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Abstract: Ovarian cancer (OC) has been the most fatal gynecological disease that threatens

women’s health. Surgery and platinum-based chemotherapy are the basic ovarian cancer

treatments that can improve survival, but the five-year survival rate has not improved because

of delayed diagnosis, drug resistance, and recurrence. Novel treatments are needed to improve

the prognosis and survival rate of ovarian cancer patients. In recent years, adoptive cell therapy

(ACT) has received increasing attention as an emerging therapeutic strategy in the treatment of

solid tumors including OC. ACT has shown promising results in many preclinical and clinical

trials of OC. The application of ACT depends on different effector cells, such as lymphokine-

activated killer (LAK) cells, tumor-infiltrating lymphocytes (TILs), and genetically modified T

cells. In this review, we focus on adoptive immunotherapies in ovarian cancer and summarize

completed and ongoing preclinical/clinical trials. The future development directions and

obstacles for ACT in OC treatment are discussed.

Keywords: ovarian cancer, adoptive cell therapy, cancer immunotherapy, immune cells

Introduction
Ovarian cancer (OC) is the primary gynecological causes of death in women.Worldwide,

there are about 230, 000 cases of OC each year, withmore than 150, 000 deaths.1 Surgery

and chemotherapy are currently the main treatments for OC. Cytoreductive surgery is

used to remove all visible tumor masses. However, most patients are diagnosed in the

advanced stage of the tumor and need to receive postoperative adjuvant chemotherapy. In

addition, patients with extensive tumor metastasis will receive neoadjuvant chemother-

apy to shrink the tumor and destroy metastatic cells, so as to facilitate subsequent surgery

and other treatments.2–4 Although radical surgery and adjuvant chemotherapy are per-

formed to remove macroscopic tumors and improve outcomes, most patients with

ovarian cancer will have recurrence and tumor resistance, which is usually fatal5 and

widely studied anti-vascular endothelial growth factor (VEGF) therapy is also difficult to

reverse this situation6 [Table 1]. Thus, there is a great need for more effective OC

therapies to improve the long-term clinical prognosis.

With the improved understanding of the relationship between the immune

system and tumor development, immunotherapy is becoming a promising treatment

for lung cancer,15 melanoma,16 liver cancer,17 and breast cancer.18 In recent years,

increasing evidence has shown that immunotherapy is also a promising treatment in

ovarian cancer since ovarian cancer is an immunogenic tumor that can be recog-

nized and attacked by immune system.19–21 Recent immune therapies mainly

include immune checkpoint inhibitors, cancer vaccine, and adoptive cell therapy
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(ACT).22–24 Among them, ACT has attracted increasing

attention because a large number of specific effector cells

against tumor cells results in a quick therapeutic effect and

minimizes impact on the internal environment than other

therapies.

ACT relies on intravenous infusion of autologous

immune cells after stimulation/modification and expansion

in vitro to improve autologous antitumor response in

tumor patients [Figure 1]. In 1965, Mathé et al confirmed

that adoptive immunotherapy had an obvious effect on

acute leukemia in a murine experiment and clinical trial.25

Research on ACT for the treatment of hematological

malignancies is constantly evolving and developing.26,27

In 2002, a clinical trial showed that adoptive cell immu-

notherapy was effective for solid tumors (metastatic

melanoma)28 and ongoing clinical trials have confirmed

this.29,30 Since OC was not originally considered to be an

immunogenic tumor, adoptive immunotherapy for OC did

not initially receive much attention. However, in 2003, OC

was shown to be an immunogenic tumor that may be treat

by immunotherapy.19,31 Adoptive immunotherapy is based

on different cell types [Figure 2]: MHC-independent cells

(e.g., lymphokine-activated killer (LAK) cells, natural

killer (NK) cells, and cytokine-induced killer (CIK) cells)

or MHC-dependent cells (tumor-infiltrating lymphocytes

(TILs)). There are also two special and rapidly developing

cell types: chimeric antigen receptor (CAR) T cells and T

cell receptor (TCR) T cells.32 In this review, we discuss the

application of adoptive immunotherapy of LAK cells, NK

cells, CIK cells, TILs, CAR-T cells, and TCR-T cells in

OC and outline the disadvantages and future development

directions of ACT in OC treatment.

