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Abstract: As recently pointed out by the Institute of Medicine, the existing pandemic 

 containment and mitigation models lack the dynamic decision support capabilities. We 

 present two simulation-based optimization models for developing dynamic predictive resource 

 distribution strategies for cross-regional pandemic outbreaks. In both models, the underlying 

simulation mimics the disease and population dynamics of the affected regions. The quantity-

based optimization model generates a progressive allocation of limited quantities of mitiga-

tion resources, including vaccines, antiviral, administration capacities, and social distancing 

enforcement resources. The budget-based optimization model strives instead allocating a total 

resource budget. Both models seek to minimize the impact of ongoing outbreaks and the expected 

impact of potential outbreaks. The models incorporate measures of morbidity, mortality, and 

social distancing, translated into the societal and economic costs of lost productivity and medi-

cal expenses. The models were calibrated using historic pandemic data and implemented on a 

sample outbreak in Florida, with over four million inhabitants. The quantity-based model was 

found to be inferior to the budget-based model, which was advantageous in its ability to balance 

the varying relative cost and effectiveness of individual resources. The models are intended to 

assist public health policy makers in developing effective distribution policies for mitigation 

of influenza pandemics.
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Introduction and motivation
Influenza pandemics have historically ensued enormous societal calamities amplified 

by staggering economic forfeitures. In the U.S. alone, the Spanish flu (1918, serotype 

H1N1), the Asian flu (1957, H2N2), and the Hong Kong flu (1968, H3N2) resulted in the 

death toll of more than 500,000, 70,000 and 34,000 cases, respectively.1 More recently, 

a series of scattered outbreaks of the avian-to-human transmittable H5N1 virus has been 

mapping its way through Asia, the Pacific region, Africa, the Near East, and Europe.2 

As of March 2010, the World Health Organization (WHO) has reported 287 deaths in 

486 cases, worldwide.3 At the same time, in Spring 2009, a milder human-to-human 

transmissible H1N1 virus subtype resurfaced and propagated to an ongoing global 

outbreak; as of March 2010, 213 countries have been affected with a total number of 

infections and mortalities of 419,289 and 16,455, respectively.4 Today, most experts have 

an ominous expectation that the next pandemic will be triggered by an emerging highly 

pathogenic virus, to which there is little or no pre-existing immunity in humans.5

The ability to contain and mitigate influenza pandemics depends on available 

emergency response infrastructure and resources, and at present, challenges abound. 
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Prediction of the exact emerging virus subtype remains 

a difficult task, and once it is identified, a surge production 

of sufficient vaccine quantities can take from six to nine 

months.6,7 Even if the emerged subtype has a known epide-

miology, the existing stockpiles would be limited due to high 

production and inventory costs.8,9 Also will be significantly 

constrained the supply of antiviral, immunizers and other 

healthcare providers, hospital beds and supplies, and logis-

tics. Thereby, pandemic mitigation has to be done amidst 

a limited knowledge of disease and population dynamics, 

constrained infrastructure, shortage of effective clinical 

treatments, and to-be-proven resource allocation policies. 

This challenge, faced during the recent H1N1 outbreak, has 

been acknowledged by WHO9 and echoed by the Health and 

Human Services (HHS) and the Center for Disease Control 

and Prevention (CDC).10,11

The existing literature on pandemic influenza (PI) model-

ing aims to address various complex aspects of the pandemic 

evolution process including: (i) underlying spatio-temporal 

structure, (ii) contact dynamics and disease transmission, (iii) 

disease progression, and (iv) development of mitigation strat-

egies. A comprehensive decision-aid model for containment 

and mitigation has to invariably consider all of the above 

aspects: it must incorporate the mechanism of disease pro-

gression, from initial infection, to the asymptomatic phase, 

manifestation of symptoms, and a final health outcome;12–14 

it must also consider the population dynamics, including 

individual susceptibility15,16 and transmissibility,12,17–19 as 

well as the behavioral factors that affect infection generation 

and disease progression;20–23 finally, it must incorporate the 

impact of pharmaceutical and non-pharmaceutical measures, 

including vaccination, antiviral therapy, social distancing 

and travel restrictions, and use of low-cost measures, such 

as face masks and hand washing.24–27

In recent years, the models for PI containment and miti-

gation have focused on integrating therapeutical and non-

therapeutical measures in search for synergistic strategies, 

aimed at better resource utilization. Most of these approaches 

implement a form of social distancing to reduce infection 

exposure, followed by application of pharmaceutical means. 

