LYPD2 (C) CHIT1 (D) CXCR2 (E) SLC17A7 (F) MSX2 (G) DEFA4 (H) CDC26 (I) MMP8 (J) MSLN (K)
CTSZ (L) DEFA3 in childhood AML from TARGET database.

Table 4 A six-gene signature identified by multivariate Cox regression analysis

id coef exp (coef) se (coef) z Pr(>|z|)

SLC17A7 0.108993 1.115154 0.034211 3.185898 0.001443

MSX2 0.110729 1.117092 0.028377 3.902084 0.000095

CDC26 0.319005 1.375758 0.085776 3.719048 0.000200

MSLN −0.048660 0.952505 0.019963 −2.437433 0.014792

CTSZ −0.068123 0.934146 0.039113 −1.741674 0.081566

DEFA3 0.045649 1.046707 0.020474 2.229620 0.025773
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Figure 6 Prognostic risk score model analysis of six prognostic genes. (A) The Kaplan–Meier curves for low-risk and high-risk groups. (B) The ROC curves for predicting

OS by the risk score. (C) The distribution of risk score, expression heat map, and survival status.

Abbreviations: AUC, area under the curve; ROC, receiver operator characteristic; OS, overall survival.

Figure 7 Nomogram for predicting 1-, 3-, and 5-year survival rate in childhood AML patients. By adding up the points identified on the point scale for each variable, the total

score on the bottom scale shows the probability of survival.
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In this study, we identified significant DEGs between the

childhood AML into first CR and not CR samples from the

TARGET database. Furthermore, we performed a series of

bioinformatics analyses to screen key genes and pathways. As

a result, a total of 856 DEGs were identified, consisting of 543

up-regulated genes and 313 down-regulated genes. GO func-

tion and KEGG pathway analyses were performed to acquire

an in-depth understanding of these DEGs. The functional

enrichment analyses demonstrated that the up-regulated

genes were enriched in some BPs such as leukocyte chemo-

taxis, chemokine-mediated signaling pathway, receptor

complex, apical plasma membrane, G-protein coupled peptide

receptor activity, and channel activity. In addition, the down-

regulated genes weremostly enriched in cell fate commitment,

morphogenesis of a branching structure, projectionmembrane,

transcriptional activator activity, and RNA polymerase II tran-

scription regulatory region sequence-specific DNA binding.

The results are consistent with previous knowledge proved

that gain or loss of these functions plays an important role in

AML tumorigenesis and progression. The KEGG pathway

analysis revealed that the DEGs were significantly associated

with cytokine-cytokine receptor interaction, neuroactive
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Figure 8 The French-American-British (FAB) category from database to analyze the six each candidate genes expression level in different subtypes of childhood AML. (A)

SLC17A7 (B) MSX2 (C) CDC26 (D) MSLN (E) CTSZ (F) DEFA3.

Table 5 Evaluate the prognostic model by WHO classification (cytogenetics or genetics)

High risk (n=147) Low risk (n=148) P-value

CR status at end of course 1 101 (68.7%) 130 (87.8%) 6.7E-05*

Favorable factors

t(8;21)(q22;q22)/RUNX1-RUNX1T1 5 (3.4%) 41 (27.7%) 1.5E-08*

inv(16)(p13.1q22)/CBFB-MYH11 0 (0%) 42 (28.4%) 5.8E-12*

CEBPA mutation 4 (2.7%) 16 (10.8) 5.7E-03*

NPM mutation 14 (9.5%) 14 (9.4%) 9.8E-01

Adverse factors

Cytogenetic complexity (3 or more) 31 (21.1%) 18 (12.1%) 3.9E-02*

t(10;11)(p12;q23)/MLLT10-MLL 5 (3.4%) 2 (1.3%) 2.2E-01

t(6;9)(p23;q34)/DEK-NUP214 2 (1.4%) 1 (0.6%) 5.3E-01

FLT3-ITD/combined with WT1 mutation 12/21 (57.1%) 2/14 (14.2%) 8.6E-03*

Note: *Difference between the two groups was significant (P<0.05).
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ligand–receptor interaction, hematopoietic cell lineage, and

signaling pathways regulating pluripotency of stem cells.

Our study results suggested that these DEGs may be involved

in the onset and progression of childhood AML.

Based on these findings, the hub genes were screened, and

univariate, multivariate Cox analyses were conducted to build

a risk model to predict childhood AML prognosis. We identi-

fied six genes: SLC17A7, MSX2, CDC26, MSLN, CTSZ and

DEFA3. High expression levels of SLC17A7, MSX2, CDC26

and DEFA3 were relevant to a poor prognosis in childhood

AML patients, but MSLN and CTSZ were associated with a

good prognosis. TheAUCof the ROC curve for the prognostic

model for predicting the OS was 0.729, indicating that the six-

gene signature had a good performance for survival prediction.

