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Abstract: Tumor-associated macrophages (TAMs) that appear in every stage of cancer

progression are usually tumor-promoting cells and are present abundantly in the tumor-

associated microenvironment. In ovarian cancer, the overall and intratumoral M1/M2 ratio is

a relatively efficient TAM parameter for predicting the prognosis of patients, especially for

serous tissue type cancer. TAMs exhibit immunological checkpoint modulators, such as the

B7 family and programmed death-ligand 1 (PD-L1), and play a key role in the development,

metastasis and invasion of ovarian cancer, but the underlying mechanism is barely under-

stood. Ovarian cancer is a severe gynecological malignancy with high mortality. Ovarian

cancer-associated death can primarily be attributed to cancer metastasis. The majority of

patients are diagnosed with wide dissemination in the peritoneum and omentum, limiting the

effectiveness of surgery and chemotherapy. In addition, unlike other well-documented

cancers, metastasis through vasculature is not a usual dissemination pathway in ovarian

cancer. This review sheds light on TAMs and the main process and mechanism of ovarian

cancer metastasis.
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Introduction
Ovarian cancer is the most deadly female reproductive system malignancy and the

fifth leading cause of death in women with cancer.1 Ovarian carcinoma cannot be

defined as a single disease as they are composed of five histological subtypes

including epithelial, serous, endometrioid, clear cell and mucinous cancer.2–4 The

high lethality of ovarian cancer is associated with the lack of warning symptoms at

an early stage leading to diagnosis at advanced stages (FIGO stage III or IV)5

Moreover, screening tests for ovarian cancer are not sensitive. Screening for ovarian

cancer possesses several obstacles like shortage of specific detection markers and

high false-positive rates for morbidity.3 The mortality rate of ovarian cancer

patients did not differ significantly between screened and unscreened women.6

Monocyte–macrophage cell lineage are essential inflammatory components of

the ecological tumor niche and strongly influence disease progression.7–10 In

hepatocellular carcinoma, tumor-associated macrophages (TAMs) secrete IL-6 to

enhance CD44+ cancer stem cells’ activity and benefit tumor progression dependent

on Signal Transducer And Activator Of Transcription 3 (STAT3) signaling.11 TAMs

promote tumor progression to varying degrees: by cultivating cancer stem cells,

supporting genetic instability, promoting metastasis and domestication of protective
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adaptive immunity.12,13 Owing to expression of pro-

grammed death 1 (PD-1) ligands PD-L1, cytotoxic T lym-

phocyte-associated antigen-4 (CTLA-4) ligands B7-1 and

B7-H4, TAM-focused therapeutic strategies are pivotal in

immunotherapy such as immune checkpoint therapy.14–19

TAMs are intimately related to ovarian cancer

metastasis.20,21 Metastasis-associated macrophages (MAM),

a distinct phenotype of macrophages, are required for meta-

static extravasation.22 Migrating influx of tumor cells with

TAMmoves at a higher speed in a more direct way.23,24 This

process is achieved through self-reinforcement paracrine

loops, including colony-stimulating factor 1 (CSF1) pro-

duced by cancer cells, hepatocyte growth factor (HGF)

released from endothelial cells and epidermal growth factor

(EGF) produced byTAM.25,26 TAM is located in the center of

the spheroid and secretes EGF, which upregulates intercellu-

lar cell adhesion molecule-1 (ICAM-1) on tumor cells and

αMβ2 integrin on TAM to promote the binding between

tumor cells and TAM, thereby contributing to the formation

of spheroids which emerge in the early phase of transcoelo-

mic metastasis.27

Origin Of TAMs
As we all know, TAMs, the most abundant immune-related

stromal cells in the tumor microenvironment, are vital

orchestrators in tumor progression.28 Meanwhile, they

also played an indispensable role in tumor development,

metastasis, invasion and angiogenesis.29,30 So what is the

process of TAM transformation?

Transformation From Ly6C+ CCR2+

Monocytes
By using modern pedigree tracking techniques, the recent

understanding of the origin of macrophages has under-

gone profound changes. Accumulating evidence indicates

that circulating Ly6C+ CCR2+ monocytes are critical

progenitors for macrophages.31–34 Bead labeling and

BrdUrd incorporation experiments indicate that all differ-

ent TAM subpopulations in TS/A tumors originate from

Ly6Chi monocytes. Deficiency of chemokine (C-X3-C

motif) receptor 1 (CX3CR1) on monocytes leads to

TAM recruitment via accumulation of Ly6Chi inflamma-

tory monocytes.35 However, TAM can also originate

from erythrocyte progenitor cells (EMP) that develop in

the yolk sac of embryos in cancers such as gliomas and

pancreatic cancer.36,37

Recruitment Of Monocytes/Macrophages
Monocytes produced from bone marrow hematopoietic

