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Abstract: Quantifying the 3D similarity between two proteins is a difficult task that has 

motivated the assessment of several 3D scores. New developments in protein modeling and 

analysis have led to the emergence of new interest towards mining structures at the local level. 

We assess in the context of fragment mining several dissimilarity scores. We revisit the concept 

of mirror conformation previously introduced at the level of complete structures and extend it 

to the more local level. We also consider an explicit criterion measuring the fragment boundary 

discrepancies. Whereas classical criteria such as the root mean square deviation (RMSd) fail to 

identify similar shapes in a consistent way, we show that local mirror and boundary mismatch 

filtering greatly supplements classical scores to select significant matches. The geometrical 

conditions defined by such criteria can be considered as signatures of fragment similarity. 

Furthermore, it is possible to tune the degree of similarity depending on the size of the mirrors 

accepted. This results in a more intuitive perception of the concept of similarity, and opens new 

perspectives for the rapid mining of large collections of structures.
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Introduction
Similarity is a central concept for the analysis of protein structure and function, 

underlying protein structure classification,1–5 protein structure prediction,6–7 modeling 

performance,8–11 and protein function annotation.12,13 Depending on the goal, similarity 

can be considered at the level of complete structures, considering classical structural 

alignment14–18 or un-sequential alignment,19 at the level of fragments,20,21 or for the 

search for motifs involving amino acids not consecutive in the sequence, using atomic 

positions22–27 or molecular shape.28,29

In a general manner, the focus of similarity search has progressively moved during 

the recent years from the complete protein domain level to the more local level, both 

for functional annotation and structure prediction. At the level of fragments, the scope 

of this study, there is evidence that recurrent conformations occur at the local level in 

protein structures.21,30,31 Indeed, fragment seeds are used by some approaches to align 

complete structures14,18 and fragment assembly has become a major paradigm in struc-

ture prediction.32 Presently, local structure is the level at which modeling encounters 

limits in order to get the most accuracy related to significant functional arrangements.33 

As a consequence, the efficient search for similar fragments in large structure collec-

tions has become a concern. It is unclear, however, how the approaches developed 

for complete structures are relevant for shorter sizes, since the objectives in the search 

differ. For instance, whereas local deviations are expected at the level of complete 
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structures, these cannot, in general, be so much tolerated for 

fragments. It is often important that the fragments collected 

as significantly similar not only exhibit a globally similar 

shape, but also that atomic details of the backbone, in 

particular with respect to the preservation of hydrogen bond 

patterns be quantified. As well, one would usually prefer that 

similar fragments result in similar side chain orientations. In 

a general manner, it should be possible to avoid too large 

local deviations, and boundary conditions compatible with 

loop closure should also be taken into account.

Considering measures of protein structure similarity, two 

predominant categories can be distinguished. The first relies 

on the structural alignment of the structures from which pairs 

of corresponding residues are identified. One widely used 

criterion in this context is the alpha-carbon root mean square 

deviation (cRMSd) criterion. This long used criterion has 

well known flaws, long discussed in the literature,34 among 

which, cRMSd dependence on the alignment length, possibly 

large deviations between aligned positions despite low global 

values, and above all, a poor classification performance for 

medium range cRMSd values. To address these limitations, 

several studies have proposed different normalizations, sev-

eral assuming the proteins as globular, to make the cRMSd 

independent of the fragment size.35–38 For instance, Maiorov 

and Crippen35 have proposed to consider the radius of gyration 

of the proteins, whereas Carugo and Pongor36 have proposed a 

normalization of the cRMSd taking into account the number 

of amino acids. Another measure introduced in the late 90s in 

the context of the Comparative Assessment of Structure Pre-

diction (CASP) is the GDT-TS.8 An underlying assumption 

of this score is that the structures to compare should be close. 

Given the superimposition of two protein models, it com-

bines the fraction of the residues aligned at different distance 

thresholds to produce a score between 0 and 1, where values 

of 1 would correspond to perfect modeling. Nevertheless, this 

score still faces the flaw that it achieves poor discriminative 

performances for high GDT-TS values,39 ie, for very close 

models, and to overcome this difficulty Sadreyev and cowork-

ers10 have very recently proposed to add to the GDT-TS score 

a penalty term to repulse non-equivalent residues.