A number of significant contributions has been made in this 

challenging area.1,25,28–32 One of the most notable among 

the recent efforts is a 2006–07 initiative by the Models of 

Infectious Disease Agent Study (MIDAS)33 which examined 

independent models of large-scale PI spread for rural areas of 

Asia,34,35 U.S. and U.K.,36,37 and the city of Chicago.38 MIDAS 

cross-validated the models by simulating the city of Chicago, 

with 8.6 M inhabitants, and implementing targeted layered 

containment.39,40 The research findings of MIDAS and other 

institutions14,25 were used in a recent “Modeling Community 

Containment for Pandemic Influenza” report by the Institute 

of Medicine (IOM), to  formulate a set of recommendations 

for mitigating PI at a local level.41 These recommendations 

were used in a pandemic preparedness guidance developed 

jointly by CDC, HHS, and other federal agencies.42

At the same time, the IOM report points out several 

limitations of the MIDAS models, observing that “because 

of the significant constraints placed on the models” being 

considered by policy makers, “the scope of the models should 

be expanded.” The IOM recommends “to adapt or develop 

decision-aid models that can ... provide real-time feedback 

during an epidemic.” The report also emphasizes that “future 

modeling efforts should incorporate broader outcome mea-

sures ... to include the costs and benefits of intervention 

strategies”.41 It can indeed be observed that practically all 

existing approaches focus on assessment of apriori defined 

strategies; virtually none of the synergistic decision models 

are capable of “learning”, ie, adapting to changes in the 

pandemic course, yet predicting them, to generate a dynamic 

optimal strategy. Such a strategy is advantageous in its ability 

to be state-dependent, ie, as being formed dynamically as the 

pandemic spreads, by selecting the optimal combination of 

available mitigation options at each decision epoch, based 

on the present pandemic state.

In an attempt to address the IOM recommendations, we 

present two novel simulation-based optimization models 

for developing dynamic predictive resource distribution 

strategies for a network of regional pandemic outbreaks. In 

both models, the underlying simulation mimics disease and 

population dynamics of the affected regions (Sections 2.1 

and 2.2). The quantity-based optimization model (Section 2.3) 

generates a progressive allocation of limited quantities of 

mitigation resources, including stockpiles of vaccines and 

antiviral, healthcare capacities for vaccination and antiviral 

treatment, and social distancing enforcement resources. The 

budget-based optimization model (Section 2.3.1) allocates 

a total resource budget, as opposed to a separate allocation 

of individual resources, which vary in their relative cost and 

effectiveness. Both models seek to dynamically minimize 

the impact of ongoing outbreaks and the expected impact of 

potential outbreaks, spreading from the ongoing regions. The 

optimality criterion incorporates measures of morbidity, mor-

tality, and social distancing, translated into the societal and 

economic costs of lost productivity and medical expenses. 
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The models were calibrated using historic pandemic data 

and implemented on a sample cross-regional outbreak in 

Florida, U.S., with over four million inhabitants (Section 3). 

We present a sensitivity analysis for estimating the marginal 

impact of changes in the total budget and quantity availability 

(Section 3.4), and show that the quantity-based approach is 

inferior to the budget-based strategy, which takes advantage 

of its ability to balance the relative cost and effectiveness of 

individual resources.

Compared to our earlier work,43 this paper presents the 

following main advances: (i) the original single-region simu-

lation43 has been expanded to serve as the basis for the cross-

regional simulation model presented in this paper; (ii) we now 

propose two novel dynamic optimization models, embedded 

in the cross-regional simulation, to generate resource dis-

tribution strategies; as such, the decision support power of 

our model has substantially increased; (iii) the calibration 

methodology now incorporates both the basic reproduction 

number and the infection attack rate; inclusion of the latter 

adds to a more accurate assessment of the pandemic severity 

over the entirety of the pandemic period, and (iv) our model 

now incorporates certain socio-behavioral features, such as 

the target population compliance.

Simulation-based optimization 
framework
Our simulation-based optimization framework generates pro-

gressive resource allocations over a network of regional out-

breaks. Resources include stockpiles and capacities for vaccine 

and antiviral administration, and social distancing enforcement 

resources, among others. The framework subsumes a cross-

regional simulation model, a set of single-region simulation 

models, and an overarching optimization control.

The regions inside the network are classified as unaffected, 

ongoing outbreak or contained. The cross-regional model 

connects the regions by air and land travel. The single-region 

model emulates the (hourly) population and disease dynam-

ics of each ongoing region, affected by mitigation measures. 

The pandemic spreads from ongoing to unaffected regions 

by (a)symptomatic travelers passing through border control. 

At every new regional outbreak epoch, the optimization 

model allocates available resources to the new outbreak 

region (actual allocation) and unaffected regions (virtual 

allocation). Daily statistics are collected for each region, 

including the number of infected, deceased, and quarantined 

cases, for different age groups. As a regional outbreak is 

contained, its societal and economic costs are estimated.

cross-regional simulation model
The model initializes by creating mixing groups and  population 

dynamics for each region (see Section 2.1). A pandemic is trig-

gered by injecting one infectious case into a randomly chosen 

region. The resulting regional contact dynamics and disease 

propagation are presented in Section 2.2. As the symptomatic 

cases start seeking medical assistance, the new regional out-

break is detected, and a resource allocation is generated (see 

Section 2.3) and passed over to the single-region model.

The outbreak spreads to unaffected regions as infec-

tious travelers pass with some probability through border 

control (the probability varies with the degree of symptom 

manifestation). Travelers are assumed to act independently. 

Each traveler is assumed to seed a regional outbreak in her 

destination with an equal, time-homogeneous probability ω 

for the entirety of her infection period. For each unaffected 

region, the outbreak probability at time t is calculated using 

the binomial probability law, as follows

 Pt
nt= − − ,1 1( )ω  (1)

where n
t
 denotes the number of infectious travelers in the 

region at time t. Based on the outbreak probability values, the 

model determines which of the regions have become new out-

breaks (in the testbed implementation, the values of P
t
 were 

computed daily). The model also determines if an ongoing 

outbreak has been contained, based on a certain threshold of 

the daily infection rate. The cross-regional simulation stops 

when all outbreaks have been contained.

