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Abstract: For the past several years, the implementation of pharmacogenetic (PGx) testing

has become widespread in several centers and clinical practice settings. PGx testing may be

ordered at the point-of-care when treatment is needed or in advance of treatment for future

use. The potential benefits of PGx testing are not limited to adult patients, as children are

increasingly using medications more often and at earlier ages. This review provides some

background on the use of PGx testing in children as well as mothers (prenatally and

post-natally) and discusses the challenges, benefits, and the ethical, legal, and social implica-

tions of providing PGx testing to children.
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Introduction
The expanded interest and implementation of pharmacogenetic (PGx) testing have

raised both challenges and excitement alike. As with some other testing applica-

tions in personalized or precision medicine, PGx testing can be used for patients

and healthy individuals. The scope of testing has evolved from single gene to large

gene panels. As with any new clinical application, the development of the clinical

delivery infrastructure, education, and clinical decision support of providers and

patients, and evidence basis are critical for successful implementation and utiliza-

tion. In the paper, the ethical, legal, and social issues associated with PGx testing

for children are considered in light of the scientific and clinical evidence, particu-

larly during pregnancy and for newborns.

Overview Of PGx Testing
PGx testing involves the analysis of variants of genes associated with drug meta-

bolism and transport or medication targets. The knowledge of potential differences

in drug metabolism impacted by genetic variants can inform drug selection or

dosing over a patient’s lifetime since the results will not change with age and

many of the variants occur in genes involved in the pathways for multiple medica-

tions. In particular, the genes encoding liver enzymes in the cytochrome P450

family, including CYP2D6 and CYP2C19, are involved in the metabolism of a

wide range of commonly used drugs and are highly polymorphic. Genetic variants

impact enzyme activity, resulting in phenotypes defined as ultra-rapid, normal

(extensive), intermediate, or poor metabolizer. Thus, knowledge of a patient’s

PGx genotype in combination with other clinical information can inform appro-

priate medication and dosing decisions.1
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Some of the early successes with PGx were developed

in children, such as with the TPMT gene and acute lym-

phoblastic leukemia.2–4 The spectrum of potential applica-

tions of PGx testing in children ranges from post-transplant5

to pain management6 to psychiatric illness.7–11 Ongoing

trials of PGx in pediatric populations continue to gather

evidence of clinical utility.12–14 There are a wide range of

clinical PGx tests currently available,15 typically including

multiple genes (multi-gene panels), though not specific to

age group but rather medication class or disease.

PGx testing can either be ordered at the point-of-care

(at the time a drug is needed) or preemptively. There is an

ongoing debate about the use of preemptive testing and

clinical utility.16,17 Clinical benefits will only be accrued if

a therapeutic need arises for a medication known to be

impacted by PGx variant and if the prescribing decision

was informed by the test results (to increase likelihood of

therapeutic response or reduce likelihood of an adverse

response). Thus, it is likely that not all of the information

from a multi-gene panel test will be of benefit to the

patient. However, it may be the same or costlier to order

a PGx test for a single gene as a panel test since the

addition of more genes may not substantially change the

effort or cost of testing (economies of scale). Another

consideration for ordering PGx testing at the point of

care (i.e., when treatment is needed) is the delay in treat-

ment while testing is being completed. Many labs offer a

short turnaround time (48 hrs), but that still may not be

quick enough for some clinical needs.

It is unclear what the attributable fraction of genetics is

to non-response or an adverse response. Clearly, multiple

genes encode the many proteins involved in the multiple

pathways from drug absorption to drug excretion, some of

which have yet to be identified. Furthermore, other factors

such as the gut microbiome,18–20 diet, age, concurrent

medication use, and co-morbidities all contribute to drug

response.21 Thus, for such a complex phenotype as drug

response is, it is likely that a single gene only accounts for

a small proportion of variability observed in drug

response, except in rare cases that mirror a Mendelian

disease.