Major Histocompatibility Complex
(MHC)-Independent Adoptive
Immunotherapy
LAK Cells
LAK cells are induced by NK cells or T cells through

adding high-dose IL-2 and other cytokines when cultured

in vitro, rather than an independent lymphoid or

subgroup.33 LAK cells can kill NK-instant tumor cells

and have achieved certain therapeutic effects in cancer

treatment. In 1985, Rosenberg et al suggested that LAK

cells and IL-2 adoptive immunotherapy have therapeutic

effects on metastatic tumors for which many traditional

treatments are ineffective. Although the number of clinical

patients in this study was limited, the same authors had

Table 1 Comparison Of Clinical Effects Of Four Ovarian Cancer Treatment Methods

Therapy Clinical Efficacy Comparison Reference

Surgery 1. Surgical treatment and chemotherapy are usually used in combination in clinical practice, not alone.

2. Primary surgery combined with postoperative platinum-taxane chemotherapy has been the standard therapy

for advanced ovarian cancer.

The progression-free and overall survival of complete resection (ideally with no macroscopic residual disease) are

improved compared with so-called optimal and suboptimal debulking resection.

7

Chemotherapy 1. Chemotherapy is a milestone in the treatment of ovarian cancer because it improves the outcome in women

with ovarian cancer. It can help to achieve no residual tumor (R0) after primary debulking surgery (PDS), or to

treat patients by neoadjuvant chemotherapy (NACT).

2. The clinical efficacy of chemotherapy depends on various factors such as dose, choice of platinum and/or

taxane, schedule, mode of administration (intravenous [IV], intraperitoneal [IP]) and so on.

3. However, some patients will have chemotherapy resistance, and many patients who are cured by chemotherapy

will relapse.

8

Anti-VEGF

treatment

1. Bevacizumab is the most widely studied anti-angiogenesis agent in ovarian cancer.

2. Two large phase III trials shown that chemotherapy with the addition of bevacizumab significantly improved the

progression free survival (PFS) of patients.

3. However, there is also evidence that bevacizumab has toxicity and side effects such as gastrointestinal (GI)

perforation, surgery and wound-healing complications, and hemorrhage.

4. Only a subset of patients will benefit from anti-angiogenic agents

9–11

Immunotherapy Tumor immunotherapy, such as anti-PD-L1/PD-1 therapies and adoptive therapy, have subsequently

demonstrated significant anti-tumor effects. Although immunotherapy is still in its infancy in the clinical treatment

of ovarian cancer, many promising preclinical experiments indicate its potential.

12–14
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also shown promising therapeutic effects in their previous

in vivo experiments in mice;34 however, they also men-

tioned that high-dose IL-2 promotes the secretion of toxic

cytokines by helper T cells, which is harmful to patients.

Grimm et al also described this problem.35 Although LAK

cell adoptive immunotherapy has a very broad-spectrum

anti-tumor effect, the safe application of high-dose IL-2 is

still problematic.