Single-region simulation model
The single-region simulation model mimics population and 

disease dynamics within the affected region.

A schematic of the model is shown in Figure 1. The model 

subsumes the following main components: (i) population 

dynamics (schedules), (ii) contact and infection process, 

Begin single-region
simulation

Check status of
social distancing

Assign schedules

From 8:00 am-7:59 pm,
implement every ∆ t

Contact process

Infection process

Disease history

Vaccination &
antiviral therapy

From 8:00 pm-7:59 am,
implement every ∆ t

Disease history

Collect statistics

End single-region 
simulation

Figure 1 Schematic of single-region simulation model.
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(iii) disease natural history, and (iv) mitigation prevention 

and intervention, including social distancing, vaccina-

tion, and antiviral application. The model collects detailed 

regional statistics, including numbers of infected, recovered, 

deceased, and quarantined cases, for different age groups. 

For a contained outbreak, its societal and economic costs are 

calculated. The societal cost includes the cost of lost lifetime 

productivity of the deceased; the economic cost includes 

the cost of medical expenses of the recovered and deceased 

and the cost of lost productivity of the quarantined (see 

Section 3.3; Meltzer 1999).44 The single-region simulation 

extends our original model.43

Population dynamics (schedules)
We view a region as a set of population centers formed by 

mixing groups (eg, households, offices, facilities,  universities, 

 dormitories, schools, shopping centers, etc.). Each individual 

is assigned a set of attributes (eg, age, gender, parenthood, 

workplace, infection susceptibility, probability of travel, etc). 

Each person is also assigned ∆t time-discrete (eg, ∆t = 1 hour) 

weekday and weekend schedules, which depend on: (i) person’s 

age and parenthood, (ii) disease status, (iii) travel status, (iv) 

social distancing decrees in place and person’s compliance. 

As their schedules advance, inhabitants circulate throughout 

the mixing groups. It is assumed that at any point of time, an 

individual belongs to one of the exclusive compartments of 

susceptible, infected, recovered or deceased.

contact and infection processes
Infection transmission occurs during contact events between 

susceptible and infectious cases in the mixing groups. At the 

beginning of every ∆t period (eg, one hour), for each mixing 

group g, the simulation tracks the total number of infectious 

cases, n
g
, present in the group. Each infectious case gener-

ates r
g
 per ∆t unit of time new contacts,37 chosen randomly 

(uniformly) from the susceptible. We make the following 

assumptions about the contact process: (i) during ∆t period, 

a susceptible may come into contact with at most one infec-

tious case and (ii) each contact exposure lasts ∆t units of 

time. Once a susceptible has started a contact exposure at 

time t, she will develop infection at time t + ∆t with a certain 

probability that is calculated as shown below.

Let L
i
(t) be a nonnegative continuous random variable 

that represents the duration of contact exposure, starting at 

time t, required for contact i to become infected. We assume 

that L
i
(t) is distributed exponentially with mean 1/λ

i
(t), where 

λ
i
(t) represents the instantaneous force of infection applied 

to contact i at time t.45–47 The probability that susceptible i, 

whose contact exposure has started at time t, will develop 

infection at time t + ∆t is then given as

 P L t t ei
t ti{ ( ) } ( )≤ ∆ = − .− ∆1 λ

 (2)

Disease natural history
A schematic of the disease natural history is shown in Figure 2. 

During the incubation phase, the individual stays asymp-

tomatic. At the end of the latency phase, she becomes 

infectious and enters the infectious phase.35,37,39 She becomes 

 symptomatic at the end of incubation. At the end of the 

infectious phase, she enters the final disease stage which 

culminates in her recovery or death.

Mortality for influenza is a complex process affected 

by many factors and variables, most of which have limited 

accurate data support from past pandemics. Furthermore, the 

time of death can be weeks following the disease episode 

(often attributable to pneumonia related complications).48 

Because of the uncertainty underlying the mortality process, 

we thus adopted a simplified, age-based form of the mortality 

probability of infected i, as follows

 m
i
 = µ

i
 − τρ

i
, (3)

where µ
i
 is the age-dependent base mortality probability of 

infected i, ρ
i
 is her status of antiviral therapy (0 or 1), and τ 

is the antiviral efficacy measured as the decrease in the base 

probability.35 We assume that a recovered case develops 

immunity but continues circulating in the mixing groups.

Mitigation strategies
Mitigation include pharmaceutical and non-pharmaceutical 

options. It is initiated upon detection of a critical number of 

confirmed infected cases,49 which triggers resource allocation 

and deployment. We assume a certain delay for deployment 

of field responders.

