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Abstract: Itraconazole (ITZ) is an anti-fungal drug that has been used in clinical practice for

nearly 35 years. Recently, numerous experiments have shown that ITZ possesses anti-cancer

properties. The Hedgehog (Hh) pathway plays a pivotal role in fundamental processes,

including embryogenesis, structure, morphology and proliferation in various species. This

pathway is typically silent in adult cells, and inappropriate activity is linked to various tumor

types. The most important mechanism of ITZ in the treatment of cancer is inhibition of the

Hh pathway through the inhibition of smoothened receptors (SMO), glioma-associated

oncogene homologs (GLI), and their downstream targets. In this review, we discuss the

mechanisms of ITZ in the treatment of cancer through inhibition of the Hh pathway, which

includes anti-inflammation, prevention of tumor growth, induction of cell cycle arrest,

induction of apoptosis and autophagy, prevention of angiogenesis, and drug resistance. We

also discuss the clinical use of ITZ in many types of cancers. We hope this review will

provide more information to support future studies on ITZ in the treatment of various

cancers.
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Introduction
According to the Global Cancer Statistics 2018, there would have 18.1 million new

cancer cases and 9.6 million deaths from cancer worldwide.1 Increasing global

demographic trends and epidemiologic transitions indicate an ever-increasing can-

cer burden over the coming decades, particularly in low- and middle-income

countries, with over 20 million new cancer cases expected annually as early as

2025.2 However, the efficacy of current commonly used treatment methods such as

surgery, chemotherapy, and radiation therapy are not satisfactory. However, the

newer methods including immunotherapy, targeted therapy, and stem cell transplan-

tation are expensive and many families cannot afford them. Therefore, a cheap and

effective drug is needed for the treatment of cancer.

Itraconazole (ITZ, C35H38Cl2N8O4) (Figure 1) is a broad-spectrum, antifungal

agent that has been used clinically for nearly 35 years. It can be used for the treatment

of fungal infections, including candidiasis, aspergillosis, and histoplasmosis, and for

prophylaxis in immunosuppressive disorders,3,4 mainly through the inhibition of

lanosterol 14-α-demethylase (14LDM) to reduce the production of ergosterol in

fungi and cholesterol in mammals.5,6 ITZ is a relatively safe drug with clear pharma-

cokinetic characteristics and minimal side effects, including neutropenia, liver failure,

and heart failure.4 Recently, a large number of experiments have demonstrated that ITZ
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possesses anti-cancer properties and has already been

assessed in cancer therapy,7–9 including in basal cell

carcinoma,10 prostate cancer,11 gastric cancer,12 and non-

small cell lung cancer.13 The underlying mechanisms of

ITZ in cancer treatment include suppressing inflammation,

arresting the cell cycle, inducing apoptosis and autophagy,

and inhibiting angiogenesis and drug resistance.14–16

The hedgehog (Hh) pathway was originally identified in

Drosophila17 and described by Nüsslein-Volhard and

Wieschaus in 1980.18 Hh pathway plays a pivotal role in

fundamental processes, including embryogenesis, structure,

morphology, and proliferation in various species,19 it functions

in the steady state of post-embryonic tissues through effects on

stem cells.20 In adult tissues, the Hh pathway is typically silent,

and inappropriate activity is linked to various tumor types,19

such as thoracic cancers including small-cell lung cancer,21

non-small cell lung cancer,22–24 basal cell carcinomas,25

medulloblastoma,26 cervical cancer,27 endometrial cancer,28

malignant melanoma,13 breast cancer,29 and malignant pleural

mesothelioma.30 It is theorized that ITZ could effectively sup-

press the Hh pathway to treat cancer.12,27,31 In this review, we

summarize the mechanism underlying the inhibition of the Hh

pathway by ITZ and discuss its potential in the treatment and

prevention of tumors.

