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Purpose: The nucleocytoplasmic transport of macromolecules is critical for both cell

physiology and pathophysiology. Exportin 1 (XPO1), the major nuclear export receptor, is

involved in the cellular adaptation to reduced oxygen availability by controlling the nuclear

activity of the hypoxia-inducible factors (HIFs). Recently, a specific inhibitor of XPO1,

selinexor (KPT-330), has been identified that inhibits nuclear export of cargo proteins by

binding to the XPO1 cargo-binding pocket.

Patients and methods: We used different cancer cell lines from human tissues and

evaluated the physiological activity of selinexor on the hypoxia response pathway in two-

dimensional (2D) monolayer cell cultures in quantitative real-time (qRT)-PCR experiments

and luciferase reporter gene assays. A three-dimensional (3D) tumor spheroid culture model

of MCF-7 breast cancer cells was established to analyze the effect of selinexor on 3D tumor

spheroid structure, formation and viability.

Results: Selinexor treatment reduces HIF-transcriptional activity and expression of the HIF-

1 target gene solute carrier family 2 member 1 (SLC2A1). Moreover, 3D tumor spheroid

structure, formation and viability are inhibited in response to selinexor-induced nuclear

export inhibition.

Conclusion: Here, we demonstrate the effect of specific XPO1-inhibition on the hypoxic

response on the molecular level in 2D and 3D culture models of MCF-7 cells.
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Introduction
In eukaryotic cells, nuclear-cytoplasmic shuttling of proteins is a key step in the

regulation of intracellular signaling and the adaptation of cell homeostasis to the

environment. Proteins are translated in the cytoplasm, but many proteins, especially

transcription factors, need to be localized to the nucleus to exert their specific function.1

The nuclear envelope separates the nucleus and the cytoplasm and defines two specia-

lized compartments. Nuclear pore complexes (NPCs) enable passive passage of pro-

teins with a molecular mass up to a size of ~40 kDa, whereas the nuclear-cytoplasmic

transport of larger macromolecules is energy-dependent and requires nuclear transport

receptors called karyopherins or importins/exportins.2 Importins recognize their cargo

proteins in the cytoplasm via nuclear localization signals (NLS) and mediate nuclear

import through the NPC. Inside the nuclear compartment, disassembly of the import

complex is achieved by binding of RanGTP.3 In contrast, exportins bind their cargo

proteins in the nucleus via nuclear export signals (NES) together with RanGTP. In the
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cytoplasm, the trimeric export complex disassembles upon

GTP hydrolysis of RanGTP.4 The main mediator of nuclear

export is Exportin 1 (XPO1).5 XPO1 binds a short leucine-

rich or hydrophobic nuclear export signal of the cargo protein

and directly interacts with nucleoporins in the NPC.6

In recent years, XPO1 turned out to be responsible for

the nuclear export of more than 200 cargo proteins includ-

ing many of the major (proto-) oncoproteins and tumor

suppressors such as BRCA1,7 p53,8 cyclin D19 and the

FoxO subfamily of Forkhead transcription factors.10

Deregulation of nuclear export processes causes misloca-

lization, inactivation or aberrant activation of cancer-

related proteins and has been implicated in uncontrolled

cancer cell growth and radio- and drug resistance.11,12 For

example, inactivation of p53 during tumor development is

caused by cytoplasmic accumulation of p53 and depends

on MDM2-mediated ubiquitination efficient nuclear export

of nuclear p53.13 Moreover, in esophageal cancer samples,

several mutations were identified that disrupt phosphoryla-

tion-dependent nuclear export of cyclin D1 suggesting that

nuclear accumulation of cyclin D1 contributes to the gen-

esis and progression of neoplastic growth.14 The promis-

ing potential of XPO1 as a valid target for therapeutic

intervention is further underlined by the fact that XPO1

protein expression is increased in various solid tumors

such as ovarian,15 osteosarcoma,16 pancreatic,17 cervical18

and gastric19 cancers and hematological malignancies.20,21

In addition, poor clinical outcome, increased metastasis,

increased tumor size and decreased progression-free and

overall survival is associated with XPO1 overexpression.

Although XPO1 inhibition affects all XPO1 cargo pro-

teins bearing an NES, malignant cells are more affected by

nuclear export inhibition. Tumor cells have to adapt to their

surrounding microenvironment which may result in a

higher dependence on nuclear-cytoplasmic transport.22

This makes nuclear transport receptors promising targets

for therapeutic intervention for several disease states and

especially in cancer.

Previously, the anti-fungal antibiotic leptomycin B (LMB)

has been reported to be a potent compound for the inhibition of

XPO1-dependent nuclear export.23 However, LMB showed

systemic toxicity in both animals and humans in phase I

clinical studies resulting in discontinuation of clinical

development.24 More recently, novel, orally bioavailable,

small-molecule selective inhibitor of nuclear export (SINE)

compounds such as selinexor have been described. These

compounds form covalent bonds with cysteine-528 of the

XPO1 cargo-binding pocket, thereby inhibiting interaction

between XPO1 and its cargo proteins.25 Selinexor is currently

under evaluation in phase II and III clinical trials. Thereby,

promising antitumor activity in both solid and hematological

cancer types was demonstrated.26–28 In July 2019, the U.S.