NK Cells
NK cells are part of the innate immune response and are key

effectors in cancer immunosurveillance.36 They can defend

against cancer development and metastasis without restrict-

ing the expression of MHC molecules.37–39 NK cells repre-

sent about 5–15% of human circulating lymphocytes and

comprise CD56hiCD16− NK cells and CD56loCD16+ NK

cells.40 CD56hiCD16−NK cells with high cytotoxic potential

can produce plenty of cytokines, while CD56loCD16+ NK

cells are highly cytotoxic and mediate antibody-dependent

cellular cytotoxicity (ADCC) responses.36 NK cells can

effectively treat tumors such as leukemia,41 but the therapeu-

tic effect of NK cell adoptive immunotherapy in OC is still

being explored. The promise of NK cell adoptive immu-

notherapy for OC was recognized in 2007, and it was

shown that resting NK cells rely on DNAM-1 signaling

with complementary contributions of NKG2D and NCR

receptors to recognize and kill freshly isolated OC cells

in vitro.42 In 2006, a new mouse model was established

that will be helpful for further exploration of NK cell adop-

tive immunotherapy for OC.43

CIK Cells
CIK cells were first discovered in 1991 by Schmidt-Wolf

et al.44 They were heterogeneous CD8+ T cells produced

by human peripheral blood lymphocytes (PBLs) and

induced by addition anti-CD3 antibody, interferon-γ

(IFN-γ), and interleukin-2 (IL-2) ex vivo.44 CIK cells can

be characterized by the presence of CD3+ CD56+ pheno-

type, which is mainly responsible for the antitumor activ-

ity of CIK cells and CD3+ CD56− phenotype, which is

more similar to conventional T lymphocytes.45

Several studies have confirmed the feasibility, effectivity,

and safety of CIKs for the treatment of malignant tumors.46,47

Leemhuis et al confirmed the effectiveness of CIK cells in the

treatment of malignant tumors, and then conducted a clinical

phase I trial of CIK cell therapy in patients with hematologic

malignancies.46 Clinical phase I trials of patients with hema-

tologic malignancies by Introna et al also demonstrated that it

was feasible and well tolerated to produce allogeneic CIK

cells under clinical conditions.47 Another study analyzed the

efficacy of CIK cells in the treatment of OC.48 In a phase II

study, Liu et al49 tested the effectivity of CIK cell therapy

following first-line treatment in advanced OC. Further

experiments are required to determine whether CIK cell

maintenance immunotherapy can help improve overall sur-

vival, but CIK cell therapy does improve progression-free

survival in patients with advanced OC after first-line treat-

ment with slight toxicity. A retrospective analysis by Zhou et

al further validated the effectiveness of CIK cell therapy as a

therapeutic approach to prolonging the survival of OC

patients.49 A clinical phase II trial to determine whether

radiofrequency ablation (RFA) and cytokine-induced killer

Figure 1 Adoptive cell immunotherapy (ACT) approaches: After obtaining immune

cells from the patient, leukapheresis is performed. Immune cells are activated after

stimulation or genetical modification. Effective immune cells are expanded and then

refused to the patient.

Figure 2 Effector cells for adoptive cell immunotherapy.

Abbreviations: MHC, major histocompatibility complex; NK, natural killer; LAK,

lymphokine-activated killer; CIK, cytokine-induced killer; CAR, chimeric-antigen

receptors; TCR, T cell receptors; TIL, tumor-infiltrating lymphocytes.

Dovepress Yang et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
7977

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


cell (CIK) infusion can prolong survival in patients with OC

is also underway (NCT02487693).

MHC-Dependent Adoptive
Immunotherapy
TILs
TILs are endogenous autologous T cells isolated from

tumor tissues with certain tumor specificity and MHC

restriction. Adoptive immunotherapy with TILs has a

response rate of about 50% in melanoma patients.30,50 In

1991, Aoki et al showed that TIL cell adoptive therapy had

a promising future in OC, although the experiment lacks

randomness.51 Subsequently, Fujita et al52 found that TILs

adoptive immunotherapy after chemotherapy was helpful

for the prognosis of patients with OC; patients who

received TILs had a 3-year survival rate of 100%, com-

pared with 67.5% for patients who did not receive TILs.52

In recent years, with a deep understanding of OC and

cellular immunotherapy, the application of TILs in OC

has been further developed. Westergaard et al53 obtained

34 tumor specimens from 33 OC patients and analyzed the

phenotype, antigen specificity, and function of TILs. It was

found that TILs obtained from OC can be effectively

expanded and exert anti-tumor effect in vitro, which sup-

ported the hypothesis that OC patients could benefit from

ACT of TILs, and the relevant Phase I clinical trial ended

in 2017.53,54 Owens et al55 recently discovered an effective

method for isolating and expanding TILs from OC.

Surprisingly, the expanded TILs retain the ability to recog-

nize autologous tumor cells in vitro.55 Although numerous

studies have indicated the promise of TILs adoptive immu-

notherapy for OC, problems remain that limit its develop-

ment. For example, the anti-tumor effect of TILs is limited

by the fact that unselected TILs in OC usually contain only

a small number of tumor-reactive T cells. In addition, the

greater financial support required for isolation and expan-

sion of tumor-specific TILs and reperfusion into patient

limits their clinical application.

CAR-T Cells And TCR-T Cells
Although TIL cell adoptive immunotherapy is a promising

treatment for OC, the method of isolating and manufactur-

ing TILs is labor intensive and successful in only a subset

of patients, which limits its therapeutic effect and clinical

application.56,57 In order to improve the therapeutic poten-

tial, genetically modified peripheral blood lymphocytes

that exhibit tumor antigen specificity have received more

and more attention. Genetically modified T cells can

express a chimeric antigen receptor (CAR) or a tumor-

antigen specific T-cell receptor (TCR).

CAR-T Cell Therapy
CAR-T cells are T lymphocytes that have been genetically

modified to express an engineered T cell receptor that is

able to recognize tumor-specific antigens MHC unrestrict-

edly and activate the immune response.