Medication Use In Children
Data from analysis of 2013–14 data from the National Health

and Nutrition Examination Survey (NHANES) demonstrate

medication use throughout childhood, with about 20% of the

children having had at least one prescription medication in

the past year.22 Adolescents (13–19 years) had the highest

medication use (23%) and infants/toddlers (0–5 years) had

the lowest (15%).22 Use of prescription medications in

children has declined from 25% in 1999–2002 to 22% in

2011–2014.23 The most commonly prescribed groups of

medications were respiratory agents (i.e., bronchodilators),

followed by psychotherapeutic agents and antidepressants.22

Adverse drug response (ADR) in children is a major

concern,24 due in part to drug use based on limited evi-

dence and the complexity of pharmacokinetic and pharma-

codynamic changes that occur during development. It has

been estimated that about 8% of the children on medica-

tions are at risk for drug–drug interactions.22 Emergency

room visits for ADRs in children are primarily due to

overdoses (45%), but 13% were due to adverse effects.25

About half of these visits were in children between one

and four years of age.25 Children and adolescents may

have greater risk of ADRs related to psychotropic medica-

tions compared to adult patients.26

Prenatal And Newborn Period
Newborns undergo a battery of tests including those for

inherited genetic diseases. Called newborn screening, test-

ing for a suite of inherited conditions can identify affected

newborns that, with early intervention, the condition can

be prevented or outcomes substantially improved.27 These

tests are performed by state public health laboratories, and

the number and type of diseases tested vary from state to

state. PGx variants are not currently included in any state

newborn screening panels. The primary criterion to expand

a newborn screening or add a new disease to the screening

panel is clinical utility, and specifically, demonstration of

the clinical benefit of an early diagnosis.

Newborns may require treatment or be exposed to

medications through maternal use during pregnancy and/

or the post-partum period through breastmilk.28 Maternal

use of medications during pregnancy varies by country,

ranging from 28% in Australia,29 97% in the US,30 about

60% in Canada,31,32 79% in the Netherlands,33 85% in

Scotland,34 and 95% in France.35 Canadian data show an

increase in maternal medication use over the past decade,

with 10% more women prescribed medications during

pregnancy between 2002 and 2011.36 Common medication

classes used during pregnancy include antibiotics, anti-

emetics, oral contraceptives, asthma drugs, vitamins, and

antidepressants.31 In addition, the burgeoning problem of

opioid dependence and substance abuse during pregnancy

presents a substantial risk for neonatal abstinence syn-

drome (NAS), fetal alcohol syndrome, low birth weight,
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and other conditions.37,38 Treatment with methadone or

buprenorphine do not appear to increase risks to fetal

development.39–41

There is also a wide range in estimates regarding

maternal medication use during the post-partum period,

from 34% to 100%,42 with as many as three to four

medications used during breast-feeding.43 Many women

request pain medications, particularly in the first-week

postpartum for discomfort due to episiotomy, perineal

laceration, uterine involution from vaginal delivery, or a

cesarean section. The most commonly prescribed drug

classes are oral analgesics, antibiotics, and vitamins during

the postpartum period.44 Mothers and providers may be

uncertain about medication use due to concerns about the

adverse impact on the newborn’s health; decisions not to

initiate or stop treatment may pose risks to the mother’s

health.45

PGx variants can impact both safety and efficacy of

medications for the mother’s health as well as fetus/new-

born’s health.46,47 In addition, physiological changes asso-

ciated with pregnancy can alter pharmacokinetic states,48–50

including for the cytochrome P450 or CYP genes.51–55 Thus,

the combined effect of pregnancy-related changes and

genetic variation could potentially result in unpredictable

activity levels of key proteins associated with drug response.