Food and Drug Administration (FDA) has approved selinexor

(XPOVIOTM) in combination with dexamethasone for the

treatment of adult patients with relapsed or refractory multiple

myeloma (NCT02336815).

Hypoxia is a characteristic feature of solid tumors evol-

ving due to an imbalance between oxygen availability and

consumption. Cancer cells induce metabolic changes and

develop a metabolic flexibility to survive and proliferate in

low oxygen tension conditions. The transcription factor

hypoxia-inducible factor (HIF) is a master regulator in the

adaptation to hypoxia and the regulation of cancer cell

metabolism since HIF specific target genes are involved in

the activation of numerous cellular processes including cell

survival, glycolytic energy metabolism, erythropoiesis, vas-

cular remodeling and angiogenesis.29 Accordingly, a strong

correlation between the nuclear accumulation of HIF and

malignant cancer phenotype, poor patient prognosis and

tumor resistance has been described.30,31 Since the activity

of HIF depends on its correct spatial arrangement, intracel-

lular localization of HIF plays a major role for the broad

metabolic reprogramming of cancer cells and involves

nuclear export by XPO1.32,33

The heterodimeric transcription factor HIF consists of

one of the three different oxygen-labile α-subunits (primar-

ily HIF-1α) and a constitutive β-subunit. In contrast, protein
expression of HIF-1α is tightly regulated by oxygen-depen-
dent post-translational modifications.34 In normoxia, HIF-

1α is hydroxylated by one of the three cellular oxygen

sensors prolyl hydroxylase domain (PHD) proteins PHD1,

PHD2 or PHD3 resulting in recognition by von Hippel–

Lindau protein followed by ubiquitination and proteasomal

degradation.35 Under hypoxic conditions, lack of oxygen

inhibits PHD activity and results in HIF-1α stabilization and
subsequent translocation to the nucleus. The knowledge

about the pattern of regulation of HIF was extended by a

recent publication showing that the scaffold protein LIM

Domain-Containing Protein 1 (LIMD1) is also involved in

HIF-1 regulation in normoxia as well as in hypoxia.36

LIMD1 was identified to be a HIF-1 target gene acting via

a so far unknown negative feedback mechanism involving

PHD2-LIMD1-VHL complex formation.

We set out to address the biological and physiological

activity of the XPO1-inhibitor selinexor on the HIF-sig-

naling pathway in 2D monolayer and 3D tumor spheroid
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culture models. Upon selinexor treatment, 2D monolayer-

cultured cells show a decrease in HIF-1α protein expres-

sion, HIF transcriptional activity and HIF-1 target gene

expression in hypoxic conditions. Moreover, we investi-

gated the basic mechanism underlying selinexor-depen-

dent HIF-inhibition in the same model demonstrating that

it does not depend on the HIF-LIMD1 negative feedback

mechanism. Utilizing 3D tumor spheroid culture models,

we determined that selinexor decreases cell viability, 3D

tumor spheroid growth and HIF-1α protein expression in a

model representing in vivo physiological conditions. We

demonstrate the molecular mechanistic effect of the

XPO1-inhibitor selinexor on the HIF-dependent signaling

pathway in 2D and 3D culture models of MCF-7 breast

cancer cells.

Materials And Methods
Cell Culture, DNA Transfection And

Selinexor Treatment
Human cell lines were purchased from the ATCC or the

DSMZ. All cell lines used were regularly tested for con-

taminations by mycoplasma (Mycoplasma Detection Kit,

Southern Biotech, Birmingham, USA). MCF-7 (human

breast adenocarcinoma), Hep3B (hepatocellular carcinoma)

and U2OS (human osteosarcoma) cells were grown in

DMEM (Gibco, Darmstadt, Germany) culture medium.

Ten percent fetal calf serum (Gibco), 100 IU/mL penicillin

and 100 mg/mL streptomycin (PAA Laboratories, Coelbe,

Germany) were added to the culture medium. Cells were

grown in an incubator at 37°C and 5% CO2. For hypoxic

culture conditions, a hypoxia workstation (InvivO2 400,

Baker Ruskinn, I&L Biosystems, Königswinter, Germany)

was used containing 1%O2, 94%N2 and 5%CO2 for 24 hrs.

Normoxic control cells were placed in an incubator (5%

CO2, 21% O2, and 74% N2) for the same period of time.

Semi-confluent cell cultures were transiently transfected

using GeneJuice transfection reagent (Merck, Darmstadt,

Germany) for 24 hrs as described by the manufacturer.

Where indicated, cells were pre-treated with selinexor

(Karyopharm Therapeutics Inc., Newton, MA, USA) dis-

solved in dimethyl-sulfoxide (DMSO) at the concentrations

between 0.01 and 2.0 μm for 1 hr before starting the

experiment. Selinexor was obtained from Karyopharm

Therapeutics. After addition of selinexor, culture medium

was not changed until normoxic or hypoxic incubation

was started. As control, DMSO was added to the culture

medium.