The second category of scores does not rely on a prior 

superposition. It is based on the comparison of the inter-atom 

distance matrices of each protein.40 Among these, the DALI 

score41 is probably the most well known. It is based on the 

comparison of the contact matrices of each protein. This score 

is used to perform a structural alignment and then to derive 

a Z-score with normalization depending on the observed 

distribution or protein size and inter-residue distance. 

It has been applied successfully to the large scale detection of 

protein similarity in the well known DALI server.42 Although 

these scores are easy to compute, one flaw is that they cannot 

distinguish between mirror images because a structure and 

its mirror images have the same distance matrices, therefore 

such a score can be zero for very dissimilar fragments.

Last, but not least, concerns about structural similarity 

are not only qualitative, but also quantitative. Several groups 

have tackled the difficult question of the significance of the 

3D alignment of structures. In the mid 90s, Maiorov and 

Crippen43 proposed that two proteins are significantly similar 

when their cRMSd is smaller than that obtained from the 

mirror conformation. As a consequence, a significant level of 

cRMSd is the value below which the mirrored cRMSd cannot 

be less than the cRMSd. In the late 90s, Levitt and Gerstein44 

introduced a score based on inter-protein distance matrix 

to assess the statistical significance of the 3D alignments, 

and carried out an extreme value distribution analysis as is 

performed to study sequence alignment score significance. 

This score has been further adapted by Zhang and Skolnick 

into the TM-Score.11 Very recently, Wrabl and Grishin45 have 

the statistics associated with different scores and proposed 

an approach involving the cRMSd, the radius of gyration and 

the thinnest molecular dimension.

Here, we study the properties of various scores applied 

to the mining of collections of structures to search for 

small fragments. We consider dissimilarity scores between 

proteins fragments from 8 to 20 residues based on atom 

coordinates of alpha-carbons. Two families of scores are 

studied: scores based on a superimposition of the fragments, 

named deviation scores, and scores comparing inter-atom 

distance matrices, named distortion scores. We revisit and 

extend the concept of mirrors first presented by Maiorov and 

Crippen43 to assess the significance of RMSd on globular 

proteins to the level of fragments. We use local mirrors as 

geometric criteria to assess the similarity of fragments. We 

also consider an explicit criterion measuring the fragment 

boundary discrepancies. We show with large benchmarking, 

and we illustrate in some test cases, that both criteria can be 

combined to greatly improve the accuracy and the efficiency 

of the 3D-scores for short protein fragment mining.

Material and methods
Datasets
In order to assess the similarity criteria we have used a reduced 

benchmark of 976 protein domains subset SCOP 1.37 at 40% 

identity (PDB40), as selected by Lindahl and Elofsson.46 

This benchmark consists in domains with few errors, well 
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diversified, and covering the PDB although not too large. We 

have selected 12 domains consisting in three samples from 

the first four classes of SCOP (all alpha, all beta, alpha + beta, 

alpha/beta), and we have performed a search of all the frag-

ments of these 12 test domains against the 976 domains of the 

benchmark, forbidding self comparisons. We have considered 

fragment length between 8 and 20 residues, randomly selecting 

one length for each protein pair. This resulted in more than 

300 million fragment comparisons from which have been 

computed the four dissimilarity scores, the presence of global 

and local mirrors of length 5, 7, 9, 11, and varying values of 

boundary conditions penalty. Such calculations are tractable 

since we do not perform the effective superimposition of the 

fragments but only compute score values. Typical search times 

are on the order of only 12 hours for 300,000,000 comparisons. 

To generate the illustrations the size of the data was, however, 

out of the memory capabilities of the programs, and we have 

sampled subsets of 3,000,000. Tests show that the resulting 

curves are independent on such sampling.

In order to illustrate the behavior of some scores, we 

have also performed searches against the complete ASTRAL 

compendium4 filtered at 40% sequence identity.

Deviation scores
superimposition calculation
Given two sets of aligned coordinates, the superimposition 

consists in computing the optimal rigid body translation and 

rotation which moves one set of atoms onto the second one. 

cRMSd is the most classical one which minimizes the sum of 

squared euclidean distances between aligned pairs of atoms. 