Pharmaceutical mitigation consists of vaccination and 

antiviral application. Vaccination is targeted at individuals 

at risk to reduce their infection susceptibility. We assume 

that a certain fraction of the risk group does not comply 

Latency

Period leading to 
health outcomeInfectiousness

Incubation

Becomes 
asymptomatic

Becomes 
symptomatic

Becomes 
infectious

Recovers 
or dies

Figure 2 Schematic of disease natural history model.
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with  vaccination. The vaccine takes a certain period to 

become effective (typically, between 10 and 14 days).50 

Vaccination is constrained by the available stockpile and 

administration capacity measured in terms of the number of 

 immunizer-hours.

We assume that as some symptomatic cases seek medical 

assistance,51,52 a fraction at risk of them receives an antiviral. 

Antiviral treatment is subject to availability of the antiviral 

stockpile and administration capacity, measured in terms of 

the number of certified providers.

Both vaccination and antiviral application are affected 

by social behavioral factors, including conformance of the 

target population, degree of risk perception, and compli-

ance of healthcare personnel.53–55 The conformance level of 

the population at risk can be affected, among other factors, 

by the demographics and income level56–60 as well as the 

quality of public information.61 The degree of risk perception 

can be influenced by negative experiences developed during 

pharmaceutical campaigns of the previous outbreaks,62,63 as 

well as by public fear and rumors.64,65

Non-pharmaceutical mitigation includes social distanc-

ing and travel restrictions. We adopted a CDC guidance,42 

which establishes five categories of pandemic severity and 

recommends quarantine and closure options according to the 

category. The categories are determined based on the value 

of the case fatality ratio (CFR), the proportion of fatalities in 

the total infected population. For the CFR lower than 0.1% 

(Category 1), voluntary at-home isolation of infected cases 

is implemented. If the CFR falls in-between 0.1% and 1.0% 

(Categories 2 and 3), in addition to the at-home isolation, 

the following measures are recommended: (i) voluntary 

quarantine of households members of infected cases and 

(ii) child and adult social distancing. For the CFR exceed-

ing 1.0% (Categories 4 and 5), all the above measures are 

implemented. As effectiveness of social distancing is affected 

by some of the behavioral factors listed above,61 we assume 

a certain social distancing conformance level. Travel restric-

tions considered in the model included regional air and land 

border control for infected travelers.

Optimization models
The optimization model (budget-based or resource-based) is 

invoked at the beginning of every nth new regional outbreak 

epoch (n = 1,2,…), starting from the initial outbreak region 

(n = 1). The objective of the model is to allocate some of the 

available mitigation resources to the new outbreak region 

(actual allocation) while reserving the rest of the resources 

for potential outbreak regions (virtual allocation). By doing 

so, the model seeks to progressively minimize the impact 

of ongoing outbreaks and the expected impact of potential 

outbreaks, spreading from the ongoing locations. Mitigation 

resources can include stockpiles of vaccine and antiviral, 

administration capacities for their administration, hospital 

beds, medical supplies, and social distancing enforcement 

resources, among others. The  predictive mechanism of the 

optimization model is based on a set of regression equations 

obtained using  single-region simulation models. In what 

 follows, we present the  construction of the optimization 

model and explain the solution algorithm for the overall 

simulation-based optimization methodology (Section 2.4).

We introduce the following general notation.

S = set of all network regions,

An =  set of regions in which pandemic is contained at the 

nth outbreak epoch (n = 1,2,…),

Bn = set of ongoing regions at the nth outbreak epoch,

Cn = set of unaffected regions at the nth outbreak epoch,

R =  set of available types of mitigation resources 

(R = {1,2,…,r}),

c
i
 = unit cost of type i resource, i ∈ R,

q
ik
 = amount of resource i allocated to region k,

Qn
i
  =  available amount of resource i ∈ R at the nth outbreak 

epoch,

Mn = budget availability at the nth outbreak epoch,

H = set of age groups.

In both models, the optimization criterion (objective 

 function) incorporates measures of societal and economic 

costs of the pandemic: the societal cost includes the cost of 

lost lifetime productivity of the deceased; the economic cost 

includes the cost of medical expenses of the recovered and 

deceased and the cost of lost productivity of the quarantined. 

To compute these costs, the following impact measures of mor-

bidity, mortality, and quarantine are used, for each region k:

X
hk

 =  total number of infected cases in age group h who 

seek medical assistance,

Y
hk

 =  total number of infected cases in age group h who 

do not seek medical assistance,

D
hk

 =  total number of deceased cases in age group h,

V
hk

 =  total number of person-days of cases in age group 

h who comply with quarantine.

We use the following regression models, obtained using 

a single-region simulation of each region k, to estimate the 

above impact measures of morbidity, mortality, and social dis-

tancing (dependent variables) as a function of the  independent 

variables (resource allocation):

X q q qhk hk hk
i

ik
i R

hk
im

ik mk
i m R i m

= + ⋅ + ⋅ ⋅
∈ ∈ ≠
∑ ∑δ δ δ0

, ,

,
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where δ i.. denotes the regression coefficient associated with 

resource i, and δ im.. is the regression coefficient for the inter-

action between resources i and m. Similar expressions are 

used for Y
hk

, D
hk

, and V
hk

. The quadratic form of the regres-

sion equations is adopted, as opposed to the linear, to better 

capture the interaction between the variables (eg, vaccine 

stockpile and administration capacity).