stem cells are recruited into tumor tissue and subsequently

polarized into TAM.38,39 In brain malignancies, brain-

dwelling microglia and monocyte-derived macrophages

contribute to amplify the TAM pool. In lung cancer, inter-

stitial resident macrophages of embryonic origin together

with monocyte-derived (MoD) macrophages contribute to

the TAM pool. Interstitial pulmonary macrophages serve

as nutritional support for tumor cells, while MoD cells are

involved in tumor remodeling and proliferation.38

Recruitment of monocytes contributes to the augmen-

tation of TAM population. In response to chemokines and

growth factors secreted by tumor cells and stromal cells

contained in TME, peripheral blood mononuclear cells

originating from the bone marrow are locally aggregated

and polarized to TAM.39 This course is mainly modulated

by CSF-1 and chemokines40,41 (Figure 1).

Intriguingly, growing information indicates that spleen

constitutes an extramedullary reservoir of monocytes.

During cancer progression, spleen can significantly

amplify pro-tumor TAM response.42 According to this,

we can infer that TAMs accumulated in tumor area seg-

ment originated from the spleen.

Mechanism Of Monocytes Recruitment
Among the broad spectrum of human neoplasms, recruitment

mechanisms of monocytes are multifarious. Integration of

C-C chemokine receptor type 2 (CCR2) and chemokine C-C

motif ligand 2 (CCL2) elicit monocytes to cluster to primary

or secondary tumor loci.31,43 CCL20, the specific ligand for

CCR6, contributes to migration and accumulation of mono-

cytes in vitro and in vivo. So, CCL20-CCR6 can accelerate

tumor development via recruitment of monocytes.44 Vascular

endothelial growth factor A (VEGF-A) is a crucial angio-

genic factor while it also acts as an indispensable chemoat-

tractant related to monocytes recruitment. Elevated VEGF-A

combined with interleukin-4 (IL-4) and interleukin-10

(IL-10) induce skin carcinogenesis by promoting M2-polar-

ized macrophages in cells and angiogenesis. Besides, extra-

cellular matrix(ECM) components45 and hypoxia46,47 also

promote macrophages to cluster into tumor location.

Properties And Functions Of TAMs
Polarization Of TAMs
Macrophages are crucial components of both innate and

adaptive immune system and are involved in pathogen
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response and in-tissue homeostasis.48 According to the

cytokines that macrophages are exposed to, they can be

polarized into two mainstreams, classically activated

macrophage (M1) and alternatively activated macrophage

(M2).49,50 M1 with IL-12high, IL-23high and IL-10low phe-

notype is superior in the elimination of microbes and

Figure 1 Cytokines and chemokines that influence TAM transformation and function.

Abbreviations: VEGFA, vascular endothelial growth factor A; VEGFR, vascular endothelial growth factor receptor; CCL18, chemokine ligand 18; PITPNM3, Membrane-

associated phosphatidylinositol transfer protein; CSF1, colony-stimulating factor; CSF1R, colony-stimulating factor receptor; PDGF, platelet-derived growth factor; EGF,

epidermal growth factor; FGF, fibroblast growth factor; TGF-β, transforming growth factor-β; MMP9, matrix metallopeptidase 9; CXCL8, chemokine (C-X-C motif) ligand 8;

uPA, urokinase plasminogen activator; uPAR, urokinase plasminogen activator receptor; TNF-α, tumor necrosis factor-α; MCP-1, methylcyclopropene-1; M-CSF, macrophage

colony-stimulating factor; SR-A, scavenger receptor A; HIF-1, hypoxia-inducible factor.
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tumor cells. Conversely, M2 with IL-12low, IL-23low,

IL-10high phenotype and mannose receptor and scavenger

receptor A are potent effector cells that promote parasite

containment, angiogenesis and tissue remodeling, thereby

yielding pro-tumoral functions.51 The notion that the pro-

cess of M1 polarization is meditated by interferon or

lipopolysaccharides (LPS) has been widely recognized

during the past several years. IL-4 and IL-13 can directly

transform macrophages into M2,52,53 whereas IL-13, IL-25

and other cytokines promote the formation of M2

indirectly.53–55 Furthermore, M2 consists of three well-

defined forms, including M2a (induced by exposure to

IL-4, IL-13), M2b(induced by immune complexes, ago-

nists of Toll-like receptors or IL-1R) and M2c (induced by

contacting to IL-10 and glucocorticoid hormones).56–59

Macrophages are dynamic cells that can transform into

either M1 or M2 with their specific properties. So, polar-

ization does not represent terminal differentiation. When

substitution arises in the cytokines contained in the med-

ium, polarized macrophages in a position either revert

back to uncommitted M0 or transform into M2.60 And

inhibition of IκB kinase (IKK) beta activity can result in

a shift in TAM from M2 to M1, as evidenced by enhanced

expression of IL12, MHCII and iNOS and reduction of

IL-4Rα, TNF-α and arginase.61,62

Repolarization Of TAMs
As mentioned above, macrophages are functionally plastic.