The two sets of atom coordinates are represented by two 3 × N 

matrices X 1 and X 2, with X 1
ij
 (resp. X 2

ij
) denoting the i-th coor-

dinate of the j-th atom. The coordinate deviation is, using the 

Frobenius norm of matrices. The first step of superimposition 

consists in centering the two structures. After this translation, 

we have: Σ
j
 X 1

ij
 = Σ

j
 X   2

ij
 = 0 for all i, 1  i  3. Next step is to 

find the rotation matrix which minimizes:

 
min || ||

R
RX X1 2 2−  (1)

(Mathematically, a rotation matrix is characterized by 

RTR = Id [R is a unitary matrix] and det(R) = 1.) And then 

the cRMSd is given by:

 
cRMSd X X

N
RX X1 2 1 2 21

, || ||( ) = −  

Many algorithms have been proposed in the past to solve 

this problem.47–53 The solution of (1) can be formulated as 

follows:

 

cRMSd X X
N

X X

s

2 1 2 1 2 2 2

1 2 3

1

2

, || || || ||( ) = +(
− + +( ))σ σ σ

  

(2)

where σ
1
 are the three singular values of the 3 × 3 matrix 

X1 (X 2)T with 0  σ
1
  σ

2
  σ

3
 and s is the sign of the deter-

minant of X1 (X 2)T. The latter solution implies the diagonal-

ization of the matrix in order to compute the three singular 

values. The now classical approach represents rotations with 

quaternions.52 Quaternion method requires the computation of 

the maximal eigenvalue of a 4 × 4 matrix which is more effi-

ciently obtained, for instance, using a power iteration method. 

However, the formulation (2) provides useful information for 

our analysis (see the section related to mirror detection).

crMsd normalization
Following Maiorov and Crippen,35 we have considered a 

normalization which is not based on statistical considerations 

but on a geometrical measure of the fragments, the radius of 

gyration, which is given by:

ρ ( ) || ||X
N

X=
1 2

with X centered. From (2) we have:

cRMSd2 (X 1, X 2)  ρ 2(X 1) + ρ 2(X 2)

Hence, the normalized cRMSd (nRMSd):

 

nRMSd X X
cRMSd X X

X X

1 2

1 2

2 1 2 2
,

,( ) =
( )

( ) + ( )ρ ρ
 (3)

This dissimilarity score ranges from 0 to 1. Note 

that Maiorov and Crippen proposed a slightly different 

normalization:
sRMSd X X

cRMSd X X

X X cRMSd X X

1 2

1 2

2 1 2 2 1 22 2

,

,

,

( ) =

( )
( ) + ( ) − ( )ρ ρ

 

According to Maiorov and Crippen,35 this score is 

independent of scaling and is minimal for proteins with equal 

radii of gyration.

Distortion scores
Distance Matrix Distortion
We first consider the Distance Matrix Distortion (DMD) 

score introduced by Levitt.40 In essence, it is conceptually 

close to the cRMSd, but applied to the difference between 

two matrices of internal distances. As the cRMSd, it varies 

in theory from 0 to infinity.
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with N = number of α − carbon atoms, D1
ij
 (resp. D2

ij
 ) distance 

between atoms i and j of the structure X1 (resp. X2).

Mean Distance Matrix Distortion
In order to compare with the nRMSd, we also assess a 

normalized version of the DMD (mDMD), to vary between 

0 and 1:

mDMD X X
N N

D D

D D
ij ij

ij iji j i

1 2
1 2

1 2

2

1
,

| |

| |,

( ) =
−( )

−
+>

∑

Detection of mirror symmetry
The coefficient s in (2) carries a very interesting piece of 

information: whenever it is negative, the mirrored structure 

of X1 is better superimposed on X2. If S is a symmetry matrix 

(hence det(S) = −1) about any axis, then we have:

cRMSd (SX 1, X 2)  cRMSd (X 1, X 2)

This fact has been exploited by Maiorov and Crippen44 

to derive a significant level of cRMSd between two globular 

proteins. For any symmetry transformation given by a matrix 

S (ST = Id and det(S) = −1), we have:

cRMSd2 (SX 1, X 2) = cRMSd 2 (X 1, X 2) + 4sσ
1
 (X 1 (X 2)T)

and for any scores based on distance matrices, we have:

d(SX 1, X 2) = d(X 1, X 2)

A fragment represented by a centered coordinate matrix 

X2 is mirror similar to the fragment given by X1 whenever:

det(X 1(X 2)T)  0

We say that a structure X has a mirror if, relative to a 

query structure, X is better superimposed onto the query 

after mirroring.