The above relationships between the impact measures 

and the resource allocations ought to be determined 

apriori of implementing a cross-regional scenario (see 

Section 3). Here, we consider each region k as the initial 

outbreak region so that the values of X
hk

, Y
hk

, D
hk

, and 

V
hk

 are estimated for the entire pandemic period. We 

assume, however, that as the pandemic evolves, the disease 

infectivity will naturally subside. Hence, we incorporate 

a decay factor α n66 to adjust the estimates of the regional 

impact measures at every nth outbreak epoch, in the 

following way:

 
X X Y Y D D

V V

hj
n n

hj hj
n n

hj hj
n n

hj

hj
n n

hj

= = =

=

α α α

α

, , ,

.
 (4)

Alternatively, the regression equations can be re-estimated 

at every new outbreak epoch, for each region k ∈ Cn, using 

the single-region simulation models, where each simulation 

must be initialized to the current outbreak status in region 

k in the cross-regional simulation.

In addition, we use the following regression model 

to estimate the probability of pandemic spread from 

affected region l to unaffected region k, as a function of 

resources allocated to region l, which, in turn, impact 

the number of outgoing infectious travelers from the 

region:

 
p q q q

lk lk lk
i

il
i R

lk
im

il
i m R
i m

ml= + ⋅ + ⋅ ⋅
∈ ∈

≠

∑ ∑γ γ γ0

,

,
 

where γ  i
..
 denotes the regression coefficient associated with 

resource i, γ  im
..
 is the regression coefficient associated with 

interaction between resources i and m, and γ  0
..
 represents 

the intercept. Consequently, the total outbreak probability 

for unaffected region k can be found as p pk

l B

lk
n

=
∈
∑ . We 

use a scheme similar to Eq. 4 to progressively adjust the 

estimates of the regional outbreak probabilities

 p pk
n n

k= .α  (5)

Finally, we calculate the total cost of an outbreak in region 

k at the nth decision epoch as follows

 

TC m w X

w Y w D w V

k
n

h H
h h hk

n

h H
h hk

n

h H
h hk

n

h H
h hk

n

= + +

⋅ + ⋅ + ⋅ ,
∈

∈ ∈ ∈

∑
∑ ∑ ∑

( )

 

(6)

where

m
h
 =  total medical cost of an infected case in age group 

h over his/her disease period,

w–
h
 =  total cost of lost wages of an infected case in age 

group h over his/her disease period,

ŵ
h
 =  cost of lost lifetime wages of a deceased case in 

age group h,

w
h
 =  daily cost of lost wages of a non-infected case in age 

group h who complies with quarantine.

Quantity-based and budget-based  
optimization models
The quantity-based and budget-based optimization models 

have the following form.

Both models have the same objective function. The first 

term of the objective function represents the total cost of the 

new outbreak j, estimated at the nth outbreak epoch, based on 

the actual resource allocation {q
1j
,q

2j
, … q

rj
} (see Eq. 6). The 

second term represents the total expected cost of outbreaks in 

currently unaffected regions, based on the virtual allocations 

{q
1s

, q
2s

, …, q
rs
} and the regional outbreak probabilities pn

s
 

(Eq. 5).

In the quantity-based model, the set of constraints 

assures that for each resource i, the total quantity allocated 

(current and virtual, both nonnegative) does not exceed 

the total resource availability at the nth decision epoch. 

Minimize TC q q q TC

q q q p

j
n

j j rj s C s
n

s s rs s
n

n( )

( )

1 2

1 2

, , , +

, , , ⋅
∈∑…

…

 Quantity-based model 

 subject to 

 q q p Q i Rij s C is s
n

i
n

n+ ⋅ ≤ ∀ ∈ ,
∈∑  

 
q q i Rij is, ≥ ∀ ∈ .0

 

 Budget-based model 

 subject to 

 
i R i ij s C i R i is s

n nc q c q p Mn∈ ∈ ∈∑ ∑ ∑⋅ + ⋅ ⋅ ≤ ,  

 q q i Rij is, ≥ ∀ ∈ .0  
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Both the objective function and the availability constraints 

are nonlinear in the decision variables.

In the budget-based model, the first constraint relates the 

total available budget at nth decision epoch with the total cost 

of the resources to be allocated (current and virtual). The 

second constraint assures a nonnegative allocation.

Solution algorithm
The solution algorithm for our dynamic predictive simulation 

optimization methodology is given below.

 1. Estimate regression equations for each region using the 

single-region simulation model.

 2. Begin the cross-regional simulation model.

 3. Initialize the sets of regions: An = φ, Bn = φ, Cn = S

 4. Select randomly the initial outbreak region j. Set 

n = 1.

 5. Update sets of regions: Bn ← Bn ∪ { j} and Cn ←  
Cn\{ j}.

 6. Solve the resource allocation model (budget or quantity) 

for region j. Update the total resource availabilities.

 7. If Bn ≠ φ, do step 8. Else, do step 10.

 8. (a)   For each ongoing region, implement a next day run 

of its single-region simulation.

(b)   Check the containment status of each ongoing 

region. Update sets An and Bn, if needed.

(c)    For each unaffected region, calculate its outbreak 

probability.

(d)   Based on the outbreak probability values, determine 

if there is a new outbreak region(s) j.