3D Tumor Spheroid Cell Culture On

Polydimethylsiloxane (PDMS)
Dow Corning’s Sylgard 184 silicone elastomer kit (VWR,

Darmstadt, Germany) was used in a 10 to 1 ratio of base to

curing agent (w/w) to cast PDMS in flat-bottom, tissue cul-

ture-treatedmultiwell cell culture plates (Sarstedt, Nümbrecht,

Germany). The PDMS pre-polymer components were manu-

ally mixed with a pipette tip in a 50 mL tube for 30 s. Of the

pre-polymer, 300 μL or 60 µL was pipetted into each well of a

24-well or 96-well plate, respectively. After settling of the pre-

polymer at room temperature (20°C–25°C) for 30 mins, the

plates were cured at 40°C for 4 hrs. The PDMS-cured plates

were used for 3D tumor spheroid cell culture. Monolayer

cultured MCF-7 cells were dislodged from cell culture T75-

flasks (Sarstedt) by 0.05%Trypsin-EDTA (Gibco). Cells were

centrifuged at 1100 rpm for 5 mins and resuspended in

DMEM culture medium. For a single well of a 24-well or

96-well plate cured with PDMS, 50,000 or 10,000 cells were

used, respectively. Culture medium was changed twice, at day

4 and day 8 after seeding. Before used for any of the assays/

treatment conditions, 3D tumor spheroids were allowed to

grow for at least 3 days. 3D tumor spheroids were treated

with selinexor at day 4 or day 8 after seeding. Eleven days

after seeding cell viability and cytotoxic effects were assessed

in 3D tumor spheroids having a size of ~350μm. The size and

morphology of tumor spheroids were analyzed with an

inverted tissue culture microscope (Axiovert 25, Zeiss,

Zaventem, Belgium) with a 10x objective lens. Pictures

were taken using a digital camera and an appropriate photo

adapter (Olympus Camedia C-3040, Olympus, Hamburg,

Germany).

3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide (MTT)

Cytotoxicity Assay
Cytotoxicity of selinexor on MCF-7, Hep3B and U2OS cells

was analyzed using the colorimetric 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma-

Aldrich, München, Germany) assay. Cells were seeded in

96-well plates and treatedwith selinexor in the range of 0.01–

2.0 μM or DMSO. After 24 hrs, cells were incubated with

MTT solution (5 g/l) for 24 hrs and then lysed with DMSO.

The optical density represents the cellular metabolic activity

and was detected with a microplate reader (Thermo Fisher

Scientific, Bonn, Germany) at 570 nm. Four technical repli-

cates were measured.
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Fluorescent Microscopy
U2OS cells were grown in 24-well plates to semi-confluency.

Cells were pre-treated for 1 hr with 1.0 μmselinexor or DMSO

in normoxic conditions (20% O2). Activity of PHD proteins

was inhibited by addition of 1 mM Dimethyloxaloylglycine

(DMOG) for 4 hrs stabilizing HIF-1α. Selinexor/DMSO

treatment was continued during incubation with DMOG.

Afterwards, cells were washed with PBS and fixed

with 250 µL of 3.7% formaldehyde in PBS for 15 mins.

Permeabilization was achieved by treatment with 0.1%

Triton-X 100 and non-specific staining was blocked with

0.2% gelatin from cold water fish skin in PBS overnight.

Cells were incubatedwithmouse anti-HIF-1α antibody diluted
1:100 in 0.2% gelatin from cold water fish skin in PBS over-

night (Cat No 610959, BD Transduction Laboratories,

Heidelberg, Germany). After washing with PBS, cells were

incubated with an Alexa 488-labelled goat anti-mouse second-

ary antibody diluted 1:500 in 0.2% gelatin from coldwater fish

skin in PBS (Cat No A-11017, Thermo Fisher Scientific). For

mounting, cells were treated with ProLong Gold antifade

reagent with DAPI on glass slides (Invitrogen, Darmstadt,

Germany). Samples were allowed to dry for 1 day before

they were observed under an all-in-one Type Fluorescence

Microscope (BZ-8000, Keyence, Osaka, Japan) with a 20x

objective lens using the BZ Analyzer Software (Keyence).

Two technical replicates were analyzed.

RNA Isolation And Quantitative Real-

Time PCR
MCF-7, Hep3B and U2OS cells were grown in 24-well

plates and pre-treated with 0.1 or 1.0 µM selinexor 1 hr

before normoxic (20% O2) or hypoxic (1% O2) incubation.

After 4 hrs of incubation, total RNAwas extracted using the

total RNA Purification Kit (Jena Bioscience, Jena,

Germany) according to the manufacturer’s protocol.

cDNA of total RNA (100–300 ng) was synthesized with

the M-MuLV reverse transcriptase (New England Biolabs,

Frankfurt, Germany) and random hexamer primers

(Thermo Fisher Scientific) following the instructions of

the manufacturer. Quantitative RT-PCR was performed in

the Eco48 qPCR System (PCRmax Limited Beacon Road,

Staffordshire, United Kingdom) with 1 μL cDNA and the

SensiMix SYBR Kit (Bioline, Luckenwalde, Germany) in a

total volume of 12.5 μL. PCR primer sequences can be

provided upon request by the authors. Expression values

were normalized to relative expression of ribosomal protein

L28 (RPL28) and four technical replicates were measured.

Luciferase Reporter Gene Assay
MCF-7, Hep3B and U2OS cells were used to measure HIF-

1 activity in reporter gene studies. Cells were allowed to

grow on 24-well plates before they were transiently trans-

fected with a hypoxia-responsive luciferase plasmid which

contains six HIF-1 binding sites from the transferrin 3′

enhancer.37 Empty control vector (pGL4 vector, Promega,

Mannheim, Germany) served as transfection control.