With the gene expression risk scoring prognostic model, the

patients with childhood AML were divided into a high-risk

group and a low-risk group. According to the results predicted

by the model, the clinician can change the treatment plan and

provide individualized treatment for childhood AML patients.

There is a need for developing strategies to improve CR in the

high-risk group. Patients in the high-risk group should be

followed more frequently, and bone marrow aspiration and

biopsy should be performed regularly to facilitate early detec-

tion of disease recurrence. Our prognostic mode is indepen-

dent of other factors in childhood AML, and may have

implication in guiding hematopoietic stem cell transplantation.

Similarly, nomogram is a kind of statistical tools that provides

an individual patient with the overall probability of a particular

outcome. Whether this model is applicable to adult AML,34

warrants further investigation.

The protein encoded by SLC17A7 is a vesicle-bound,

sodium-dependent phosphate transporter that is particularly

expressed in neuron-rich regions of the brain. Wan et al35

identified SLC17A7 as the potential diagnostic and prognostic

biomarkers of uveal melanoma by Co-expression modules.

Homeobox-containing (HOX) genes encode transcription fac-

tors, which play an important regulatory role in signal trans-

duction pathways such as cell development, migration, and

differentiation, and are frequently found to be aberrantly

expressed in cancer.36 Up-regulation of muscle segment

homeobox genes 2 (MSX2), a member of the homeobox

gene family, was found in pancreatic cancer and prostate

cancer patients. Many clinical studies showed MSX2 was

involved in the occurrence and development of tumors.37,38

Zhai et al39 have discovered thatMSX2 is a direct downstream

target of WNT signaling and correlated with the invasiveness

of endometrioid adenocarcinoma. Moreover, MSX2 has been

identified as a physiological NKL in hematopoietic cells. It is

involved in NOTCH3-signaling,and this pathway interacts

between the physiological and oncogenic homeobox signaling

in T-ALL.40 Cell division control protein 26 (CDC26) is part

of the protein modification and involved in the pathway pro-

tein ubiquitination. It catalyzes the formation of protein-ubi-

quitin conjugates that are subsequently degraded by the

proteasome.41 Mesothelin (MSLN) is a glycosylphosphatidy-

linositol-anchored cell-surface protein and may be a CAM.

Steinbach et al42 prospectively evaluated the prognostic value

of monitoring treatment response in AML by measuring the

expression of 7 leukemia-related genes. Among them, MSLN

is regarded as the important prognostic indicator. Cathepsin Z

(CTSZ), a lysosomal cysteine protease and a member of the

peptidase C1 family is widely expressed in tumor cell lines

and primary tumors. Like other members of the family, it may

be involved in the occurrence of tumors.43 Defensin alpha 3

(DEFA3) is present in the bactericidal granules of neutrophils

and may play a role in phagocyte-mediated host defense. The

proliferation rate was affected by the stimulation of defensin in

tumor cell lines.44

The six-gene prognostic model may facilitate the devel-

opment of new prognostic predictors for childhoodAMLs. In

addition, our solution significantly reduces the cost of

sequencing, which makes the application of gene-specific

targeted sequencing more cost-effective and routine. In

future, we plan to use single-cell transcriptome sequencing

in bone marrow to detect the expression of these six genes in

patients who are poor candidates for transplantation. The

prognostic assessment is crucial in selecting the suitable

treatment. Since patients with the same subtype and stage

can have different clinical outcomes, we developed this pre-

dictive model for risk stratification in childhood AML, and

the model may become routinely used in the future.

Our study has several limitations. First, our results

were derived from data in TARGET dataset and generated

by bioinformatic analysis. The TARGET database does not

provide information about specific treatments received by

each patient. Thus, the results of our study need to be

validated in other databases. Further investigations are

needed to validate our results based on childhood AML

samples and clinical data. Second, the number of samples

without CR was smaller than those with CR in childhood

AML. Therefore, more specimens need to be included to

validate the predictive model capability we developed.

In conclusion, our study results indicate that the six-

gene prognostic model is a reliable tool for predicting the

OS of childhood AML, and a nomogram comprising a

prognostic model can serve as a predictor for CR and
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may assist clinicians in providing individualized treatment

in this patient population. This discovery has the potential

to provide new therapeutic targets for childhood AML.
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