  If there is no new outbreak(s), go to step 7. Other-

wise, go to step 9.

 9. For each new outbreak region j,

(a)  Increment n ← n + 1.

(b)  Update sets Bn ← Bn ∪ { j} and Cn ← Cn\{ j}.

(c)   Re-estimate regression equations for each region 

k ∈ Bn ∪ Cn using the single-region simulations, 

where each simulation is initialized to the current 

outbreak status in the region (optional step; alter-

natively, use Eq. 4 and Eq. 5).

(d)   Solve the resource allocation model (budget or 

quantity) for region j.

(e)  Update the total resource availabilities.

10. Calculate the total cost for each contained region and 

update the overall pandemic cost.

Testbed
A testbed scenario included a network of four counties in 

Florida: Hillsborough, Miami Dade, Duval, and Leon, with 

population of 1.0, 2.2, 0.8, and 0.25 million people, respec-

tively. The H5N1 virus was considered. A basic unit of time 

∆t for population and disease dynamics models was taken as 

one hour. Regional simulations were run for a period (up to 

180 days) until the daily infection rate approached near zero 

(see Section 3). Below we present the details on selecting 

parameter values for our models. Most of the testbed data 

can be found in the supplement.67

Parameter values for population  
and disease dynamics models
Demographic and social dynamics data for each region were 

extracted from the U.S. Census68 and the National Household 

Travel Survey.69 Daily (hourly) schedules were adopted from 

Das and Savachkin, 2008.43

Each infected person was assigned a daily travel 

probability of 0.24%,69 of which 7% was by air and 93% 

by land. The probabilities of travel among the four regions 

were calculated using traffic volume data (Table 1).70–73 

Infection detection probabilities for border control for 

symptomatic cases were assumed to be 95% and 90%, for 

air and land, respectively. These values were reduced by 70% 

for asymptomatic cases. The value of ω in Eq. 1 was taken as 

0.01. The values of regional outbreak probabilities P
t
 were 

calculated once at the end of every day.

The instantaneous force of infection applied to contact i 

at time t (Eq. 2) was modeled as

 λ
i
(t) = −ln(1−p

i
(t)), where p

i
(t) = α

i
 − δθ

i
(t) (7)

where α
i
 is the age-dependent base instantaneous infection 

probability of contact i, θ
i
(t), is her status of vaccination at 

time t (0 or 1), and δ is the vaccine efficacy, measured as 

the reduction in the base instantaneous infection probability 

(achieved after 10 days).50

The values of age-dependent base instantaneous 

infection probabilities were adopted from Germann, 

200637 (see Table 2). The disease natural history for H5N1 

Table 1 inter-regional travel probabilities

Origin/destination Inter-regional travel probability

Hillsborough Miami D Duval Leon

Hillsborough 0.00 0.60 0.27 0.13

Miami D 0.74 0.00 0.16 0.10

Duval 0.61 0.29 0.00 0.10

Leon 0.52 0.31 0.17 0.00
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virus included a latent period of 29 hours, an incubation 

period of 46 hours, and an infectiousness period between 

29 and 127 hours.74

Base mortality probabilities (µ
i
 in Eq. 3) were determined 

using the statistics recommended by the Working Group on 

Pandemic Preparedness and Influenza Response.44 This data 

shows the percentage of mortality for age-based high-risk 

cases (HRC) (Table 3, columns 1–3). Mortality probabilities 

(column 4) were estimated under the assumption that high-

risk cases are expected to account for of the total number of 

fatalities, for each age group.44

calibration of the single-region models
Single-region simulation models were calibrated using the 

basic reproduction number (R
0
) and the infection attack rate 

(IAR). R
0
 is defined as the average number of secondary 

infections produced by a typical infected case in a totally 

susceptible population. IAR is defined as the ratio of the 

total number of infections over the pandemic period to the 

size of the initial susceptible population. To determine R
0
, 

all infected cases inside the simulation were classified by 

generation of infection.25,34 The value of R
0
 was calculated 

as the average reproduction number of a typical generation 

in the early stage of the pandemic, with no interventions 

implemented (baseline scenario).25 Historically, R
0
 values 

for PI ranged between 1.4 and 3.9.29,34 To attain similar 

values, we calibrated the hourly contact rates of mixing 

groups (original rates were adopted from).37 For the four 

regions, the average value of R
0
 was 2.54, which represented 

a high transmissibility scenario. The values of regional IAR 

averaged 0.538.

Mitigation related parameters
Mitigation resources included stocks of vaccines and anti-

viral, capacities for vaccination and antiviral application, 

and quarantine enforcement resources (required to achieve a 

target conformance level). We assumed a 24-hour deployment 

delay following detection of the first infection case.49

The vaccination risk group included individuals younger 

than 5 years and older than 65 years.75 The risk group for 

antiviral included individuals below 15 years and above 

55 years.75,76 The efficacy levels for the vaccine (δ in Eq. 7) 

and antiviral (τ in Eq. 3) were assumed to be 40%35,77 and 

30%, respectively. We assumed a 95% target population 

conformance for both measures. The immunity development 

period for the vaccine was taken as 10 days.50

A version of the CDC guidance for quarantine and isola-

tion for Category 5 was implemented (see Section 4). Once 

the CFR has reached 1.0%, the following policy was declared 

and remained in effect for 14 days:42 (i) individuals below a 

prespecified age ξ (22 years) stayed at home during the entire 

policy duration; (ii) of the remaining population, a certain 

proportion φ stayed at home and was allowed a one-hour 

leave, every three days, to buy essential supplies;78 (iii) the 

remaining (1−φ) non-compliant proportion followed a regular 

schedule. All testbed scenarios considered the quarantine 

conformance level φ (a decision variable) bounded between 

50% and 80%.61

An outbreak was considered contained if the daily infec-

tion rate did not exceed five cases, for seven consecutive days. 