In the fetus/newborn, the metabolic pathways are sub-

ject to developmental changes, and thus, enzyme activity

levels are in flux. A number of medications reportedly

used during and after pregnancy are known to be impacted

by PGx variants, including medications for nausea,56 pre-

vention of preterm labor,57 opiate maintenance such as

methadone,39 and pain.58–60 Predictive models of transfer

into human milk thus far have not accounted for maternal

PGx variants.28,61,62 Drug toxicity is likely to be more

common during the newborn period due to slow metabo-

lism and elimination by the infant.63 Although all medica-

tions can enter breast-milk, serum concentration will vary

due to characteristics of the drug.64 For example, psycho-

tropic medications are shown to be present at low levels in

breastmilk and no data have indicated harm to the infant.65

Low molecular weight and lipophilic medications can

easily move through the lipid membranes of cells, and

therefore, the concentration of these types of medications

in breast-milk is higher than other types of drugs.63

Harms to the newborn associated with exposure

through breast milk have been reported infrequently.66

One example of the adverse impact of PGx and medication

exposure during nursing is with the enzyme CYP2D6

enzyme, which converts codeine to the active metabolite

morphine. The prevalence of CYP2D6 genetic variations

linked to ultra-rapid metabolism ranges from 1 to 28 per

100 individuals, varying between racial/ethnic groups.67

Thus, a nursing mother who is an ultra-rapid metabolizer

may expose the infant to toxic levels of the active mor-

phine metabolite.68 The use of codeine for pain relief

during the post-partum period has decreased,36 likely due

in part to knowledge of the impact of CYP2D6 variants on

drug metabolism and the reported newborn deaths asso-

ciated with maternal codeine use during breast-feeding and

PGx variants,69,70 and the subsequent US Food and Drug

Administration warnings.71

In addition to PGx variations, there are several other

factors that impact drug response in children, which can

affect dosing and exposure levels.72–75 One of the pri-

mary challenges to the use and interpretation of PGx

testing in children is the developmental changes in gene

expression.76–80 Within the span of a few weeks to

months after birth, the levels of drug absorption, trans-

port, and metabolism alter significantly.81 Further com-

plicating treatment decisions and prediction of the impact

of PGx variants on drug response, physical changes

(body weight, height) and environmental factors, such

as maternal smoking, and the child’s diet, polypharmacy,

and co-morbidities can affect drug response.24,82–85 Prior

medication use also may impact expression of drug meta-

bolism enzymes through epigenetic modifications.86

Given the multitude of factors impacting drug response

and ontological fluctuations, it may be helpful to perform

both PGx testing (DNA-based) and pharmacometabolo-

mic analysis to generate a more comprehensive dataset

for drug response predictions.87,88

PGx Programs In Children
The implementation of PGx testing into practice requires a

multi-faceted approach and dedicated delivery team.89,90

There are several ongoing clinical PGx programs in the

US, mostly at academic medical centers, in both inpatient

and outpatient settings.91–93 Some programs have also

been implemented at community health centers.94 PGx

programs that are devoted exclusively to children include

Medi-Map at the Inova Hospital Center in Fairfax,

Virginia,95 Cincinnati Children’s Hospital Medical

Center,96 and St Jude Children’s Hospital.97 In addition,

other programs are investigating the benefits and risks of

implementing newborn sequencing programs, in affected

infants in neonatal intensive care units (NICU)98,99 and
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healthy newborns,100 though PGx genes are not typically

included (e.g., the BabySeq program reported including

SLCO1B1, associated with response to statins101). PGx

results may also be generated from whole exome or gen-

ome sequencing tests ordered for diagnostic purposes (a

secondary finding).

Weighing The Benefits And Risks Of
PGx Testing In Children
Much has been written regarding genetic testing in children

in general.102–111 However, fewer papers have been pub-

lished specifically about the appropriateness of PGx testing

in children.76,112–114 Guidelines from professional organiza-

tions focus on the benefits of testing to the child103,115 and

support the use of PGx testing, particularly when the clinical

utility has been demonstrated in pediatric studies.102 For

example, the American Academy of Pediatrics states

“When performed for therapeutic purposes, pharmacogenetic

testing of children is acceptable, with permission of parents

or guardians and, when appropriate, the child’s assent”.115

PGx testing could be argued to straddle the definition of

predictive testing and predispositional testing,103 since with

exposure to a specific medication, the phenotype may or may

not manifest depending on the extent of the clinical and

genetic heterogeneity (and in the absence of exposure to a

specific medication therapeutic, the phenotype will not man-

ifest). Post-ADR, PGx testing may be considered diagnostic.

Public attitudes toward PGx testing are generally posi-

tive, though familiarity with or awareness about testing

has not been reported high.116–118 In weighing the benefits

and risks of PGx testing in children, a wide range of

factors should be considered including test characteristics,

benefit and risk to pregnant mothers, benefit and risk to the

fetus/newborn/child, testing logistics including sample col-

lection, storage and portability of test results in the med-

ical record, access to testing, provider preparedness and

clinical decision support, and patient education and

informed consent. The testing scenarios – whether testing

is medically necessary (at the point of care) versus

optional/elective (preemptive testing) – will impact the

balance of benefit and risk and decisions regarding the

appropriateness of testing in children.

