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Background: Neuroblastoma is one of the most common extracranial solid pediatric

tumors. KRAS plays an important role in regulating cell proliferation, differentiation, and

apoptosis. Single nucleotide polymorphisms (SNPs) in KRAS have been shown to modify

susceptibility to multiple tumors, but no specific molecular epidemiology study was reported

regarding neuroblastoma.

Methods: We conducted a four-center case-control study to explore the association between

KRAS gene polymorphisms (rs12587 G>T, rs7973450 A>G, rs7312175 G>A) and neuro-

blastoma susceptibility with 505 Chinese children and 1070 matched controls.

Results: We found that rs7973450 A>G was associated with significantly increased neuro-

blastoma risk [GG vs. AA: adjusted odds ratio (OR)=4.26, 95% confidence interval (CI)

=1.28–14.19, P=0.018; GG vs. AA/AG: adjusted OR=4.27, 95% CI=1.28–14.24, P=0.018].

The stratified analysis further demonstrated that rs7973450 GG genotype carriers had a

higher risk to develop neuroblastoma in the subgroups of males, tumor originated from the

adrenal gland and clinical stages III+IV.

Conclusions: Overall, our results suggested that rs7973450 A>G was associated with

increased neuroblastoma risk.

Keywords: neuroblastoma, KRAS, polymorphism, susceptibility

Introduction
Neuroblastoma is one of the most common extracranial pediatric tumors, which

accounts for 7–10% of pediatric tumors worldwide. It has a morbidity of 7.7 per

million in China.1,2 Neuroblastoma often occurs to children younger than 1-year-old,

with an average diagnosis age of 17 months.3 Neuroblastoma has diverse clinical

phenotypes and its prognosis varies greatly. For instance, a fraction of neuroblastoma

patients regress spontaneously. In contrast, about 50% of patients have high-risk

neuroblastoma.4 Despite the comprehensive treatment including surgery, chemother-

apy, radiotherapy, and autologous stem cell transplantation, the five-year survival rate

is still lower than 40% in high-risk neuroblastoma which accounts for 15% mortality

of early childhood malignant tumor.5 Moreover, survivors often sustainably suffer

from chronic health problems and have a poor life quality.6

The effects of environmental exposures on neuroblastoma are not clear, such as

medication, infection and parents’ living habits. Significantly statistical result for the

association between external factors and neuroblastoma is lacking.7 With the develop-

ment of genome-wide association studies (GWASs), more and more evidence indicated

that genetic factors may predispose to neuroblastoma. Genetic differences in individuals

mainly result from single nucleotide polymorphisms (SNPs).8 PHOX2B9 and ALK10
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mutations have been shown to contribute to familial neuro-

blastoma risk. Meanwhile sporadic neuroblastoma suscept-

ibility is related to SNPs in TP53,11,12 CASC15,13 MYCN,14

BARD1,15,16 LMO1,17 XPG,18 NEFL,19 CDKN1B,20 and

HACE1 genes.21 Although researchers have extensively

explored the genetic etiology of neuroblastoma, many sus-

ceptibility genes remain to be determined.

RAS gene family consists of several oncogenes, includ-

ing KRAS, NRAS, and HRAS. KRAS is the most frequently

mutated gene in the RAS gene family, mutations in which

have been discovered in 1/4 human tumors. K-Ras protein

acts as a switch in the RAS-RAF-MEK-MAPK pathway

so that regulates cell proliferation, differentiation, and

apoptosis by transmitting extracellular signals to the

nucleus.22,23 KRAS mutations are considered as the first

step in tumorigenesis.24 Frequent mutations in codon 12

and 13 have been found in a wide spectrum of human

tumors,25 such as pancreatic cancer24 and non-small cell

lung cancer.26 In recent years, the research focused on

KRAS has gradually shifted to the regulation sequence.

Polymorphisms in 3ʹ UTRs (rs61764370 T>G, rs712

T>G, rs1137282 A>G) and introns (rs12427141 G>A,

rs7315339 T>C) have been observed to significantly mod-

ified the susceptibility to lung cancer,27 ovarian cancer,28

and triple-negative breast cancer.29

KRAS mutations have been found in some cases of

primary and relapse neuroblastomas.30–32 However, there

is no orthodox molecular epidemiology study about KRAS

and neuroblastoma. Considering the universal importance

of the KRAS gene in tumorigenesis, we intended to explore

the association between KRAS gene polymorphisms and

neuroblastoma susceptibility in Chinese children.