Once contained, a region was simulated for an additional 

10 days for accurate estimation of the pandemic statistics. 

A 25 statistical design of experiment was used to estimate 

the regression coefficient values of the significant decision 

factors and their interactions (Section 2.3).

The simulation code was developed using C++. The 

running time for a cross-regional simulation replicate aver-

aged 19 minutes on a Pentium 3.40 GHz PC with 4.0 GB 

of RAM.

comparison of two allocation models: 
sensitivity analysis
This section presents a performance comparison of the 

quantity-based and budget-based allocation models. We 

also present a sensitivity analysis for assessing the marginal 

impact of changes in the total resource availability. The mar-

ginal impact is measured by the change in the total pandemic 

cost (averaged over multiple replicates), resulting from a unit 

change in the total quantity/budget availability.

Table 4 summarizes vaccination and antiviral treatment 

resource requirements for each region, based on the composi-

tion of the risk groups (see Section 3). The table also shows 

the resource costs,79–81 budget requirement by each resource, 

and the total required budget.

Table 2 instantaneous infection probabilities

Age group 0–5 6–19 20–29 31–65 66–99

αi
0.156 0.106 0.205 0.195 0.344

Table 3 Mortality probabilities for different age groups

Age group % High-risk cases % Mortality in 
high-risk cases

μi

0–19 6.4 9.0 0.007
20–64 14.4 40.9 0.069
65+ 40.0 34.4 0.162
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Table 5 shows the costs of lost productivity and  medical 

expenses adopted from Meltzer, 199944 and adjusted for 

inflation for the year of 2010.82

Comparison of the two allocation models was done at 

different levels of the total resource availability relative to 

the total requirement. The total resource quantity require-

ments are shown in Table 4 along with the corresponding 

required budget. The sensitivity analysis was performed for 

quantity levels of 80%, 65%, 50%, 35%, and 20% of the total 

quantity requirement, for each resource. The corresponding 

budget values were computed using resource unit costs from 

Table 4.

Figures 3a and 3b below show the dynamics of the 

average number of infected cases and the average number of 

fatalities for different levels of resource availability. Figure 4 

shows the corresponding dynamics for the average total 

pandemic cost. For illustrative purposes, we also show the 

average number of regional outbreaks, for both allocation 

models, in the testbed scenario involving four regions, with 

Hillsborough as the initial outbreak region (Table 6).

Table 4 regional resource and budget requirements

Region 
(population)

Resource requirements by region Cost of 
resource

Required 
budgetHillsb 

(1,007,916)
Miami D 
(2,209,702)

Duval 
(852,168)

Leon 
(248,761)

Total 
(4,318,547)

Resource
Vaccine stock 305,036 679,181 241,522 76,007 1,301,745 $8.48/dose $11.038 M
Antiviral stock 415,294 749,058 460,393 105,307 1,730,052 $60/dose $103.803 M
no. antiv. nurses 650 1,104 786 166 2,706 $27/hr 8 hr/day, 50 days $29.226 M
no. vacc. nurses 1,059 2,358 839 264 4,520 $27/hr 8 hr/day, 14 days $13.668 M

Total budget requirement $157.737 M

Table 5 Values of pandemic impact measures (societal and 
economic costs)

Pandemic impact measure  
(age group, years)

Value US$

Average cost of lost lifetime productivity  
of a deceased case (0–19)

$1,336,347.86

Average cost of lost lifetime productivity  
of a deceased case (20–64)

$1,370,987.28

Average cost of lost lifetime productivity  
of a deceased case (65–99)

$98,959.24

Average cost of lost productivity and medical  
expenses of a recovered/deceased case (0–19)

$5,078.48

Average cost of lost productivity and medical  
expenses of a recovered/deceased case (20–64)

$10,466.68

Average cost of lost productivity and medical  
expenses of a recovered/deceased case (65–99)

$11,566.09

Average daily cost of lost productivity  
of a non-infected quarantined case (20–99)

$432.54

As expected, the curves for all impact measures  (average 

total number of infected, deaths, and total cost) exhibit a 

downward trend, for both allocation models, as the total 

resource availability increases. Increased total resource avail-

ability not only mediates a regional pandemic impact but 

also reduces the probability of spread to unaffected regions. 