Benefit/Clinical Utility
Evidence supporting the use of widespread PGx testing of

children has not been reported, but rather, reports of spe-

cific medications or classes have suggested some benefit of

PGx testing for children.119–123 If evidence continues to

accumulate for different pediatric medications, it is likely

that this will be used to support the use of preemptive PGx

testing in children along with data documenting the

increasing use of medications in children. Thus, currently,

the benefit(s) of PGx testing in children with respect to

specific medications in need are more straightforward than

preemptive testing of healthy children since the time to

benefit and the benefit for the medications to be prescribed

are not known. To date, no studies have demonstrated

benefits of PGx testing of the mother prior to or early in

pregnancy, but such knowledge may inform medication

use during pregnancy. Although the occurrence of severe

infant drug toxicity due to transfer of drug metabolites via

breast milk appears limited,66 PGx testing to prevent even

these uncommon events and alleviate maternal concerns of

newborn drug toxicity may be worthwhile given the long-

term benefits of breast-feeding. In addition, maternal PGx

status will also be useful during the post-natal period.

However, the utility of this information may be limited

without knowledge of the infant’s PGx status and also due

to limited lactation studies regarding drug concentration in

human milk and milk-to-plasma concentrations.

In addition, psychologically, parents may benefit from

reduced anxiety regarding risk of ADRs and efficacy of

treatment plans for their child and increase compliance

with the prescribed regimen, thereby improving likelihood

of desired health outcomes.

Risks
There are currently 261 drugs listed on the FDA Table of

Pharmacogenomic Biomarkers in Drug Labeling (https://

www.fda.gov/drugs/science-research-drugs/table-pharma

cogenomic-biomarkers-drug-labeling); 136 (52%) are

approved for pediatric use.124 However, an earlier study

reported a small proportion of the 65 of 150 with medica-

tions approved for pediatric use between 1945 and 2014

and that included with PGx information in the approved

drug labeling was based on data collected through pedia-

tric PGx studies (9 of 65).125 To further demonstrate the

limited availability of data from pediatric PGx studies, a

recent search (conducted 9 June 2019) of the US National

Library of Medicine’s PubMed database shows that the

majority of PGx clinical trials (1028/1297 or 79%) are

conducted in adults compared to children.

Therefore, the largest risk is the inability to interpret

PGx results given the limited amount of evidence to inter-

pret the clinical significance on risk of ADR or likelihood

of response. Similarly, for some medications, there are less
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data regarding pharmacodynamic and pharmacokinetic

properties in children compared to adults. The interpreta-

tion of PGx data may be more challenging in children due

to developmental changes in gene expression and physio-

logical changes that impact other drug absorption, trans-

port, and excretion children.126 Gene expression or

enzyme activity assays may provide more additional

insight to inform treatment rather than DNA-based testing.

In addition, much of the research conducted on PGx has

been with individuals of European ancestry, and therefore,

there are limited data for minority populations,127 though

it has been demonstrated there are differences in allelic

prevalence between groups.128 As a result, the clinical

utility of PGx testing may be lower in minority popula-

tions as the prevalence and clinical significance of PGx

variants are still being investigated in these groups.129–133

Depending on the type of testing platform used or choice

of variants to include, some rare variants or variants that

are more prevalent in certain populations may not be

captured or included in a clinical PGx test. In addition,

although some medications are used in both pediatric and

adult populations, evidence of PGx testing benefits gener-

ated in an adult study population may not extrapolate to a

pediatric and caution should be taken to develop a pedia-

tric PGx program based on adult findings.11 With the

rapidly changing test technologies, the scope of testing

may not be limited in the future.

Sample collection may also be a concern for children.

Parents may not consent to blood draws for their children

and/or providers may not recommend testing because of

the blood draw.96 Many labs now offer testing on buccal

swab or saliva samples. At this time, prenatal PGx testing

of drug metabolism genes would likely require a fetal

specimen from chorionic villus sampling or amniocentesis.

Given the risks of these invasive procedures, prenatal PGx

testing should be limited unless there are known serious

adverse consequences associated with maternal medication

use. However, with the rapid expansion of non-invasive,

cell-free fetal DNA testing,134 single gene or multiple gene

PGx panel testing may be possible in the near future.

Some data have indicated that maternal medication use

may impact the quantity of cell-free fetal DNA

available.135

Children and family members may be at risk of psy-

chological harms resulting from learning of a PGx variant

that can affect how the child responds to medication.