Patients and methods
Study population
We performed a four-center case-control study, which

involved 505 patients and 1070 healthy children as

described previously (Table S1).33 Briefly, patients were

confirmed as new neuroblastoma cases by histopathologi-

cal diagnosis. According to the INSS, patients were

divided into clinical stages I, II (IIA, IIB), III, IV, and

4S.34,35 A total of 1070 healthy children were randomly

selected as controls from those who visited these four

participating hospitals in the same period. Patients and

controls were matching by age, gender, and ethnicity. To

achieve relevant legal and ethical requirements, our study

was approved by the Institutional Review Committee of

four hospitals (the Second Affiliated Hospital and Yuying

Children’s Hospital of Wenzhou Medical University, the

First affiliated Hospital of Zhengzhou University, the

Second Affiliated Hospital of Xi’an Jiaotong University,

Guangzhou Women and Children’s Medical Center). Our

study was conducted following the Declaration of

Helsinki, and participants or guardians were required to

sign informed consent forms. Blood samples were

obtained from cases before receiving radiotherapy or

chemotherapy.

Genotyping
We screened potential function polymorphic sites in the

KRAS gene by NCBI dbSNP database (http://www.ncbi.

nlm.nih.gov/projects/SNP) and SNPinfo (http://snpinfo.

niehs.nih.gov/snpfunc.htm).36,37 KRAS rs12587 and

rs7973450 were predicted to be located in the microRNA

binding sites, while rs7312175 in a potential transcription

factor binding site. As shown in Figure S1, there exists

weak linkage disequilibrium (R2<0.8) among rs12587,

rs7973450 and rs7312175. The R2=0.349 between

rs12587 and rs7973450; R2=0.447 between rs12587 and

rs7312175; and R2=0.015 between rs7973450 and

rs7312175. TIANamp Blood DNA Kit (TianGen Biotech

Co., Ltd., Beijing, China) was used to extract genomic DNA

and TaqMan SNP Genotyping Assay (Applied Biosystems,

Foster City, CA, USA) for genotyping.38–40 To ensure the

accuracy, reliability, and repeatability, our study was carried

out in strict accordance with the instructions and no false-

positive result was found in the negative control. Besides,

10% of samples were randomly selected for repeated

experiments and the repeatable rate was 100%.

Statistical analysis
SAS release 9.1 (SAS Institute, Cary, NC, USA) was used

for data analysis. Hardy-Weinberg equilibrium (HWE) in

controls was estimated by a good-of-fit test. The differ-

ences in demographic characteristics and genotype distri-

bution between cases and controls were detected by t-test

and chi-square test, respectively. For adjusting age and

gender, an unconditional multiple logistic regression

model was taken to reveal the association between three

polymorphisms and neuroblastoma susceptibility. Odds

ratios (ORs) and 95% confidence intervals (CIs) were

used to be statistical indicators. Stratified analysis was

performed by age, gender, tumor origin and clinical stages.

All analyses were two-sided. P<0.05 was considered sta-

tistically significant.
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Results
KRAS gene polymorphisms and

neuroblastoma susceptibility
As revealed in Table 1, all of the three polymorphisms in

controls conformed to the HWE (P>0.05). Moreover, we

found that rs7973450 A>G was significantly associated

with increased neuroblastoma risk (GG vs. AA: adjusted

OR=4.26, 95% CI=1.28–14.19, P=0.018; and GG vs. AA/

AG: adjusted OR=4.27, 95% CI=1.28–14.24, P=0.018)

after adjusting for age and gender. Unfortunately, we failed

to find a significant association with rs12587 G>T and

rs7312175 G>A.