Detection of local mirror symmetry
We say that a fragment X2 contains a local mirror (relative 

to X1) or is locally mirror-similar to X1 whenever the frag-

ment sub-matrix X2
loc

 (resp. X1
loc

 ) composed of a continuous 

subset of rows of X2 (resp. X1 ) whenever:

det( ( ) )X Xloc loc
1 2 0T <

We have considered odd mirror lengths varying from 5 

to 11 residues, called in the following l-mirrors (l = mirror 

length). Mirrors of length 3 do not exist, as 3 points are planar 

and imply a null determinant.

Boundary conditions
Optimal superimposition averages the deviation between two 

fragments, and boundary discrepancies cause only a moderate 

increase to the cRMSd and other deviation scores. Fragments 

with a significantly low cRMSd or distortion can present 

boundary mismatches with the query. The same kind of dis-

crepancy can also occur for DMD scores, the deviation between 

the relevant distances being average over a large amount of 

distances. To tackle this difficulty, we also consider a second 

geometrical condition to measure distance mismatches between 

the two end points of the queried and searched fragments.

s
D D

D Dij

ij ij

ij ij

=
−
+

| |

| |

1 2

1 2

d
bound

 = s
1N

 + s
1;N–1

 + s
2;N

 + s
2;N–1

 + s
3;N

 + s
3;N–2

The boundary conditions are satisfied whenever the 

boundary distance is below a given threshold.

rOc analysis
ROC curves54,55 represents the False Positive Rate (FPR) 

versus the sensitivity (or True Positive Rate) relatively to 

the geometrical conditions. The FPR is the proportion of 

positive results (dissimilarity below a given cutoff) among 

geometrically dissimilar fragments (not passing the mirror 

and boundary conditions). It is an estimation of the prob-

ability of accepting a dissimilar fragment:

FPR = Pr (d  d
0
| geom.cond. fulfilled)

FPR is also equal to one minus the specificity.

The sensitivity (or TPR) is the proportion of selected 

fragments among those having a correct geometry:

TPR = Pr (d  d
0
| geom.cond.not  fulfilled)

Overall efficiency of a dissimilarity score is measured 

by the area under the ROC curve (AUC). AUC is the prob-

ability that a positive fragment fulfilling the geometrical 

conditions has a better score than a negative one,54 and we 

use this criteria as a sensitivity measure of the 3D distances 

to the geometry of the fragments. A straight line (FPR = 
TPR) and an AUC = 0.5 means that the score is completely 

independent of the geometrical conditions, and the frag-

ment mining process is no more effective than a purely 

random selection.

Precision-recall curves55 can also be used when there is 

a large skew between positive and negative fragment pro-

portions. This is not the case for the mirror conditions. For 

instance, globally mirrored and non-mirrored fragments are 

DMD X X
N N

D Dij ij
i j i

1 2 1 2 22

1
,

,

( ) =
−( ) −( )

>
∑
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equally distributed. However, when considering boundary 

conditions, positive and negative fragment proportions are 

highly unbalanced with a small number of positive ones. 

Precision-recall curves represents the precision versus the 

recall. Precision is given by:

Prec = Pr (geom.cond.fulfilled |d  d
0
)

and the recall is equal to the sensitivity.

Geometrical significance
Maiorov and Crippen43 have considered the presence of 

global mirror as a mean to assess the significance of cRMSd 

between globular proteins. Figure 1 shows that mirror cannot 

be present below a fixed cRMSd value. They also estimated 

this cRMSd threshold for globular proteins scaled to have 

their radius of gyration set to one, and obtained (2/3)1/2. We 

generalize this definition of significance by also considering 

local mirrors and boundary conditions, and call it geometrical 

significance. The geometrical significance depends on the 

mirror length and on the boundary threshold.

In the next section, we study the geometrical significance 

of the 3D dissimilarity scores by evaluating the sensitivity 

and specificity of scores to geometrical conditions.