The CAR comprises four main parts: the extracellular

antigen-binding domain, the spacer domain (hinge

domain), the transmembrane domain, and the intracellular

T cell activation/signaling domain. The extracellular anti-

gen-binding domain, also known as the ectodomain, is

derived from the light and heavy chains of the antibody

and is a single-chain variable fragment (scFv) that can

recognize tumor-specific antigens on cell surface in an

MHC-unrestricted manner.58–60 The CAR-T cell structure

design has been constantly updated, through four genera-

tions, producing CAR-T cells that survive longer in vivo

and have stronger killing ability [Figure 3]. The first gen-

eration of CAR-T cells only contained the extracellular

scFv antigen recognition region and the intracellular

CD3ζ chain signal region. To improve the proliferation

and persistence of CAR-T cells, the costimulatory mole-

cules such as CD28 and OX-40/4-1BB (CD134/CD137)

were added in the second and third generation. The fourth

generation is characterized by releasing cytokines like IL-

12 and IL-15, which enhance immune response.61,62

The most exciting results with CAR-T cell therapy

have been achieved in hematological tumors. In a phase I

clinical trial conducted by Park et al,63 53 patients with

relapsed B-cell acute lymphoblastic leukemia (ALL)

received an infusion of autologous T cells expressing the

19-28z CAR. Long-term follow-up of outcomes and safety

indicated that 19-28z CAR-T cells have potent anti-tumor

capability with many patients achieving long-term relief

and possibly cure.63 Currently, anti-CD19 CAR-T cells are

approved by the FDA for the treatment of diffuse large B-

cell lymphoma. Brudno et al’s study of CAR-BCMA (B-

cell maturation antigen) T cells in the treatment of multiple

myeloma also confirmed the enormous potential of CAR-T

cells in hematological tumor treatment.64 Research on

CAR-T cell therapy continues to extend to solid tumors

including OC.

The main targets for CAR-T cells in OC include MUC16,

mesothelin and folate receptor-α. Pre-clinical studies of CAR-
Tcell therapy targetingMUC16 in murine models have shown
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promising results suggesting that this approach may be effec-

tive for the treatment of OC, and a parallel clinical trial is

ongoing.65 MUC16 plays an important role in the progression

and metastasis of OC and has become a key target for OC

treatment.66 Mesothelin is an antigen target that is overex-

pressed in OC.67 The expression of mesothelin is associated

with the prognosis of OC; hence, mesothelin is both a ther-

apeutic target for OC and a prognostic marker.68 The results of

preliminary trials are promising, and more clinical trials on

CAR-T cell therapy targeting mesothelin are still ongoing,

such as NCT03692637 and NCT03814447. Folate receptor-α

(FRα) is a glycosylphosphatidylinositol-anchored protein that

expressed on the surface of normal ovarian cells. FRα is also

overexpressed on the surface of malignant epithelial cancer

cells, making it a potential target for the treatment of OC.69–71

The safety and efficacy of CAR-T cell therapy targeting FRα

are supported by preclinical studies and phase I clinical

trials.72,73 Another clinical trial (NCT03585764) is also under-

way. Other antigens such as HER2 and CD133 have also been

tested in preclinical animal models for OC therapy

(NCT01935843, NCT02541370).

Although CAR-T cell therapy has shown great poten-

tial in the treatment of OC, it still faces many problems

that remain to be solved. The CAR target antigen is also

expressed in some normal tissue, resulting in immune-

mediated rejection that is known as an “on-target, off-

tumor” response. This rejection can even cause damage

to vital organs such as the liver and lungs.74,75 Also, the

potentially immunosuppressive environment in OC,

including the highly immunosuppressive ascites, will pre-

vent T cells from effectively infiltrating into tumor cells

and dysfunctional T cells. CAR-T cell adoptive immu-

notherapy also has some common problems of ACT treat-

ment, such as cytokine release syndrome and a more

effective T cell transport pathway. In conclusion, there

are both hopes and challenges in the treatment of OC by

CAR. Further research is necessary to improve the safety

and efficacy of CAR-T cell therapy in OC.