An overview of Itraconazole and
hedgehog pathway
Hedgehog pathway composition and

activation
Hedgehog encodes a 45 kDa protein with a 20 kDa active N-

terminal fragment that covalently binds to cholesterol.32

Three Hh ligands, including sonic hedgehog (SHh), Indian

hedgehog (IHh), and Desert hedgehog (DHh), have been

identified in mammals.10 SHh is the best studied and is

expressed widely in tissues, while IHh is expressed in small

amounts in some tissues, and DHh is expressed only in

gonadal tissues. Ultimately, expression is dependent on dif-

ferent patterns of ligand expression, although the physiolo-

gical effects may be the same.19,33 In adult tissues, the Hh

pathway is mostly inactive or poorly active.34 (Figure 2A)

Patched (PTCH), 12 trans-membrane protein receptors

including PTCH1 and PTCH2, could inhibit the smoothened

receptor (SMO), a 7-pass transmembrane G-protein coupled

signal transduction molecule that contains three main

Figure 1 The chemical structure of Itraconazole.
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domains including a seven-transmembrane helices domain, a

hinge domain, and an intact extracellular cysteine-rich

domain in human,35 to suppress the Hh pathway.36 The link

between Hh pathway and human cancers has long been

recognized.36 Once Hh is overexpressed (Figure 2B), its

ligands are released to bind with PTCH immediately, thereby

alleviating the inhibition of SMO by PTCH. The activated

SMO is then translocated from vesicles to the primary cilium

of the cell membrane, in order to activate a signaling cascade;

this includes the glioma-associated oncogene homolog

(GLI), which is activated through mediating the dissociation

of GLI proteins from the suppressor of fused (SUFU). This

allows the translocation of GLI proteins to the nucleus where

they bind DNA and regulate the transcription of their target

genes.37 GLI is a zinc-finger transcription factor family with

three members, GLI1, GLI2, andGLI3, which play an impor-

tant role in human cancer. GLI1 and GLI2 are transcriptional

activator factors; GLI1 is associated with tumor progression

and metastasis in human cancer;38 GLI2 is accompanied by

invasive and metastatic phenotypes of cancer,39 while GLI3

is a transcriptional repressor factor, the up-regulation of

which can effectively inhibit the Hh-mediated progression

of tumors.40 A balance between these three factors has been

proposed as a molecular code that regulates cell differentia-

tion and compromises and participates in the maintenance of

stem cells, which could have implications for cancer

development.41 In addition, the over-activated Hh pathway

seen in cancer is a consequence of the germline variation of

GLI that induces certain cancers.42

Inhibiting the Hh pathway through SMO

by ITZ
Uncontrolled activation of the Hh pathway can lead to

cancers in many systems, and this can lead to the over-

expression and activation of Hh ligands, SMO, and

GLI.26,43 SMO plays a key role in the Hh pathway,

which can regulate embryonic development and adult

stem cells in animals.44 It is demonstrated that ITZ could

suppress the Hh pathway by inhibiting SMO and/or GLI,

especially GLI1, and their downstream targets through

various mechanisms5 to inhibit the growth and prolifera-

tion of many cancers in vivo and in vitro, arrest cell cycle,

inhibit angiogenesis, and induce apoptosis and autophagy

(Figure 3) including in gastric cancer,12 liver cancer,45

Figure 2 (A) In an adult cell, Hh pathway is always silent or poorly activated. Patched 1 (PTCH1) could inhibit the smoothened receptor (SMO), and then suppress the

phosphorylation of glioma-associated oncogene homolog (GLI), and the dissociation from the suppressor of fused (SUFU), to from GLI repressor (GLIR), which translocates

to the nucleus to suppress the expression of target genes, including Bcl-2, AKT, mTOR, VEGF. The link between Hh pathway and human cancers has long been recognized.

(B) In a cancer cell, Hh is overexpressed, its ligands, such as SHh ligand, are released to bind with PTCH1 immediately, thereby alleviating the inhibition of SMO by PTCH.

The activated SMO is then translocated from vesicles to the primary cilium of the cell membrane, in order to activate GLI, which is activated through mediating the

dissociation of GLI proteins from the SUFU. This allows the translocation of GLI proteins to the nucleus where they bind DNA and regulate the transcription of their target

genes. In addition, Itraconazole (ITZ) could inhibit the accumulation of SMO, as well as, ITZ could also inhibit GLI directly, these lead to the inhibition of target genes to treat

cancer.
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melanoma,13 basal cell carcinoma,10 prostate cancer,11 etc.