Stratification analysis
Compared with AA/AG genotypes carriers, the stratified

analysis (Table 2) further revealed that rs7973450 GG gen-

otype carriers had a higher risk to develop neuroblastoma in

the strata of males (adjusted OR=10.75, 95% CI=1.25–

92.61, P=0.031), tumor originated from adrenal gland

(adjusted OR=6.16, 95% CI=1.52–24.94, P=0.011), and

clinical stages III+IV (adjusted OR=4.19, 95% CI=1.03–

17.02, P=0.045).

Discussion
KRAS is located in chromosome 12, coding a KRAS

protein with GTPase activity. KRAS protein is activated

by attaching to GTP and turned off right after converting

the GTP to GDP. As a result, it transmits extracellular

signals into the nucleus and regulates the cellular lifecycle

of cells. According to previous reports, KRAS not only

took part in the RAS-RAF-MEK-MAPK pathway,41 but

also unit PI3K to jointly activate mTOR. It indicated that

KRAS is a key regulatory molecule to cellular growth and

proliferation.42 What’s more, KRAS was associated with

Table 1 Association between KRAS gene polymorphisms and neuroblastoma risk

Genotype Cases (N=505) Controls (N=1070) Pa Crude OR (95% CI) P Adjusted OR (95% CI)b Pb

rs12587 G>T (HWE=0.287)

GG 330 (65.35) 688 (64.30) 1.00 1.00

GT 146 (28.91) 333 (31.12) 0.95 (0.77–1.18) 0.653 0.94 (0.76–1.17) 0.591

TT 29 (5.74) 49 (4.58) 1.29 (0.80–2.05) 0.295 1.27 (0.79–2.02) 0.326

Additive 0.971 1.00 (0.84–1.20) 0.971 1.00 (0.83–1.20) 0.998

Dominant 175 (34.65) 382 (35.70) 0.685 0.96 (0.77–1.19) 0.686 0.95 (0.76–1.19) 0.661

Recessive 476 (94.26) 1021 (95.42) 0.321 1.27 (0.79–2.04) 0.322 1.26 (0.79–2.03) 0.331

rs7973450 A>G (HWE=0.080)

AA 422 (83.56) 881 (82.34) 1.00 1.00

AG 75 (14.85) 185 (17.29) 0.88 (0.66–1.16) 0.359 0.87 (0.66–1.16) 0.336

GG 8 (1.58) 4 (0.37) 4.32 (1.30–14.40) 0.017 4.26 (1.28–14.19) 0.018

Additive 0.994 1.00 (0.77–1.30) 0.994 1.00 (0.77–1.30) 0.983

Dominant 83 (16.44) 189 (17.66) 0.547 0.92 (0.69–1.22) 0.547 0.92 (0.69–1.22) 0.540

Recessive 497 (98.42) 1066 (99.63) 0.010 4.29 (1.29–14.31) 0.018 4.27 (1.28–14.24) 0.018

rs7312175 G>A (HWE=0.130)

GG 395 (78.22) 851 (79.53) 1.00 1.00

GA 102 (20.20) 201 (18.79) 1.12 (0.87–1.44) 0.393 1.11 (0.86–1.43) 0.431

AA 8 (1.58) 18 (1.68) 0.98 (0.42–2.26) 0.960 0.96 (0.41–2.22) 0.921

Additive 0.621 1.06 (0.84–1.33) 0.621 1.06 (0.84–1.33) 0.639

Dominant 110 (21.78) 219 (20.47) 0.549 1.08 (0.84–1.40) 0.549 1.08 (0.83–1.40) 0.564

Recessive 497 (98.42) 1052 (98.32) 0.887 0.94 (0.41–2.18) 0.888 0.93 (0.40–2.16) 0.871

Combined effect of risk genotypesc

0 385 (76.24) 841 (78.60) 1.00 1.00

1–2 120 (23.76) 229 (21.40) 0.293 1.15 (0.89–1.47) 0.293 1.14 (0.89–1.47) 0.303

Notes: The results were in bold, if the 95% CI excluded 1 or P-values less than 0.05. aχ2 test for genotype distributions between neuroblastoma patients and cancer-free

controls. bAdjusted for age and gender. cRisk genotypes were rs12587 TT, rs7973450 GG and rs7312175 GA/AA.