Results
Local mirror occurrences
We first discuss the general behavior of the scores and the 

occurrence of mirror conformations. Figure 1 illustrates 

the results obtained by systematic superimposition of frag-

ments over all possible fragments of 976 protein domains, 

for the four scores. Not surprisingly, one notes a positive 

correlation between the scores. For instance, the correlation 

factor between the cRMSd and DMD (Figure 1a) is equal 

to 0.88. Normalized scores (Figure 1b) are less correlated 

with a correlation factor of 0.70, and this results in larger 

clouds of points. The correlations are slightly increased when 

considering presence of mirrors (correlation factors of 0.9 

and 0.75 in Figures 1a and 1b, respectively) and much more 

increased when taking boundary conditions into account (B.C. 

 0.25) (correlation factors of 0.95 and 0.9 in Figures 1c and 

1d, respectively). Looking at the localization of the mirrors, 

one observes that the matches corresponding to global mir-

ror conformations of the query (blue regions) are associated 

with large deviation score (cRMSd, nRMSd) values and that 

for low values, no mirror exists: there is a cutoff value below 

which fragments cannot be mirror-similar. This is fairly com-

prehensible since a mirror implies differences in the geometry 

that result in cRMSd penalty. Looking at the local mirrors, we 

observe that the occurrences of local mirrors (here 7-mirrors) 

encompass the area of the observed global mirror, but also 

outflanks this area towards lower cRMSd values. For the 

deviation scores, these results suggest that considering mir-

ror effects is discriminate for medium range values, and that 

considering more local mirror effects will result in focusing 

the search for similar fragments towards low score values. 

Note, however, that the plot can be misleading since outside 

the low score regions, there is in fact an equal distribution 

of mirrored and non-mirrored fragments.

The DMD and mDMD dissimilarity scores do not exhibit 

such a clear cutoff for global mirror. Comparing the deviation 

and distortion scores, we first observe that two similar 

fragments can have small DMD scores and simultaneously 

large cRMSd values. This implies that distortion scores 

are, compared to deviation scores, less efficient for frag-

ment mining at intermediate level of similarity. Secondly, 

distortion scores are efficiently supplemented by local mir-

rors: matches with no local mirror have significantly lower 

DMD scores. For all four scores we observe (Table 1) that 

filtering the search, by forbidding more and more local 

mirrors, effects results by significantly increasing similarity 

and the mean score is significantly lower for pairs of frag-

ments with no local mirrors at all. However, for distortion 

scores, only for the very small values of the scores do we 

observe no mirror. Indeed, distortion scores theoretically 

cannot distinguish between global mirror and non-mirror 

superimposition. Although it is in theory possible that the 

absence of mirror conformation comes from the fact that 

we could not perform an all-proteins-against-all experiment, 

this fraction is well populated. This suggests that in proteins, 

mirror effects do not occur for very similar fragments.

Figure 2 reports the results of a ROC analysis. The AUCs 

are reported in Table 2. The ROC curves shows that DMD and 

mDMD are almost completely insensitive to global mirror, 

as are the cRMSd and nRMSd for larger values of the scores. 

The AUC increases when forbidding smaller mirrors, up to 

values of over 0.9, which shows that all scores are sensitive 

and correlated to local mirror elimination. A lower mirror 

size implies a more stringent geometrical condition. This 

shows that the absence of local mirror can be considered as 

a signature of similarity between fragments.

Fragment boundary conditions
From our assessment (not shown), values of the criterion 

resulting in satisfactorily overlapping boundaries are 

below 0.5. Figure 1 (middle) illustrates the distribution of 

fragments with various boundary conditions. It mostly shows 
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Figure 1 Mirror effects and boundary conditions for deviation and distortion scores.
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Table 1 scores mean and standard deviation for different l-mirror conditions (global – complete fragment length, 11, 9, 7, 5)