Moreover, many pre-clinical studies have also confirmed

that ITZ has the capability to inhibit the Hh pathway to

treat cancer.5,28,46,47 It is worth mentioning that a drug

screen identified ITZ as an inhibitor of the Hh pathway

at a clinically relevant concentration of 800 nM,5 and at

this concentration, ITZ is very safe and has little adverse

effects on human beings.

ITZ could act on SMO directly and decrease the

amount of SMO on the primary cilium to suppress the

Hh pathway.5 For example, ITZ could inhibit the prolif-

eration of basal cell carcinoma, medulloblastoma and glio-

blastoma through combination with the C-terminal of

SMO, without altering the chemical groups from other

drugs.26 (Table 1) This could be a potential solution for

adding ITZ in combination with other anticancer drugs to

inhibit drug resistance, such as vismodegib and arsenic

trioxide.7,48 In addition, ITZ could also inhibit the Hh

pathway through suppressing GLI.15 ITZ could inhibit

the growth of cervical cancer cells and endometrial cancer

cells through significantly reducing the expression of

GLI1.27,28

Anti-inflammation by blocking Hh
pathway
The growth and progression of cancer is the result of

complex signaling networks between different cell types

within the cancer and its surrounding stroma. Previous

research has shown that a chronic inflammatory response

resulting from certain autoimmune diseases49–51 or chronic

infections52 can lead to cancer. In turn, tumors could also

stimulate an inflammatory reaction via the secretion of

cytokines, chemokines, and growth factors that favor the

recruitment of a range of infiltrating immune cell popula-

tions into the tumor microenvironment.53 While poten-

tially able to exert tumor control, this inflammatory

reaction is typically seized by the tumor to promote its

own growth and progression towards metastasis.54

It has also been reported that pro-inflammatory cyto-

kines such as tumor necrosis factor-α (TNF-α), interleu-

kin-1β (IL-1β) and a variety of signaling pathways

ligands such as transforming growth factor-beta

(TGF-β) and platelet derived growth factor (PDGF) are

aberrantly and abundantly expressed in tumor

microenvironments.55 Meanwhile, TNF-α and IL-1β can

activate the Hh pathway through increasing GLI1 in

cancer cells.55–57 How the Hh pathway regulates pro-

inflammatory factors has not yet been discovered cor-

rectly, the inflammation suppression of ITZ may be

related to its effect on expression of GLI1 and inflamma-

tory factors. In addition, previous studies have shown that

ITZ can treat chronic rhinosinusitis through inhibiting

P-glycoprotein (P-gp), and that this inhibition results in

decreased inflammatory cytokine secretion.58 Kangwan et

Figure 3 In cancer cells, the activated SMO and GLI could be suppressed by ITZ, these lead to the inhibition of target genes including Sox9/mTOR, cyclin D1, Wnt/β-
catenin, Bcl-2/cyt C, PI3K/AKT/mTOR, vascular endothelial growth factor receptor 2 (VEGFR2), multidrug resistance protein 1 (ABCC1) to inhibit the growth and

proliferation of many cancers in vivo and in vitro, arrest cell cycle, inhibit angiogenesis, and induce apoptosis and autophagy.

Li et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:126878

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


al suggested that the serum levels of IL-6, TNF-α and

cyclooxygenase-2 (COX-2) were all significantly

decreased after ITZ oral gavage in an animal model of

colitis-associated cancer.59 Moreover, ITZ could signifi-

cantly reduce the chlorhexidine gluconate-induced peri-

toneal thickness and inflammatory cell infiltrations in the

peritoneal membrane via suppressing the activation of the

SHh signaling pathway in the peritoneal tissues.8

Induction of cell cycle arrest by
targeting Hh pathway
Cell cycle plays an important role in modulation of tumor