Modulated by molecules in the TME, macrophages can be

repolarized from an anti-inflammatory to a pro-inflamma-

tory phenotype. In ovarian cancer ascites, macrophages

polarized into M1 phenotype producing less VEGF,

CCL18 and MMP9.63 Nowadays, editing macrophage repo-

larization from M2 to M1 to inhibit cancer progression

raises high interest. Bossche et al found that M1-related

suppression of mitochondrial oxidative phosphorylation

prevents M1 from polarizing into M2. Reducing the pro-

duction of nitric oxide can inhibit decline of mitochondrial

function, thus improving macrophage phenotype

repolarization.64 Certain microRNA are shown to facilitate

repolarization of TAMs. MiR-125b is expressed in macro-

phages at a higher level than other immune cells and

responsible for macrophages repolarization. Amplifying

expression of miR-125b has been viewed as a bright

method of repolarizing TAMs. Hyaluronic acid-based nano-

particles delivery system of miR-125b has been exploited in

transforming miR-125b into TAMs in Neha et al test.65

During the course of M1 to M2 polarization, we can see

that the miR-155 levels were strikingly attenuated. On the

contrary, the miR-155 levels were elevated in M2 to M1

transformation. Further experiments prove the hypothesis

that microRNA-155 did encourage M2 to M1

repolarization.66 Present studies demonstrated that miR-

146a involved as a negative regulator in the acquisition of

pro-inflammatory cytokines. It has been proved that tumor

necrosis factor-related apoptosis-inducing ligand (TRAIL)

can exert cytotoxic effects on tumor cells by re-educated

M2 to an M1 phenotype in a miR-146a-depended way.67

Additionally, activin A is also a key trigger in the macro-

phage repolarization caused by GM-CSF and impaired the

acquisition of M2 phenotype via Smad2-dependent

transduction.68 In the resolution of inflammation, TAMs

repolarization partly relies on the dissociation of P2X7R

from caspase-1 activation.69 Aside from the molecules, the

pathway transduction is also involved in TAMs repolariza-

tion. NF- κ B signaling is essential in mannose-sensitive

hemagglutination pilus strain of Pseudomonas aeruginosa

(PA-MSHA) mediated-repolarization in macrophages.70

Besides, MAPK/ERK pathway is also indispensable in the

course of repolarization.71

Functional Properties Of TAMs
They have other specific functional properties. M1 macro-

phages exhibit proinflammatory properties as they show

elevated expression of IL-1β, IL-6, IL-12 and TNF-a and

accompanied with Th1-mediated immune responses,

whereas M2 macrophages show anti-inflammatory proper-

ties via enhanced expression of anti-inflammatory

cytokines.72 M1 is superior in cytotoxic and antitumor

activity, whereas M2a and M2c are expert in driving type

II response and immunoregulatory function; M2c is also

associated with suppression of immune response and tis-

sue remolding.56 In inflammation response, lipopolysac-

charide (LPS) or interferon-γ activates NO Synthase 2,

which can mutate arginine into OH-arginine and subse-

quently into NO when macrophages contact the Th1-type

cytokines. M1 can exert disruption via this kind of

mechanism. On the contrary, when macrophages interact

with Th2 cytokines, such as IL-4, IL-10 and IL-13, argi-

nase I decompose arginine into urea and ornithine and then

metabolized into proline and polyamines. Proline regulates

the production of collagen, whereas polyamines mediate

cell proliferation. So, the damaged extracellular matrix can

be reconstructed through this process.73,74 This metabolic

conversion occurs preferentially during activation of the

M2a and M2c polarization programs.56
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TAMs In Ovarian Cancer
TAMs are considered to be one of the most abundant

invasive immune cells in ovarian cancer patients’ tissues

and ascites. Studies on the presence of TAMs in ovarian

cancer suggest that macrophages tend to the M2 phenotype

and express M2 signature markers like CD204, CD206,

CD163 and IL-10.20 Intra-islet M1/M2 TAM ratio is a

critical factor related to ovarian cancer prognosis because

increased M1/M2 ratio presented with improved progres-

sion-free survival (PFS).75 In Xia et al's meta-analysis,

which involved 9 studies including 794 patients, worse

PFS was associated with a high density of CD163+

TAMs and a higher ratio of CD163+/CD68+ TAMs in

ovarian cancer.76 The upregulation genes linked to inter-

feron signaling in TAMs negatively related to ovarian

cancer survival and IFN γ-mediated recovery of IL-12

induction in macrophages may be a possible explanation

for this phenomenon.77 Besides, it is reported that CCL22

produced by TAMs generates chemokine gradient that

induces Treg cells moving toward local microenvironment

of ovarian cancer, thus raising the percentage of Tregs.