Medium was renewed 24 hrs after transient transfection.

Cells were pre-treated with 0.1 or 1.0 µM selinexor or

DMSO for 1 hr before incubation in normoxia (20% O2)

or hypoxia (1% O2) for 24 hrs. After incubation, lysis was

performed using Reporter Lysis 5X Buffer (Promega).

Luminescent signal intensities were analyzed with the

Luciferase Assay System (Promega) using a MicroLumat

LB 96P Plate Reader (Berthold Technologies, BadWildbad,

Germany). Bio-Rad DC Protein Assay (Bio-Rad, München,

Germany) was used for determination of protein concentra-

tions. Firefly luciferase (FL) activities were normalized to

protein concentrations. Three technical replicates were

analyzed.

Protein Extraction And Immunoblot

Analysis
3D tumor spheroids were extracted from their 3D culture

environment for protein extraction. Therefore, culture med-

ium was carefully resuspended and pooled in a single falcon

tube per sample. PDMS-cured plates were rinsed with 1

medium-volume of ice-cold PBS. The rinse was transferred

to the same tube. The solution was centrifuged at 170 × g for

10 mins so that the tumor spheroids collected at the bottom

without forming a tight pellet. The supernatant was removed

and the tumor spheroids were gently washed with 1 mL ice-

cold PBS and transferred to a new reaction tube. Again,

tumor spheroids were centrifuged at 170 × g for 5 mins.

Supernatant was removed and tumor spheroids were

extracted with UREA lysis buffer containing 10 mM Tris-

HCl (pH 6.8), 6.7 M Urea, 10 M Glycerin, 1% SDS and 5

mM DTT. Protein extracts were supplemented with protease

inhibitor cocktail (Roche, Mannheim, Germany). Protein

concentrations were analyzed with the Bio-Rad DC Protein

Assay (Bio-Rad, Munich, Germany). A total of 100 µg

protein lysate were subjected to 7.5% SDS-PAGE and trans-

ferred by semidry blotting onto nitrocellulose membrane

(Amersham Hybond-ECL, GE Healthcare). Membranes

were blocked by incubation in 5% nonfat dry milk powder

in PBS for at least 2 hrs at 4°C.Membranes were treated with
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a monoclonal mouse anti-HIF-1α antibody (Cat. No. 610959,

BDBiosciences, Heidelberg, Germany) diluted 1:1000 in 3%

nonfat dry milk powder in PBS with cautious shaking over-

night at 4°C and a polyclonal goat anti-mouse peroxidase

(HRP)-conjugated secondary antibody diluted 1:2000 in 3%

nonfat dry milk powder in PBS (Cat. No. P0447, Dako,

Hamburg, Germany). Incubation with a monoclonal rabbit

anti-β-Actin antibody (Cat. No. 4970, Cell Signaling) diluted

1:1000 in 3% nonfat dry milk powder in PBS for 1 hr

followed by incubation with a polyclonal goat anti-rabbit

antibody diluted 1:2000 in 3% nonfat dry milk powder in

PBS (Cat. No. P0448, Dako, Hamburg, Germany) was per-

formed to ensure equal protein loading and transfer.

Immunoreactive proteins were detected using ECL detection

reagents (Amersham ECL Western Blotting Detection

Reagents, GE Healthcare, Freiburg, Germany) for 1 min

followed by exposure to X-ray films (Amersham Hyperfilm

MP, GE Healthcare, Freiburg, Germany).

3D Tumor Spheroid Cell Viability And

Cytotoxicity Assays
After 11 days, cytotoxic effects of selinexor treatment and 3D

tumor spheroid cell viability were determined using the

CellTox Green fluorescent cytotoxicity and CellTiter-Glo 3D

luminescent cell viability assay kits (Promega) according to

the manufacturer’s instructions. Due to their spectrally distinct

measures, these assays can be multiplexed. Defined numbers

of cells were seeded for 3D tumor spheroid culture. However,

medium change and the removal of dead cells could result in

different cell numbers and misinterpreting results. CellTox

Green Dye binds DNA in compromised cells and enhances

fluorescent properties and was used to assess membrane

integrity and cytotoxicity of selinexor treatment. After 15

mins of incubation, supernatant was transferred to an opa-

que-walled multiwell plate and fluorescence was measured at

485nmEx/535nmEm before cell lysis (RLU BL). Supernatant

was transferred back to the PDMS-cured plate and CellTiter-

Glo cell viability assay was performed including cell lysis of

3D tumor spheroidal cells. CellTiter-Glo reagent was added,

mixed by shaking for 5 mins and incubated for 25 mins at

room temperature. Again, supernatant was transferred to an

opaque-walled multiwell plate. Luminescence which asso-

ciated with ATP levels and viability of the 3D tumor spheroids

was recorded (RLU). Finally, fluorescence was measured as

described above for overall cell number determination after

cell lysis (RFU AL). Relative ATP levels were determined

according to the following formula. Numbers of disintegrated

cells before starting ATP level measurement were subtracted

from the overall cell numbers after total cell lysis. Then,

luminescence (RLU) was normalized to fluorescence (RFU)

for each of the four technical replicates.