Abbreviations: OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium.
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persistent inflammatory responses.43 Point mutations in

KARS coding regions (such as codon 12, 13) constitutively

activated K-Ras protein by increasing GDP/GTP exchange

rate or decreasing the GTPase activity.44 It continuously

activating the relevant pathways and providing a favorable

tumor microenvironment for tumor cell growth, survival,

invasion, and spread. Instead of altering amino acids or

structures, SNPs in KRAS regulatory sequences tended to

change KRAS expression. Most of them were highly con-

served in evolution. This portended that they would play

an indispensable regulating effect on different gene

expression processes.45,46 A study involving 77 samples

have reported that NARS point mutations were found in 3

samples and no point mutations were found in HRAS and

KRAS.32 Recently, KRAS pGly13Asp and missense muta-

tion were observed in some cases of primary and relapse

neuroblastomas.30,31

In this study, we draw a conclusion that rs7973450 A>G

significantly increased neuroblastoma risk. Unfortunately,

we failed to find rs12587 G>T and rs7312175 G>A mod-

ified neuroblastoma susceptibility. Interestingly, in our pre-

vious study, rs12587 G>T was associated with increased

nephroblastoma risk, but rs7973450 A>G and rs7312175

G>A did not modify nephroblastoma susceptibility.36

Beside, Dai et al did not observe any association between

rs12587 G>T and colorectal cancer,47 but Wang et al pre-

sented that rs7312175 G>A was associated with the recur-

rence and local dose combination therapy of endometrial

cancer.48

The rs7973450 was predicted to serve as an important

microRNA binding site. Its polymorphism would induce

neuroblastoma by abnormally regulating the expression of

KRAS and related microRNA.49 Moreover, whether the

rs12587 and rs7312175 polymorphisms would be the risk

factors for neuroblastoma need further validate.

Take Let-7 complementary sites 6 (LCS6) for example.

Chin et al found that KRAS rs61764370 T>G increased non-

small cell lung cancer risk.27 Further, a double luciferase

reporting experiment revealed that rs61764370 T>G wea-

kened the inhibitory effect of KRAS 3ʹ UTR by destroying

its affinity with Let-7 microRNAs, which resulted in

increased K-Ras portent and decreased Let-7 microRNAs.

Smits et al indicated that the LCS6 variant seemed to be a

primary protective factor for early-stage colorectal cancer

susceptibility and prognosis, but it did not associate with

advanced colorectal cancer.50 In metastatic colorectal can-

cer, although American patients treated with cetuximab had

a better response rate and prognosis when carried G allele,51

an opposite result was observed in the Italians.52 In recently,

G allele carriers were shown to increase the risk of chronic

myeloid leukemia53 and triple-negative breast cancer.29

However, whether the LCS6 polymorphism was related to

ovarian cancer was uncertain.28,54

Based on the appeal examples, there are several reasons

why rs7973450 A>G and rs7312175 G>A could not sig-

nificantly affect neuroblastoma susceptibility in this

research. First, the same polymorphism may play different

roles in different tumor types, ethnicities and clinical char-

acteristics. Second, one SNP alone was not strong enough to

cause tumor, the combination of multiple SNPs might play a

significant role in carcinogenesis.55 Tonini et al summarized

the neuroblastoma susceptibility alleles reported lately, and

found that most of neuroblastoma-associated SNPs are

located in the genes that were involved in maintaining the

chromatin and mitosis integrity. They speculated that the

cumulative effect of SNPs could lead to chromosome

instability and structural damages during the early embryo-

nic life.56 Moreover, environmental exposure and parents’

poor living habits might be confusing factors in the associa-

tion analyze. Finally, the varying incidence rate of the same

polymorphism locus in different populations would change

the requirement of sample size to detect the real

associattion.27 It suggests that we should expand sample

size, combine other SNPs and control confounders to

explore the association between KRAS polymorphisms and

tumors in multiple ethnicities. As a case-control study

basing hospital, this study inevitably had hospitalization

bias.

Conclusion
In conclusion, with a four-center case-control study in

Chinese children, we found the association between neu-

roblastoma susceptibility and KRAS polymorphisms. Our

study suggested that KRAS rs7973450 A>G significantly

increased neuroblastoma risk. The results needed further

investigation.
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