growth, and previous research has shown that an arrested

cell cycle could prevent unlimited proliferation of tumor

cells.60,61 Tumors are a kind of periodic disease, changing

the tumor cell cycle, which is important to tumor prolif-

eration. Cell cycle is composed of four typical phases

(sub-G1 phase, G1 phase, M phase and S phase) and

regulated well systemically by cyclins and cyclin depen-

dent kinases (CDKs).62 It has been shown that the Hh

pathway can activate the expression of cell cycle regula-

tors to promote cell proliferation, shorten the G1 and G2

phases of the cell cycle, and drive the cells to the final

mitosis and cell cycle exit.63

Cancer cell dormancy is one of the most significant

reasons for treatment failure. However, it has been

reported that ITZ treats dormant cancer cells through caus-

ing irreversible tumor growth arrest, WNT pathway inhi-

bition and synergistic activity with classical s-phase

cytotoxins in colorectal cancer.64 The main mechanism is

that ITZ inhibits SMO, which releases the subsequent

inhibition on SUFU, and then, the derived SUFU activa-

tion in WNTHigh epithelial tumor cells prevents the nuclear

localization of β-catenin causing WNT inhibition. This

finally leads to senescence in both dividing and dormant

cancer cells.64 In addition, ITZ could make the cell cycle

Table 1 Some cancer types treated by ITZ in vitro through Hh pathway

Cancer Type Cell Line IC50/

EC50 of

ITZ

Morlecular Target Biological Effect Reference

Colorectal

cancer

Cancer cells with

molecular diversity

— SMO and SuFu/WNT inhibition; Anti-proliferation, perturbing dormancy 64

Basal cell

carcinoma

ASZ001 cells 1–30 µM SOX9-mTOR inhibition Anti-proliferation, inducing apoptosis 66

Epithelial

ovarian cancer

HUVEC

SVEC4-10

250 nM

500 nM

VEGFR2, GLI1, mTOR

inhibition

Anti-proliferation, inhibiting

angiogenesis

16

Hepatocellular

carcinoma

Huh-7 10 μM ABCC1, GLI2 inhibition Inhibiting metastasis 45

Gastric cancer MKN45, AGS cells 10 μM GLI1 inhibition Anti-proliferation, arresting cell cycle at

G1-S phase, inducing apoptosis

12

Melanoma SK-MEL-28

A375

15.71 μM

0.62 μM

GLI1, GLI2, Wnt3A/β-catenin

and PI3K/mTOR inhibition

Anti-proliferation, inhibiting

angiogenesis and metastasis

13

Breast cancer MCF-7

SKBR-3

5 μM SHh, GLI1 inhibition Anti-proliferation, inducing apoptosis

and autophagy

29

Multiple

myeloma

NCI-H929 1.5 μmol/

L

GLI1, Cyclin D1, Bcl-2

inhibition

Inhibiting growth, inducing apoptosis 48

Malignant

pleural

mesothelial

MPM cells ≥2.5 μM SMO inhibition Inhibiting cell viabiligy, inducing

apoptosis

106

Endometrial

cancer

HEC-1A 10 μM GLI1 inhibition Inhibiting growth, inducing apoptosis 28

Abbreviations: ITZ, itraconazole; Hh pathway, hedgehog pathway; GLI, glioma-associated oncogene homolog; SHh, sonic hedgehog; SMO, smoothened receptor; VEGFR2,

vascular endothelial growth factor receptor 2; ABCC1, multidrug resistance protein 1.
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of breast cancer cells arrest at the G0-G1 phase.29 ITZ

could also induce gastric cancer cell cycle arrest at the

G1-S phase and induce apoptosis through significantly

decreasing the expression and transcription of GLI1.12

ITZ also inhibits SMO to suppress mTOR through

decreasing SOX9, a Sry-like high mobility group (HMG)

box transcription factor that is transcriptionally regulated

by GLI.65 This eventually leads to proliferation inhibition

in basal cell carcinoma.66 Furthermore, ITZ could suppress

proliferation and arrest cell cycle by suppressing cyclin D1

through GLI1 in melanoma cells and multiple myeloma

cells.13,48 In addition, p53 is also involved in cell cycle

regulation, whether and how p53 affected by ITZ through

Hh pathway are still unknown, and more studies are

needed.

Induction of apoptosis and
autophagy by targeting Hh pathway
Programmed cell death plays an important role in main-

taining homeostasis, and it could prevent disease by

removing cells destroyed by cancer, aging, and infection.

Hence, it is a valid strategy for the treatment of cancer.