Parents may experience anxiety, stress, and feelings of

hopelessness if their child is found to have an extreme

phenotype (e.g., ultra-rapid or poor metabolizer) or not

have the genetic variation indicated for an available med-

ication. Heightened concern for adverse exposure could

lead to poor adherence or avoidance of medical care in

extreme situations. Additionally, misconstrued fears that

the child will not benefit from medications may also affect

parents’ behavior toward their child, treating them as

highly vulnerable or at risk and potentially limiting inter-

actions or participation in childhood activities to reduce

the likelihood of illnesses that require treatment.136 Since

the effects of a PGx variant may never manifest without

exposure to certain drugs, curtailing childhood activities

may cause more harm than benefit. Furthermore, feelings

of stigmatization and anxiety may be experienced by

family members and the child, even though the phenotype

may never manifest due to other clinical and genetic

factors (some unknown) or lack of exposure to medica-

tions impacted by that genetic factor. It is important to

note that no evidence to date has reported on any of these

potential risks with PGx testing in either pediatric or adult

populations. Positive PGx results will also have implica-

tions for siblings and parents, potentially leading to PGx

testing of family members.

In the absence of immediate benefit, some may argue

that preemptive testing should not be ordered for healthy

children (in line with recommendations for predictive

testing103). Alternatively, if treatment is not needed, pre-

emptive PGx testing could be deferred until the child is of

an age and maturity level that they may participate in

decisions regarding testing.102 However, if treatment is

needed and impacted by a PGx variant, it could be worth-

while to order a panel test that would provide benefit both

for the immediate and long-term health of the child.

Another risk that has been raised with PGx testing is

the association of some genes with unrelated disease risk

or phenotype. For example, the ApoE4 gene is associated

both with cholesterol metabolism and response to statin

medications as well as Alzheimer disease.137,138 The

American Academy of Pediatrics states that “If a pharma-

cogenetic test result carries implications beyond drug tar-

geting or dose-responsiveness, the broader implications

should be discussed before testing”,115 echoed by the

American Academy of Pediatrics and American College

of Medical Genetics and Genomics joint statement.103 The

potential for genetic discrimination also exists, although

discriminatory actions by employers and health insurers

are prohibited by the federal Genetic Information Non-

Discrimination Act (GINA).
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Informed Consent And Patient Education
Given the novelty of PGx testing, informed consent or