TCR-T Cell Therapy
TCRs are characteristic markers on the surface of T cells

that recognize specific antigens.76,77 TCR-T cells are T

cells that express a genetically engineered TCR alpha

and beta chain pair that can recognize tumor-specific anti-

gens. TCR-T cell treatment has been successful in patients

with malignant cancer such as colorectal carcinoma,78

metastatic melanoma,79 and multiple myeloma.80,81

Genetically modified TCR-T cells are also considered as

a potentially promising treatment for OC patients. In OC,

the TCR target antigens include MAGE-A4, WT1, and

NY-ESO-1, with NY-ESO-1 being widely studied.

New York esophageal squamous cell carcinoma-1 (NY-

ESO-1) is an 18 kDa protein that can be detected in normal

testis, fetal ovary, and placenta.82,83 However, NY-ESO-1

Figure 3 Four generation of CARs: The first generation contains a single-chain fragment of variable region (scFv) and CD3ζ signaling domain. Costimulatory molecules such

as CD28 are added in the second generation. Third-generation CARs include more signaling domains. The fourth generation are characterized by addition of cytokine

transgenes like IL-12 and IL-15.
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antibodies can also be detected in the serum of ovarian

cancer, lung cancer, breast cancer, bladder cancer, esopha-

geal cancer, as well as melanoma patients.82,83 Odunsi et al84

detected the expression of NY-ESO-1 by reverse transcrip-

tion PCR (RT-PCR) and immunohistochemistry (IHC) in OC

tissues and cell lines, confirming its expression and persis-

tence in OC. Thus, NY-ESO-1 is an attractive target for

antigen-specific adoptive immunotherapy in OC.84 Several

phase I/II clinical trials with TCR-T cells are currently

ongoing in OC patients (NCT01567891, NCT03691376,

NCT02457650, NCT02869217, NCT03159585). Like other

types of ACT, there are barriers to the application of TCR-T

cells to ACT. Tumor antigen-specific T cells of autoantigens

isolated from cancer patients usually have low affinity due to

central tolerance.85 As observed with CAR-T cells, the “on-

target, off-tumor” response occurs when TCR-T cells are

infused, due to the expression of the same antigen on normal

tissue, and the infused TCR-T cells also induce the occur-

rence of cytokine release syndrome (CRS).

Although both TCR-T cells and CAR-T cells are

genetically modified, they have several differences. Since

TCRs can recognize epitopes from both intracellular and

cell surface antigens of tumor cells via TAA/MHC com-

plex, tumor-specific TCRs can only be used in patients

with the specific MHC or HLA allele. In contrast, CAR

recognition does not rely on peptide processing or MHC

molecules; hence, CARs can only recognize tumor surface

antigens; however, all surface target molecules may

become potential CAR trigger epitopes.60

Obstacles For ACT In OC
Immunosuppressive Tumor

Microenvironment
Immune suppression in tumor microenvironment (TME) is

mediated by three main factors:86 1) immunosuppressive

cells in the TME; 2) cytokines and enzymes released from

the tumor or myeloid cells; and 3) barriers. An immuno-

suppressive TME seriously affects the therapeutic effect of

ACT on tumors, especially in OC,87 which can build a

highly suppressive environment in the peritoneal cavity.

T-regulatory cells (Tregs) and myeloid-derived sup-

pressor cells (MDSCs) are both important immunosup-

pressive cells in the OC TME.88,89 Tregs can induce

immunosuppressive cytokines such as IL-10 and TGF-β
to suppress the function of tumor-infiltrating cytotoxic T

cells in the OC environment.90,91 MDSCs express high

levels of substances such as arginase, inducible nitric

oxide synthase (iNOS), and reactive oxygen species

(ROS) to inhibit T-cell function.92,93 In order to reduce

immunosuppression in TME, non-myeloablative che-

motherapy can be used to decrease the number of Tregs

and suppressive cellular cytokines.94 This can also be

achieved by combinations of ACT with immune check-

point inhibitors and targeted therapies.95

Some cytokines and enzymes released from the tumor or

myeloid cells also can suppress the immune response. High

expression of vascular endothelial growth factor (VEGF),

which is expressed in most OC,96,97 can recruit MDSCs to

the tumor site and inhibited tumor immunity in ovarian

carcinoma.98 In tumor cells, the high expression of TGF-β
will inhibit the function of human memory CD8+ T cells

and tumor-infiltrating lymphocytes.99 Indoleamine 2,3-diox-

ygenase (IDO) is an enzyme that catalyzes the degradation

of tryptophan, which in turn inhibits T cell proliferation. In

addition, IDO can directly inhibit T cells and enhance local

Treg-mediated immunosuppression.100 To solve the immu-

nosuppression caused by these cytokines and enzymes, we

can combine antagonists and blocking antibodies for differ-

ent targets with ACT treatment.