There are three types of programmed cell death: apoptosis

(type I), autophagy (type II) and necroptosis (type III).67

To date, there are some chemotherapeutic agents in the

clinic to treat cancer.68

Induction of apoptosis
Apoptosis literally means “falling away” in Greek, and

occurs normally in multicellular organisms. Apoptosis

eliminates abnormal, damaged, or mutated cells, and

plays important roles in embryonic development and

adult tissue equilibrium by adjusting the physiological

processes involved.69 In humans, many cells are turned

over and replaced each day through apoptosis. This pro-

cess maintains a balance between the death and survival of

cells and tissues.70 A common feature of many cancers is

the ability to escape apoptosis. This ability allows cancer

cells to proliferate despite accumulated DNA damage and

can confer resistance to various chemotherapy drugs.71

ITZ induces apoptosis of many kinds of cancer cells

through Hh pathway inhibition, including breast cancer,

colorectal cancer, melanoma, bladder cancer and gastric

cancer.12,13,29,64,72 ITZ directly inhibits SMO,73 and then

inhibits the expression of GLI1 and its translocation to

the nucleus. Meanwhile, ITZ also directly inhibits

GLI1,12 which decreases the expression of downstream

gene, Bcl-2,34,74 an important anti-apoptotic member

(Bcl-2, Bcl-XL, and Mcl-1) of Bcl-2 family, and

increases cytochrome c (Cyt C) into the cytosol from

mitochondria to induce the apoptosis of cancer cells.45,75

Moreover, ITZ also suppresses the Wnt/β-catenin signal-

ing pathway through inhibiting SMO in cancer cells,13,64

which is related to cell growth, prognosis, invasion and

metastasis.76,77 ITZ suppresses Wnt3A, Wnt4, Wnt10A

and β-catenin, and then increases Axin-1, which in turn

inhibits β-catenin, which finally leads to growth inhibi-

tion and cell apoptosis.13,27

In addition, ITZ could also induce apoptosis via the

caspase-independent pathway. ITZ passes through the can-

cer cell and decreases the mitochondrial membrane, lead-

ing to increased membrane permeability, generation of

reactive oxygen species (ROS), and down-regulation of

Bcl-2 family members. This finally activates caspase-9

and caspase-3 cascades to cause DNA fragmentation.16,29

Induction of autophagy
Autophagy is the cellular process of lysosomal degrada-

tion in which damaged, dysfunctional, or superfluous orga-

nelles and proteins are sequestered, engulfed, and recycled

to maintain cellular metabolism, viability, and

homeostasis.78 Presently, there are three known subtypes

of autophagy: macroautophagy as a main autophagy path-

way, microautophagy, and chaperone-mediated autophagy.

It has been shown that the inhibition of the Hh pathway

induces autophagy of cancer cells.79 Recent evidence has

also demonstrated that autophagy plays a wide range of

physiological and pathophysiological roles and is asso-

ciated with the pathogenesis of cancer, so the pharmaco-

logical manipulation of autophagy pathways may represent

a new therapeutic strategy for cancer.80,81

ITZ inhibits the Hh pathway through inhibiting SMO

and GLI1 to induce cell autophagy.29 In addition, ITZ

represses the phosphorylation of class III phosphatidylino-

sitol 3-kinase (PI3K), and AKT, a serine/threonine protein

kinase belonging to the PI3K/AKT/mTOR pathway, which

is required for tumorigenesis. This acts as a downstream

target of the Hh pathway,82 and then inhibits mTOR

through diminished trafficking of cholesterol from late

endosomes and lysosomes to the plasma membrane, result-

ing in autophagy promotion in cancer cells.13,29,83

Moreover, ITZ also increases the expression of microtu-

bule-associated protein 1 light chain 3 II (LC3II), which is

often used as a marker for monitoring autophagy progres-

sion since it localizes to both the inner and outer
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membranes of phagophores and autophagosome. It also