ATP levels ¼ RLU

RFU AL� RFU BL

Statistical Analysis
Experiments were conducted by a mixture of technical and

biological replicates. Due to differences in the experimental

setting, the numbers of technical replicates differ and are

mentioned in the corresponding sections. Results are shown

as mean ± standard deviation of the mean of at least n=3

independent biological replicates. The number of biological

replicates varied according to experimental efforts and study

design. One-way analysis of variance and Bonferroni’s post-

test was used to calculate statistical differences of means

between treated and control groups. Significance was

accepted at p < 0.05* (*p <0.05; **p<0.01; ***p<0.001).

For statistical calculations, GraphPad Prism 5 software

(GraphPad Software, La Jolla, CA, USA) was used.

Results
No Cytotoxic Effects Of Selinexor At

Concentrations Up To 1.0 μm
Using the MTT cytotoxicity assay, cell viability of MCF-7,

Hep3B and U2OS cells was tested after 24 hrs of selinexor

treatment at the indicated concentrations in normoxia and

hypoxia. Cellular metabolic activity upon selinexor treat-

ment for 24 hrs at concentrations up to 2.0 μm did not

decrease by more than 24% compared to DMSO-treated

control cells in MCF-7 cells (Figure 1). In Hep3B and

U2OS cells, selinexor treatment resulted in a reduction of

cellular metabolic activity by up to 22%. Based on these

results, we decided to treat cells with 0.1 µM and 1.0 µM

selinexor in our experiments. No differences in cytotoxi-

city regarding treatment with medium versus medium

supplemented with low concentrations of DMSO could

be detected (data not shown).

Effects Of Selinexor Treatment On The

HIF-Dependent Hypoxia Response

Pathway
We investigated whether selinexor affects stabilized HIF-

1α nuclear localization after PHD inhibition by DMOG

treatment. Immunofluorescence staining of HIF-1α in
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U2OS cells was performed. The subcellular distribution of

HIF-1α was analyzed by fluorescence microscopy and

quantified. DAPI fluorescence was used for single-cell

discrimination. DMOG treatment resulted in nuclear accu-

mulation of HIF-1α. The presence of DMSO in the culture

media had no effect on the response to DMOG. HIF-1α

accumulated in the nucleus with or without the presence of

0.1 µM and 1.0 µM selinexor (Figure 2A).

Next, we investigated the effect of selinexor treatment

on HIF-transactivation playing a pivotal role for its func-

tional in vivo relevance since hypoxia is a hallmark of solid

tumor formation. HIF-dependent reporter gene assays were

performed in MCF-7, Hep3B and U2OS cells. Cells were

transiently transfected with a HIF-dependent reporter gene

construct. In hypoxia, HIF-dependent transcriptional activ-

ity was 2.5-50-fold higher than in normoxic conditions.

Treatment with selinexor (0.1 and 1.0 µM, 25 hrs) signifi-

cantly reduced the hypoxic luciferase activity in a dose-

dependent manner to 25.6% and 8.6% (Hep3B), 83.8% and

52.9% (U2OS) and 28.9% and 12.7% (MCF-7) (Figure 2B).

DMSO-treated cells served as controls. These findings indi-

cate that the blockage of nuclear export via XPO1 has a

major influence on HIF-transactivation.

To further analyze the role of selinexor in the HIF-

dependent transcriptional regulation, total RNA was iso-

lated from MCF-7, Hep3B and U2OS cells treated with or

without selinexor. mRNA levels of the specific HIF-1

target gene SLC2A1 were analyzed by qRT-PCR.

Hypoxia significantly induced expression of the HIF-1

target gene SLC2A1. DMSO in the culture media did not

alter the expression of the HIF-1 target gene (data not

shown). In comparison to control cells treated with

DMSO, treatment with selinexor significantly reduced

mRNA expression of SLC2A1 in a dose-dependent manner

in MCF-7 and U2OS cells (Figure 2C). These results

indicate that nuclear export inhibition by selinexor inhibits

HIF-1 target gene expression.

Since HIF-α-degradation in hypoxia is mediated by a

negative feedback mechanism involving PHD2-LIMD1-

VHL complex formation (24). In order to investigate a

possible involvement of LIMD1 in the inhibition of HIF-

signaling upon selinexor treatment, we analyzed LIMD1

expression in MCF-7 cells. To test this, MCF-7 cells were

treated with 0.1 µM and 1.0 µM selinexor and cultured in

hypoxic conditions. The expression of LIMD1 mRNAwas

analyzed by qRT-PCR and showed that relative LIMD1

mRNA levels are not affected by inhibition of nuclear

export using selinexor in different concentrations (data

not shown).

Figure 1 Cytotoxic effects of selinexor in 2D-culturedMCF-7 cells. Defined numbers of

MCF-7 (A), Hep3B (B), and U2OS (C) cells were incubated in normoxia (light gray) and

hypoxia (gray) for 24 hrs and treated with selinexor (Sel) at the indicated concentrations

in the range of 0.05 µM to 2.0 µM. DMSO treatment served as control. Cytotoxicity was

analyzed byMTT cytotoxicity assay. Cellular metabolic activity of selinexor-treated cells is

represented by relative absorbance normalized to the control. For all three cell lines

tested, cytotoxic effects of selinexor treatment that inhibit cellular metabolic activity are

represented by a decrease in relative absorbance. Cytotoxicity does not increase

significantly at all selinexor concentrations tested. Data are mean±SD; n = 3.
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Figure 2 Selinexor treatment inhibits HIF-signaling. (A) For localization studies, U2OS cells were grown in 24-well plates to 50% confluence. Cells were pre-treated with

1.0 µM selinexor (Sel) or DMSO for 1 hr. PHD activity was inhibited by addition of 1 mm DMOG for 4 hrs and resulted in HIF-1α stabilization. HIF-1α was detected with a

monoclonal anti-HIF-1α antibody by immunofluorescence analysis. Samples were observed under an all-in-one Type Fluorescence Microscope with a 20 x objective lens.