For both models, as the resource availability approaches the 

resource requirement (starting from approximately 60%), 

the impact curves show a converging behavior, whereby the 

marginal utility of additional resource availability dimin-

ishes. This can be explained by noting that the total resource 

requirement was determined assuming the worst case sce-

nario when all regions would be affected and provided with 

adequate resources to cover their respective populations at 

risk. It can also be observed that for all three measures, the 

budget-based model dominates the quantity-based model at 

all levels of resource availability. This can be attributed to the 

fact that the budget-based model, being less restrictive as 

having only one constraint (Section 1), also takes advantage 

of its ability to balance the relative cost and effectiveness 

of individual resources, such as vaccine, antiviral, etc. The 

difference in the performance of two models was as high 

as 339,079 infected cases, 19,724 fatalities, and 17.84 M in 

the pandemic cost (all attained at the 20% resource avail-

ability). The difference in policy performance gradually 

diminishes as the resource availability increases and as 

available quantities become close to be sufficient to cover the 

entire populations at risk in all regions: at 80% availability, 

the gap was 118,124 infected, 4,318 fatalities, and 5.07M 

in the pandemic cost.

Conclusions
Effective mitigation of influenza pandemics has to invari-

ably rely on understanding of evolution of disease and 

population dynamics and intelligent resource allocation. As 

recently pointed by the IOM, the existing models fall short 

of providing dynamic decision support, which incorporates 

broader outcome measures including “costs and benefits 
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of intervention”. In this paper, we present two large-scale 

simulation-based optimization models specifically aimed at 

addressing these challenges.

The models support development of dynamic predictive 

resource allocation strategies for a network of regional out-

breaks. In both models, the underlying simulation mimics the 

disease and population dynamics of the affected regions. The 

quantity-based optimization model generates a progressive 

allocation of resource quantities, whereas the budget-based 

model aims at allocating the total resource budget. Both 

models seek to minimize the impact of ongoing and expected 

outbreaks. The impact measures incorporate morbidity, mor-

tality, and social distancing, translated into the societal and 

economic costs of lost productivity and medical expenses. 

The models were calibrated using historic pandemic data and 

implemented on a sample cross-regional outbreak in Florida, 

with over 4M inhabitants.

Summary of the main results. We observed that for both 

models, the marginal utility of additional resource  availability 

was steadily diminishing as the resource availability 

approached the resource requirement for a worst case sce-

nario, in which all regions would be affected. We also showed 

that the quantity-based model was inferior to the budget-

based model at different levels of resource availability. While 

the budget-based model includes the quantity-based solution 

as a special case, the former takes advantage of its inherent 

ability to balance the different relative cost and effectiveness 

of individual resources. Moreover, the budget-based model is 

less restrictive (the only constraint is the total available budget), 

and therefore, it has a richer geometry of feasible solutions at 

any decision epoch of pandemic evolution. The difference in 

model performance was particularly noticeable at lower levels 

of resource availability, which is in accordance with a higher 

marginal utility of additional availability at that levels. Hence, 

the budget-based model can be most useful in scenarios with 

very limited supply of resources.

Contributions of the model. The methodology presented in 

this paper is one of the first attempts to offer dynamic predictive 

decision support for pandemic mitigation, which incorporates 

measures of societal and economic impact. Our comparison 

study of the budget-based versus quantity-based progressive 

cross-regional resource allocations is also novel. In addition, 

our simulation model represents one of the first of its kind 

in considering a broader range of social behavioral aspects, 

including vaccination and antiviral treatment conformance. The 

simulation features a flexible design which can be particularized 

to a broader range of pharmaceutical and non-pharmaceutical 

interventions and more granular mixing groups.

Based on our methodology, we have also developed a 

decision-aid simulator with a GUI which is made freely 

available to general public through our web site at http://

imse.eng.usf.edu/pandemics.aspx. The simulator allows the 
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Figure 3 Sensitivity analysis on total resource availability (measured in terms of the average number of infected (a) and the average number of deaths (b)).
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input of data for regional demographic and social dynamics, 

and disease related parameters. It is intended to assist public 

health decision makers in conducting customized what-if 

analysis for assessment of mitigation options and develop-

ment of policy guidelines. Examples of such guidelines 

include targeted risk groups for vaccination and antiviral 

treatment, social distancing policies (eg, thresholds for dec-

laration and lifting, closure options (ie, household-based, 

schools, etc.), and compliance targets), and guidelines for 

travel restrictions.

Limitations of the model. Lack of reliable data prevented 

us from considering geo-spatial aspects of mixing group 

formation in the testbed implementation. We also did not 

consider the impact of public education and use of personal 

protective measures (eg, face masks) on transmission, again 

due to a lack of effectiveness data.83 We did not study the 

marginal effectiveness of individual resources due to a con-

siderable uncertainty about the transmissibility of a future 

pandemic virus and efficacy of vaccine and antiviral. For the 

same reason, the vaccine and antiviral risk groups consid-

ered in the testbed can be adjusted, as different prioritization 

schemes have been suggested in the literature, based on 

predicted characteristics of a future virus. The form of social 

distancing implemented in the testbed can also be modi-

fied as a variety of schemes can be found in the literature, 

including geographical and social targeting. Effectiveness 

of these approaches is substantially influenced by the policy 

compliance, for which limited accurate data support exists. 

It will thus be vital to gather the most detailed data on the 

epidemiology of a new virus and the population dynamics 

early in the evolution of a pandemic, and to expeditiously 

analyze it to adjust the interventions accordingly.
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