Tumor vasculature and tumor stroma are both common

barriers that prevent homing of effector T cells.101,102

Leung et al suggested that cancer-associated fibroblasts

(CAFs) can upregulate the lipoma-preferred partner

(LPP) and this was correlated with survival and chemore-

sistance in patients with OC.102 They demonstrate the

importance of CAF–endothelial cell crosstalk signaling in

cancer treatment and the strategy of using LPP targeting

siRNA in combination with cytotoxic drugs to improve

treatment efficacy. Antiangiogenic agents are also being

used to normalize the tumor vasculature and reduce the

tumor metastasis in OC.6 A recent study showed that

losartan has the effect of reducing collagen content as

well as improving perfusion and relieving tumor hypoxia,

and this is helpful to enhance chemotherapeutic efficacy in

OC models.103

Cytokine Release Syndrome (CRS)
CRS is a potentially life-threatening acute inflammation

that occurs after ACT infusion in hematologic and solid

tumor patients.104–106 The typical clinical manifestations

of CRS include constitutional symptoms like fever,

malaise, anorexia, and myalgias,107,108 and organic

damage like cardiac dysfunction, respiratory distress syn-

drome, and renal/hepatic/neurologic toxicity.107 CRS is

caused by a massive cytokine release by the infused T
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cells or other immune cells that are activated as they

recognize tumor antigens. IL-6 is a crucial mediator in

CRS and is therefore an important target for the treatment

of CRS.109 An antagonist of IL-6 receptor, tocilizumab,

can alleviate the toxicity of CRS without affecting the

therapeutic effect of ACT.109,110

On-Target, Off-Tumor Toxicity
“Tumor-specific” antigens are also commonly expressed in

normal tissues, which results in an on-target, off-tumor

immune response after stimulation of T cells in ACT. If

these antigens are expressed in vital organs, such as heart,

liver, and kidney, they will cause fatal damage.74,75 The

fundamental solution to this problem is to select tumor-

specific antigens that are not expressed in normal tissues,

but this is difficult. To overcome this, Kloss et al proposed

a method where T cells are transduced with both a CAR,

offering suboptimal activation upon binding of one anti-

gen, and a chimeric costimulatory receptor (CCR) that

recognizes a second antigen.111 This technology has

made progress in OC. Lanitis et al generated trans-signal-

ing T cells with two distinct CARs: anti-Meso scFv-CD3ζ
and anti-FRα scFv-CD28.112 Both FRα and mesothelin

show high expression in OC tissue, compared to much

lower expression in normal tissues. The trans-signaling

CAR strategy can more accurately identify tumor cells

and diminish damage to normal tissues.

Future Perspective
Many clinical trials of ACT for ovarian cancer are ongoing

[Table 2]. However, owing to the complexity of the OC

tumor microenvironment and the human immune system,

there are still many problems to be solved in the ACT

treatment of OC. For example, how to reduce costs while

ensuring efficient production of effector cells; and how

infused T cells could home in on the tumor site and

infiltrate it more accurately. Furthermore, many of the

current clinical and preclinical experiments lack random-

ness, and more randomized trials are needed to confirm

that ACT can improve overall survival (OS) or progres-

sion-free survival (PFS) in patients with ovarian cancer.

Nonetheless, in preclinical and clinical trials, the effi-

cacy of ACT in OC is promising. Therefore, ACT still

shows potential to become the new effective therapy for

OC if we can address the abovementioned obstacles to

reduce toxicity and improve the efficiency of ACT. The

immune response inhibition caused by the tumor micro-

environment can be reduced by combining the application

of immunological checkpoint inhibitors or anti-angiogen-

esis agents, enabling improved effector cell function. In

addition, new technology is evolving that utilizes two

different CARs on T cells, enabling effector cells to

more accurately identify tumor cells and improving their

antitumor efficacy. Cell metabolism plays an important

role in the anti-tumor effect of immune cells.

Increasingly, studies have shown that the regulation of

immune cell metabolism can affect the immune

response;116–118 therefore, regulation of the effector cell

metabolism process may be another approach to improve

the anti-tumor effect and efficacy of ACT. Further refine-

ment of technologies will hopefully generate more suc-

cessful treatment methods for ovarian cancer.
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