Representative microscopic images are shown. Scale bar: 20 µm. (B) Defined numbers of MCF-7, Hep3B and U2OS cells were seeded in 24-well plates. A HIF-dependent

firefly luciferase gene was transiently transfected. Cells were pre-treated for 1 hr with selinexor at 0.1 µM and 1.0 µM or DMSO and then exposed to hypoxia (1% O2) for

24 hrs. A normoxic (20% O2) control was conducted to analyze hypoxic induction. The transcriptional HIF-activity is represented by the firefly reporter activity. Firefly

luciferase (FL) activities were normalized to protein concentrations. (C) Defined numbers of MCF-7, Hep3B and U2OS cells were treated with DMSO, 0.1 µM or 1.0 µM

selinexor for 1 hr, before incubation in normoxia (20% O2) or hypoxia (1% O2) for 4 hrs. Afterwards, total mRNA was reverse-transcribed and analyzed by qRT-PCR for

SLC2A1 expression. Normalized ratios for mRNA encoding SLC2A1 to that of mRNA encoding RPL28 are shown. Differences of means between treated and control groups

were assessed using repeated-measures ANOVA and Bonferroni’s post-test. Data are mean±SD; n = 3–4; *p<0.05, **p < 0.01, ***p<0.001, ns=not significant.
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Selinexor Treatment At A Concentration

Of 1.0 µm Is Cytotoxic For MCF-7 3D

Tumor Spheroids And Affects ATP Levels
Membrane integrity of 3D tumor spheroid cells treated with

selinexor was measured using the CellTox Green fluorescent

cytotoxicity assay. Therefore, fluorescent signal intensities

were measured before cell lysis at 485nmEx/535nmEm. High

signal intensities correlated with a high number of cells that

had been damaged by selinexor treatment. Treatment with

0.01, 0.05 µM and 0.1 µM selinexor had no significant cyto-

toxic effects in 3D conditions during the course of 4 and 8 days

of treatment. However, treatment with 1.0 µM selinexor sig-

nificantly increased fluorescent signal intensities in the

CellTox Green fluorescent cytotoxicity assay (Figure 3A).

These results indicate that selinexor at a concentration of

1.0 µM may damage membrane integrity in MCF-7 3D

tumor spheroids.

We furthermore analyzed the effect of selinexor treatment

on ATP levels in MCF-7 3D spheroids. CellTiter-Glo 3D

luminescent cell viability assays were performed.

Luminescence was measured representing ATP levels in 3D

tumor spheroids. The CellTiter-Glo 3D cell viability assay

was multiplexed with the CellTox Green fluorescent cyto-

toxicity assay to calculate ATP levels in 3D tumor spheroidal

cells. Treatment with 1.0 µM selinexor resulted in lower

luminescent signal intensities after 4 and 8 days of treatment

indicating that selinexor decreased ATP levels in 3D tumor

spheroids at a concentration of 1.0 µM (Figure 3B).

3D Tumor Spheroid Formation And

Growth Is Inhibited By Selinexor
In order to assess the capacity of MCF-7 cells to form and

maintain 3D tumor spheroids after XPO1-blockage, the

morphology of 3D tumor spheroids was investigated

after selinexor treatment. Morphologically, 3D tumor

spheroids changed at 8 days of selinexor treatment at

0.1 µM and 1.0 µM. The size of the selinexor-treated 3D

tumor spheroids was reduced resulting in very small spher-

oids (Figure 4A). Moreover, morphology of 3D tumor

spheroids changed from round and spherical to irregular

formed small spheroids and single-cell morphology.

Selinexor Inhibits HIF-1α Protein Levels

In 3D Tumor Spheroids
Ischemic hypoxia occurs frequently in solid tumors and is

associated with HIF-1 activation, thereby modulating gene

expression, tumor angiogenesis, and growth.38 We there-

fore aimed to investigate HIF-1α protein expression in

MCF-7 3D tumor spheroids cultured in normoxic condi-

tions. HIF-1α protein could be detected in MCF-7 3D

tumor spheroids cultured for 11 days. Next, we analyzed

the effect of XPO1 inhibition on HIF-1α protein expres-

sion in 3D tumor spheroids. Therefore, 3D tumor spher-

oids were treated with 0.1 µM and 1.0 µM selinexor for 8

days. HIF-1α protein expression decreased dose-depen-

dently in comparison to DMSO-treated control tumor

spheroids (Figure 4B).