  All Global 11 9 7 5

crMsd mean 5.23 4.94 4.18 3.79 3.51 2.39

s.d. 1.528 1.551 1.270 1.363 1.388 1.548

nrMsd mean 0.367 0.346 0.326 0.296 0.277 0.192

s.d. 0.10 0.10 0.10 0.10 0.10 0.11

DMD mean 4.47 4.33 3.58 3.26 2.77 1.81

s.d. 1.79 1.82 1.59 1.65 1.59 1.54

mDMD mean 0.2715 0.2640 0.2328 0.2116 0.1817 0.1176

 s.d. 0.084 0.0890 0.0892 0.0937 0.0924 0.0813

Figure 2 rOc analysis of mirror conditions.
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that boundary conditions alone are not specific enough to 

select structurally similar fragments. Selecting fragments 

with low boundary deviations is not a sufficient condition 

for similarity. Indeed, and not surprisingly, it is possible to 

reach, for fragment less than 20 residues, cRMSD devia-

tions by over 5Å with boundary score less than 0.5. We 

also observe that some fragments with low cRMSd values 

can show boundary discrepancies. However, we observe 

a different behavior for deviation and distortion scores. 

Whereas it is possible to have boundary discrepancies 

even for low deviation score values, this is not observed for 

distortion scores. This is not surprising, since the boundary 

distances corresponding to fragment limits enter directly into 

the score formulation. Finally, we observe that fragments 

which fulfil more stringent boundary conditions have on aver-

age significantly lower scores. This is clear from Figure 3 that 

shows the precision-recall analysis associated with the bound-

ary conditions. Overall, all scores show the same tendencies, 
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Table 2 AUc for different l-mirrors (global – complete fragment 
length, 11, 9, 7, 5) and one combination: 7-mirror and boundary 
conditions less than 0.4

AUC Global 11 9 7 5 7;0.4

crMsd 0.6069 0.7940 0.8068 0.8323 0.9139 0.9814

nrMsd 0.6225 0.6638 0.7239 0.7556 0.8816 0.9714

DMD 0.5429 0.7080 0.7238 0.7941 0.8920 0.9890

mDMD 0.5434 0.6764 0.7098 0.7873 0.9035 0.9884

Figure 3 Precision-recall analysis of boundary conditions (B.c.).
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and the distortion scores (DMD and mDMD) show the best 

performance in detecting boundary mismatches. One notes 

however, the poorer performance of the cRMSd compared to the 

nRMSd. The cRMSd appears to be more tolerant to boundary 

mismatches and therefore less sensitive to boundary conditions. 

It seems that the normalization including the radius of gyration 

has a marked effect on the boundaries, although the relationship 

remains to further explore.

combining mirror occurrence  
and fragment boundary conditions
Figure 1 (bottom) illustrates the combination of both mir-

ror and boundary effects. It shows that combining mirror 

and boundary conditions results in a very tight structural 

 similarity. Indeed, dramatic effect is observed by simply com-

bining the removal of global mirrors and boundary conditions. 

For all scores, a very focused similarity area can be delimited 

considering local mirrors. As shown in Figure 2, close to 

perfect behavior is obtained combining 7-mirror and bound-

ary conditions. All dissimilarity scores are highly specific 

and sensitive to combined geometrical conditions, the best 

performance being obtained for the mDMD score.

To assess in real case the feasibility to tune the search for 

similar fragments we have performed searches against the com-

plete Astral compendium at 40% sequence identity. Figure 4 

illustrates, for three different types of fragments – a beta-hairpin 

(top), a random coil (second line), and a helix-turn-strand motif 

(third line) – the effect of accepting or not local mirrors. All 

the matches displayed have cRMSd values less than 2.5Å. It is 

visible from left to right that filtering of the matches by increas-

ingly not accepting more local mirrors results in matches closer 

to the query. Although only the alpha carbons were considered, 

the orientations of all the backbone atoms are also closer to 

that of the query, suggesting that both compatible main chain 

and side chain directions are retained. Finally on the last line, 

we illustrate the effect of filtering on the boundary conditions 

for fragment having no 7-mirror. Remarkably, some matches 

for larger cRMSd values but having no 7-mirror exist as well 

(bottom right). However their boundary scores are rather large. 

This highlights the importance of considering both absence of 

mirror and boundary condition satisfaction.

Discussion
The results of the present assessment show that distortion 

scores (DMD, mDMD) can perform as efficiently as deviation 

scores (cRMSd, nRMSd) in the context of fragment mining. 