degrades P62/SQSTM1, which contributes to autophagy

cell death,84 and forms autophagosome through inhibition

of the Hh pathway to induce autophagy.29

Inhibition of angiogenesis
Angiogenesis is an important physiological process in

tissues, especially in conditions of growth, proliferation,

and wound healing because it helps deliver oxygen and

nutrients to newly formed tissues. However, it is also

characteristic of tumor malignancy. Metastatic cancer

cells can enter the circulatory system through their own

newly formed vasculature to migrate from the primary

tumor and colonize other healthy tissues. Metastatic ability

is tightly associated with a negative prognosis.85 The inhi-

bition of angiogenesis is a promising avenue of anti-cancer

therapy research of ITZ.86

It is reported that ITZ inhibits vascular endothelial

growth factor (VEGF) signaling through inhibiting the

expression and glycosylation of VEGF receptor 2, which

has been demonstrated as a downstream target of Hh path-

way through GLI1,87 to suppress angiogenesis in cancer

cells.9,88–90 ITZ also inhibits angiogenesis and endothelial

cell proliferation by targeting voltage-dependent anion

channel 1 (VDAC1), which regulates mitochondrial meta-

bolism by controlling the passage of ions and small meta-

bolites through the outer mitochondrial membrane, to

modulate the AMPK/mTOR signaling axis in endothelial

cells.91

Inhibition of drug resistance
Drug resistance in cancer cells, which reduces the efficacy

of chemotherapeutics and other treatments,92 is dependent

on the ATP-binding cassette (ABC) transporters, which are

frequently overexpressed in cancer cells.93 There are three

major kinds of multidrug resistance proteins in humans:

P-glycoprotein (P-gp/ABCB1/MDR1), multidrug resis-

tance protein 1 (MRP1/ABCC1), and breast cancer resis-

tance protein (BCRP/ABCG2/MXR/ABCP).94 It has been

reported that the drug resistance of cancer cells is asso-

ciated with the expression of epithelial mesenchymal tran-

sition (EMT) and the aberrantly activated Hh pathway.95

The Hh pathway could also increase the expression of

ABCC1 through GLI2 in hepatoma cells; ITZ inhibits

ABCC1 through suppression of Hh pathway.45 ITZ also

inhibits the efflux pump to reverse resistance.3,96

Clinical use of ITZ in cancer
treatment
ITZ has been used clinically for nearly 35 years as an

antifungal agent. With the advent of its anticancer proper-

ties, it has also been used for the treatment of many kinds

of tumors in clinical trials (Table 2).

Previous studies have shown that intracranial regres-

sion of an advanced basal cell carcinoma was successfully

treated by ITZ with chemotherapy.6,7,10 Meanwhile, ITZ is

also currently used in the treatment of high-grade neuroe-

pithelial tumors of the central nervous system with BCOR

alteration (HGNET-BCOR) in women and children.97,98 A

case of biochemically recurrent prostate cancer has also

been treated effectively by high dose ITZ.99 The prognosis

and overall survival rate of ovarian cancer patients has

improved when treated with ITZ and other chemothera-

peutic drugs.96,100–102 In addition, ITZ with chemotherapy

is promising for the treatment of heavily pre-treated recur-

rent triple-negative breast cancer.103 Combination che-

motherapy with ITZ is also promising for prolonging

overall survival, with acceptable toxicities in the second-

line setting of pancreatic cancer.104 Additionally, ITZ has

been analyzed as a second line treatment in metastatic

non-squamous non-small cell lung cancer.105

Conclusion
In recent years, the development of drugs that inhibit the

Hh pathway have become a new treatment for cancer due

to the discovery of activated the pathway in many tumors.

ITZ inhibits the Hh pathway, and this finding has provided

a tremendous role in tumor therapy research. In the review,

we summarize the exact mechanism by which ITZ fights

with tumor by targeting the Hh pathway. ITZ blocks the

Hh pathway by preventing the accumulation of receptor

SMO and inhibiting the release of the transcription factor

GLI. The target gene of the Hh pathway contains the

anti-apoptosis factor BCL-2, while ITZ has the ability to

decrease the expression of BCL-2 and promote the apop-

tosis of tumor cells. A large number of Hh pathways in

tumor cells are activated, resulting in overexpression of

GLI2, which inhibits autophagy. However, ITZ can also

rescue the suppressed autophagy and promote the death of

cancer cells. The mammalian cell cycle is a highly orga-

nized and canonical process that ensures the duplication of

genetic material and cell division. Since the main feature

of tumor cells is uncontrolled proliferation, it is not sur-

prising that factors involved in the cell cycle change. In
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addition, some researchers have found that ITZ in combi-

nation with other drugs that inhibit the Hh pathway have

significant effects on the treatment of cancer. Therefore, a

large number of further studies should be conducted to

provide a basis for reasonable combination therapy in the

future. Currently, ITZ has been used in clinical trials to

treat many kinds of tumors with satisfactory results. In any

case, an in-depth study of ITZ could bring new hope to

cancer patients in the near future.
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