Discussion
The increased expression of nuclear transport receptors in

cancer cells causes a deregulation in nucleo-cytoplasmic

transport and has been linked to poor patient prognosis,

cancer proliferation, tumor size and chemoresistance. For

example, high expression of the import receptor importin-β

promotes non-small cell lung cancer proliferation and

chemoresistance.39 Moreover, high XPO1 expression

associates with poor patient outcome in various cancers

such as acute myeloid leukemia and ovarian cancer.15,20

Such data suggest that the targeted mislocalization of pro-

teins may be a global, but promising strategy in cancer

therapy. Progress in the development of drugs altering

transport processes has been made.40 Accordingly, in July

2019, the first and only nuclear export inhibitor has been

approved by the FDA. The accelerated FDA approval of

Selinexor (XPOVIOTM) is based on a 25.3% response rate

seen in the Phase 2b Selinexor Treatment of Refractory

Myeloma (STORM) trial (NCT02336815). In combination

with dexamethasone, Selinexor (XPOVIOTM) is now com-

mercially available in the US for the treatment of adult

patients with multiple myeloma whose disease is refractory

to proteasome inhibitors, immunomodulatory agents, and

an anti-CD38 monoclonal antibody.

Our results indicate the importance of active nuclear

transport in the regulation of hypoxia-related pathways.

Many XPO1 cargo proteins have been described so far

including HIF-1α and HIF-2α.41,42 However, continuous

active transport might be less important for the maintenance

of nuclear and cytoplasmic proteome than expected, given

that in frog oocytes only ~3% of the proteome responds

significantly to XPO1 inhibition.43 Thus, our findings

clearly indicate that HIF-dependent signaling belongs to a

small group of signaling pathways that depend on contin-

uous nuclear protein import and export.
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Different studies underline that appropriate subcellular

localization of the proteins involved in the hypoxia-related

pathways is crucial for the regulation of HIF-dependent

transcription. Localization studies revealed that the major

proteins involved in hypoxia-related pathways show dis-

tinct intracellular localization patterns. HIF-α can be

detected in the nucleus in hypoxia and nuclear import

depends on classical NLS sequence motifs involving sev-

eral importins.44,45 HIF-1β is permanently located in the

nucleus. Furthermore, PHD1 is located almost exclusively

in the nucleus, the vast majority of PHD2 is restricted to

the cytoplasm and PHD3 can be detected in both

compartments.46,47 However, HIF-1α as well as the three

PHD isoforms shuttle between nucleus and cytoplasm and

belong to the cargo proteins of exportin XPO1. Herein, we

inhibited XPO1-dependent nuclear protein export by the

SINE compound selinexor. We further investigated the

effect of XPO1-inhibition on the HIF-dependent hypoxia

response pathway. We show, that HIF-1α protein expres-

sion, HIF-transcriptional activity as well as HIF-dependent

target gene expression is inhibited by selinexor treatment.

Since HIF is a transcription factor, one could expect that

inhibition of nuclear HIF export results in amplified acti-

vation of the HIF pathway. However, previous studies

underlined the importance of the tightly regulated nuclear

transport of the oxygen sensor proteins and the depen-

dence of HIF-1α hydroxylation and ubiquitination on the

nuclear translocation. Wotzlaw et al presented data

obtained from FRET measurements demonstrating that

PHD1 and HIF-1α exclusively interact in the nucleus.48

Activity of PHD2, the key regulator of HIF-1α stability,

depends on the intranuclear localization and thus the sub-

cellular microenvironment of the nucleus.47 Moreover,

Groulx and Lee detected ubiquitinated forms of HIF-α,

as well as VHL/ubiquitinated HIF-α complexes, solely in

the nuclear compartment.49 These findings are in line with

Figure 3 Membrane integrity and ATP levels are decreased in selinexor-treated 3D tumor spheroids. Defined numbers of MCF-7 cells were seeded on PDMS cured 96-well

plates. 3D tumor spheroids were allowed to grow for 3 days before they were treated with selinexor (Sel) at concentrations of 0.1 µM and 1.0 µM at day 4 or day 8 after

seeding. At day 11, cytotoxic effects and 3D tumor spheroid cell viability after selinexor treatment were determined. (A) CellTox green dye was combined with appropriate

assay buffer and added. After 15 mins, fluorescence was measured. (B) CellTiter-Glo substrate was mixed with appropriate buffer and added to experimental wells by which

cell lysis was induced. Luminescence was recorded to measure intracellular ATP levels. Fluorescence was recorded and represents the number of cells. ATP levels are

normalized to the amount of cells after lysis. Differences of means between treated and control groups were assessed using repeated-measures ANOVA and Bonferroni’s

post-test. Data are mean±SD; n = 4; **p < 0.01, ***p<0.001.
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our data and contribute to a model in which nuclear

accumulation of HIF-1α and the PHDs caused by XPO1-

inhibition results in higher PHD hydroxylation activity and

increased rates of ubiquitination and degradation of HIF-

1α in the nucleus.

Recently, Foxler et al detected a so far unknown role of

the scaffold protein LIMD1 in the regulation of the HIF-

pathway. LIMD1 simultaneously binds the PHDs and VHL

and enables efficient degradation of HIF-1α.50 Moreover,

LIMD1 itself could be identified as a HIF-1 target gene

mediating a negative regulatory feedback mechanism for

hypoxic HIF-1α degradation.36 Since LIMD1 is an XPO1

cargo substrate that accumulates in the nucleus upon LMB

treatment and shuttles between both compartments, nuclear

export inhibition could result in nuclear accumulation of

LIMD1 and increased activity of the HIF-LIMD1 negative

feedback mechanism.51 Therefore, the effect of selinexor

treatment on LIMD1mRNAwas investigated. As expected,

LIMD1 accumulates in the nucleus after treatment with

selinexor (data not shown). However, our data show that

LIMD1 mRNAwas not affected by treatment with 0.1 µM

or 1.0 µM selinexor. Thus, we can hypothesize that seli-

nexor inhibits HIF activity in a mechanism that is indepen-

dent of PHD2-LIMD1-VHL complex formation.