physician assent/acknowledgment that the parents have

provided consent for testing is typically required.139 For

adolescents and young adults, their preferences regarding

testing may not always be supported.140 Thus, some dis-

cussion and educational resources should be available to

parents to promote informed decision-making as well as

for older children that have reached a level of maturity to

provide assent. For example, Cincinnati Children’s

Hospital has developed patient education sheets for each

test offered (www.cinncinnatichildrens.org/gpsinfo). Other

groups have developed videos to convey some of the

complex scientific and medical concepts.141 In particular,

given the multitude of factors that can impact drug

response, parents and children should understand that

PGx testing will provide some insight about drug

response, but that the results should not be considered

absolute in most cases. Furthermore, the ongoing research

may alter the interpretation of PGx results. If considering

preemptive testing, testing could be delayed until late

adolescence or adulthood when the patient can provide

assent or full consent, respectively. Various educational

tools used for genetic testing could be adapted for PGx

testing to promote parental awareness and decision-

making.142

Provider Support
Several studies have reported limited knowledge of pro-

viders regarding precision medicine and PGx, though

none have specifically evaluated knowledge of obstetri-

cians or pediatricians.143–150 While some literature indi-

cates inclusion of precision medicine and PGx in medical

curricula,151–153 it is unclear how consistent or to what

depth this subject is taught. In some cases, patients may

share PGx results ordered by specialists with their gen-

eral pediatrician, who may not be prepared to integrate

the findings into practice, and online resources about PGx

are not easily located through search queries.154 Thus, to

address knowledge gaps and acknowledge varied learn-

ing styles, multiple modes of information delivery are

likely needed to increase providers’ knowledge and com-

fort in delivering PGx testing, such as immersive learning

opportunities and traditional continuing medical educa-

tion (e.g., workshops, online modules, print).155,156

While there are a number of comprehensive PGx

resources, these may be overly technical for general

practitioners.157–160 At the point-of-care, clinical decision

supports have been developed at several medical centers

to inform providers about the availability of PGx testing

for certain drugs that are prescribed or alert providers of

the patient’s test result if testing has already been

performed.96,161–166 PGx testing reports can also be a

source of information, including treatment recommenda-

tions based on genotype.167

Beyond physicians, nurses and pharmacists can also

play important roles in the delivery of PGx testing, patient

education, and insuring appropriate use of results. Nursing

and pharmacy educators and schools have recognized

training needs and are working towards integrating content

into curricula and other learning opportunities.168–171

Pediatric pharmacists can help integrate PGx results into

therapeutic decision-making and work with both providers

and families.172 In some places, clinical PGx consultation

services have been established.96,173 It is unlikely that

genetic counselors will play a central role in the delivery

of PGx testing given the limited number of counselors

available and the different clinical settings in which they

are traditionally accessible. However, counselors will

likely encounter PGx results in sequencing and should be

prepared to discuss these with patients and patients with

complex results should be referred for counseling.174

Storage And Portability Of Results
Particularly for children and the anticipated recurrence of

the use of PGx information throughout their life, the

storage and portability of PGx results are critical. The

integration of PGx information into electronic health

records has been investigated over the past several years

and several groups have developed standardized

nomenclature175,176 and test results reporting. As the

child reaches adulthood, it will be critical to insure that

the PGx results are transferred to the adult care providers.

Regulation And Reimbursement
While the evidence regarding drug safety and efficacy in

children has increased due to more regulatory require-

ments and incentives, there are still challenges in conduct-

ing and completing pediatric trials.177,178 The oversight of

clinical laboratory testing has also been the subject of

much debate and scrutiny over the past several decades.

Many genetic tests, including PGx testing, are considered

a ‘laboratory-developed test’ (LDT) and at this time, the

FDA typically does not enforce premarket review179 and

only a few test manufacturers or laboratories of proprietary

tests have obtained FDA approval for PGx testing. In
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addition, the direct-to-consumer company 23andMe

received FDA approval in 2018 to market a multi-gene

PGx test panel,180 though this has been available in the

UK.181 However, the agency is taking more interest in the

clinical validity of PGx testing and potential risk for harm

through issuance of safety alerts and warning letters to a

clinical laboratory. In November 2018, the agency released

a safety alert to patients about PGx testing and the limited

evidence basis, urging patients not to make any changes to

their medications without consulting a health provider.182

In April 2019, the FDA issued a warning letter to Inova

Genomics Laboratory, which was providing PGx testing to

newborns among other PGx tests.183 The agency raised

concern about the evidence of clinical validity and poten-

tial harms to patients if results are used to inform treatment

decisions. All testing laboratories based in the US must

comply with the Clinical Laboratory Improvement

Amendments (CLIA) that require documentation of analy-

tical validity, quality controls and assurance, personnel

qualification and some evidence of clinical validity.

At this time, in the US, reimbursement for PGx testing is

inconsistent and guided by the availability of clinical trials

data and clinical guidelines, which are still lacking for most

tests.184 A few cost-effectiveness studies have been per-

formed for PGx testing for children185 and mothers,186

although the majority have focused on adult applications.

There are no national coverage decisions for PGx testing in

the US. Preemptive PGx testing is often not covered by

insurers187 and, therefore, is an out-of-pocket expense,

resulting in limited access and disparities. Patients have

expressed willingness-to-pay for testing to reduce risk of

serious adverse drug responses, though the amount was

impacted by their overall interest in testing.118,188–190

Conclusion
The short and long-term benefits to children (and poten-

tially expectant mothers), the growing body of evidence,

and the declining costs of testing technologies for multiple

genes should positively influence uptake of (or utilization)

testing. However, the clinical utility of PGx results is

likely to remain limited until more pediatric PGx trials

are conducted and a greater understanding of the multiple

factors that can impact drug response is attained, espe-

cially in younger children who have not attained stable

expression of many genes important to drug metabolism

and transport. PGx test results may inform the safe use of

medication during pregnancy and post-partum, and

increase mothers’ confidence that breast-feeding is safe

for their infant. As PGx testing is still novel to many

providers and patients, more efforts are needed to improve

awareness about testing, promote informed decision-mak-

ing, and insure appropriate utilization and access.
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