In such context, the filtering of the matches on the basis 
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Figure 4 considering local mirrors. For three different topologies of loops – beta-hairpin (top) random coil (middle) and alpha-turn-strand (hTB) (bottom – we illustrate 
the results obtained accepting mirror over complete fragment (left), 7 residue mirror only (middle) or no 7 residue mirror (right). For hTB, no fragment was found accepting 
mirror over complete fragment, we illustrate by an 11 residue mirror.   All the fragments have rMsd values less than 2.5Å. On the last line (left, middle), we also report illustrate 
the impact of the boundary conditions. On the right the fragments that have no 7-mirror, but have larger rMs deviations (2.5–3Å).

of local mirror elimination is an efficient way to focus on 

matches that correspond more intuitively to the concept of 

similarity: both local shapes and fragment conformation 

including complete backbone gain in consistency compared 

to the query. A more pronounced effect is observed by com-

bining local mirror and boundary conditions. Among the four 

scores, the cRMSd, probably the most widely used, appears 

not to be the most efficient in regards of our results. In par-

ticular, it behaves less efficiently for boundary conditions.

Interestingly, it is possible to identify score values 

below which no or a given fraction of false positives exist. 

Some of these are reported in Table 3 for different fragment 

lengths. The 0% values correspond to the values below 

which no mirror is observed, and thus can be related to 

the absolute value proposed by Maiorov and Crippen43 to 

assess significance. We observe that the cutoff value can 

be very low. For instance, for mDMD no clear cutoff is 

observed, the values being very small. We prefer to define 

significant the values with a probability less than α to 

observe fragments with incorrect geometrical conditions. 

Table 3 also reports values for α value of 5%. For global 

mirror, we note that the significance cutoff tends, for 
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nRMSd and mDMD, to be independent on fragment length 

compared to the un-normalized scores (cRMSd, DMD). This 

tendency is also observed for a combination of 7-mirror and 

boundary condition. This remains however to be further 

assessed. Overall, it remains that it is possible to tune the 

degree of similarity by controlling the size of the local mir-

ror and the stringency of the boundary conditions.

Conclusion
We have assessed various scores in the context of fragment 

search. Particularly, we have explored the impact of con-

sidering local mirrors and boundary conditions as a filter 

of the matches. Our results clearly show that such filters 

are relevant to remove matches involving unrelated shapes. 

The geometrical conditions defined by such criteria can be 

considered as signatures of fragment similarity and greatly 

supplement classical scores such as the cRMSd or DMD. 

Combined with them, the distortion scores behave as well 

as the deviation scores. Interestingly, we also observe better 

independence to fragment length for the normalized scores. 

It follows that such criteria could be candidate for the 

design of a mining strategy based on them alone. Indeed, it 

becomes possible to tune the level of similarity desired in 

a very intuitive manner, which is more difficult to achieve 

with classical criteria such as the cRMSd. This clearly opens 

Table 3 Significance thresholds depending on fragment lengths and significance level 

 Length 10 12 14 16 18 20

Global mirror

 crMsd 0% 1.69 1.93 2.50 2.65 2.93 3.06

5% 3.02 3.51 3.85 4.16 4.47 4.78

 nrMsd 0% 0.09 0.09 0.10 0.13 0.15 0.15

5% 0.22 0.24 0.25 0.26 0.27 0.28

 DMD 0% 0.51 0.58 0.67 1.05 1.21 1.26

5% 1.80 2.15 2.39 2.62 2.90 3.17

 mDMD 0% 0.03 0.03 0.03 0.06 0.07 0.07

5% 0.12 0.15 0.16 0.16 0.17 0.18

7-mirror and Bc

 crMsd 0% 0.11 0.13 0.20 0.47 0.61 0.65

5% 2.22 2.80 3.24 3.65 4.01 4.35

 nrMsd 0% 0.01 0.01 0.01 0.03 0.03 0.03

5% 0.17 0.20 0.21 0.23 0.24 0.25

 DMD 0% 0.08 0.11 0.13 0.25 0.27 0.29

5% 1.31 1.69 2.04 2.38 2.71 3.02

 mDMD 0% 0.01 0.01 0.01 0.02 0.02 0.02

 5% 0.09 0.11 0.13 0.14 0.16 0.17

Notes: Top: the significance is based on a no-global mirror condition. Bottom: the significance is based on a no- 7-mirror condition and 
boundary score less than 0.5.

new perspectives for the rapid mining of large collections 

of structures.
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