The important contributions of the HIF-pathway in key

cellular processes elucidate its crucial role in the patho-

physiology of cardiovascular disease, chronic lung disease

and cancer, which represent the major causes of mortality

Figure 4 Selinexor induces disaggregation of 3D tumor spheroids. Defined numbers of MCF-7 cells were grown on PMDS cured plates to form 3D tumor spheroids. On day 4,

3D tumor spheroids were treated with DMSO or 0.1 µM or 1.0 µM selinexor (Sel). (A) Pictures were taken using an inverted tissue culture microscope with a 10X objective

lens with a digital camera and an appropriate photo adapter. Black arrows indicate examples of 3D tumor spheroid disaggregation. Scale bar: 100 µm. (B) MCF-7 3D tumor

spheroids were analyzed for HIF-1α protein expression on day 11. Immunoblot analysis was performed using a monoclonal anti-HIF-1α antibody. The anti-actin antibody served

as control for equal protein loading and transfer. The immunoblots shown are representative for three independent experiments. Analysis of densitometry was performed using

Image J software. Relative HIF-1α protein expression was calculated after normalization to actin protein levels. Data are mean±SD; n=3; *p<0.05, **p < 0.01.
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among industrialized societies. Strikingly, the expression

patterns, as well as the subcellular localization of HIF and

the PHDs, have been linked with tumorigenesis. HIF-1 is

activated in cancer cells as a result of intratumoral hypoxia

or genetic alterations and increased nuclear HIF-1 expres-

sion promotes tumor progression, increases radioresistance

of cancer cells and correlates with increased malignancy.52

Moreover, nuclear localization of the PHD isoforms cor-

relates with less differentiating and strongly proliferating

tumors and predicts radiation resistance.53,54 Based on

these findings, the targeted mislocalization of HIF and

the PHDs seems to represent a promising strategy to

modulate hypoxia-dependent signaling in cancer cells.

Therefore, we investigated the potential of selinexor for

the development of new anticancer strategies in cancer

cells grown as 3D tumor spheroids. 3D culture models

are regarded as more authentic realistic and representative

models that recapitulate human solid tumor architecture

and physiology more accurately than immortalized cancer

cells in 2D monolayer cell cultures. 3D tumor spheroids

possess features that mimic in vivo growth conditions of

tumors such as cell–cell interaction, drug penetration,

treatment response and, most important for investigating

the HIF-signaling pathway, hypoxia.55–61 Therefore, MCF-

7 tumor spheroids were grown on PDMS coated cell

culture plates for 4 or 8 days until they were treated with

selinexor for 4 or 8 more days. Treatment with 1.0 µM

selinexor significantly damaged membrane integrity of 3D

tumor spheroids and reduced intracellular ATP levels

(Figure 3). In comparison, MTT assays in 2D-cultured

monolayer cells showed that selinexor treatment at con-

centrations of up to 2.0 μm did not decrease cell viability

by more than 10–25% compared to DMSO-treated control

cells (Figure 1). Moreover, 3D tumor spheroid growth and

morphology were sensitive to selinexor treatment at con-

centrations of 0.1 µM and 1.0 µM in our study. Spheroid

morphology was dramatically changed by selinexor treat-

ment. The 3D tumor spheroids changed from round and

spherical to irregular formed small spheroids and single-

cell morphology (Figure 4). In accordance with these

findings, HIF-1α protein expression was affected by seli-

nexor treatment in 3D tumor spheroids at the same con-

centrations. As expected, strong HIF-1α protein levels

were detected in DMSO-treated 3D tumor spheroids

which can be explained by the development of a hypoxic

core region in the spheroids. Treatment with selinexor

resulted in disintegration of 3D tumor spheroids which

was reflected by a decrease in HIF-1α protein expression.

Taken together, these results indicate that 3D tumor spher-

oids are more sensitive towards selinexor treatment than

cells cultured in 2D monolayers. This observation under-

lines the therapeutic benefit of nuclear transport inhibition

and can be explained by increased proliferative and meta-

bolic demands of 3D tumor spheroids and an increased

dependence on the nuclear transport machinery.

Interestingly, Kuusisto and Jans identified a so-called

hypersensitivity of malignant cell types towards the inhi-

bition of the nuclear import receptor importin β.62

Moreover, as mentioned earlier, the overexpression of

nuclear transport receptors in cancer cells indicates an

increased dependence of cancer cells on specific proteins

which is referred to as tumor cell addiction.63 In conse-

quence, 3D tumor spheroids show great potential for

studying the HIF-dependent hypoxic response and should

be considered in future research.

Conclusion
In conclusion, our results demonstrate the significant

impact of the nuclear transport machinery for the regula-

tion of the hypoxic response in cancer cells. Nuclear

export inhibition results in decreased transcriptional HIF-

activity and disaggregation of 3D tumor spheroids. By

this, our study underlines the promising potential of

nuclear transport inhibition by selinexor for therapeutic

intervention in cancer.
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