Accumulation of Tregs may be a pivotal mechanism of

immunosuppression.78 During ovarian cancer stem cells

and M2 macrophage interaction procedure, the paracrine

WNT can be fired up and constitutes a positive feedback

loop. This feedback loop likely enhances the aggressive

phenotype of macrophages and cancer cells.79

Interestingly, compared with other histological subtype,

macrophages are more frequently accumulated in serous

and mucinous ovarian carcinoma. Meanwhile, low grade

serous ovarian cancer was reported to have a lower density

of CD68+ macrophages (M1).80

Metastasis Of Ovarian Cancer
Ovarian cancer metastasis can proceed through several

distinct pathways, including transcoelomic, hematogenous

and lymphogenous.81 However, unlike other well-docu-

mented cancers which spread mainly via hematogenous

route, transcoelomic pathway is the most predominant

route in ovarian cancer.82 During this process, adipocytes

facilitate ovarian cancer metastasis and support tumor

growth.83,84

Transcoelomic Metastasis Process
Leave Primary Tumor

The first step of transcoelomic metastatic cascade is to leave

the primary tumor site. Before cancer cells detach from the

primary site and initiate the metastatic journey, they experi-

ence an epithelial-to-mesenchymal transition (EMT). During

EMT, intercellular adhesion of the cell to cell and attachment

between an epithelial cell and basement membrane can be

loosened.85,86 Besides, resistance to anoikis also facilitates

the development of activating yes-associated protein 1

(YAP1) pathway which promotes anoikis inhibition and

metastasis development. Norepinephrine and epinephrine

prevent ovarian cancer cells from anoikis.87,88 Inhibitor of

c-Met and VEGFR-2, Foretinib (GSK1363089), can enhance

anoikis and suppress ovarian cancer metastasis.89

Dissemination Within The Peritoneal Cavity

Once cancer cells depart from the primary site, they survive

in ascites and evade immunological surveillance in the form

of a single cell, aggregates or spheroids. Meanwhile, the

physiological movement of ascites promotes exfoliated can-

cer cells to disseminate within the peritoneal cavity.90 In

ovarian cancer, ascites is a symptom of advanced stage and

represent poor prognosis. Evidence confirmed that malig-

nant ascites generates a circumstance that promotes trans-

coelomic metastasis of ovarian cancer. Additionally, ascites

also facilitates cancer cell escape from immunological

surveillance.91 Ovarian cancer cells in ascites secrete exo-

some containing CD95 ligand (CD95L) which can induce

CD95 positive immune cell apoptosis.92 Feki et al identified

that cancer cells preferentially colonized in the milk spots

located on the subdiaphragmatic surface93 because tissues

in the milk spots exhibit enhanced direct migration

capability.94 It has been widely accepted that VEGF factors

contribute to ascites accumulation by increasing vascular

peritoneal permeability.95–97

Connect To Peritoneal Mesothelium

After transportation through ascites, carcinoma cells set

about undergoing peritoneal implantation. It is reported

that attachment of disseminated cancer cells to peritoneal

mesothelium can be meditated by CXCL12–CCR4

combination.98 And, once cancer cells adhere to the

mesothelium to anchor to the metastatic site, matrix metal-

loproteinase-2 (MMP-2) transcription level is upregulated.

Following this, MMP-2 cleaves fibronectin (FN) and vitro-

nectin (Vn) into smaller sections, so that the junction of

cancer cells to the small fragments and their receptors

α5β1, αvβ3 integrin can be tightened.99 In addition, cancer

cells can exert various methods to enhance the connection

with peritoneal mesothelium such as binding to hyaluro-

nan emerging in mesothelial cells via CD44,100 integrating
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with the basement membrane composed of laminin, fibro-

nectin and I, IV collagen101 by integrins. Interestingly,

previously described studies discovered that spheroids dis-

seminate into several single cells when they intrude the

mesothelium.102,103 Additionally, ovarian cancer cells

themselves struggle to enhance migration ability by secret-

ing exosomes enriched by CD44. Mesothelial cells absorb

these exosomes, inducing upregulation of MMP-93,13 level

which can enhance ovarian cancer cells invasion.104,105

Destroy The Mesothelial Lining And Erode

Submesothelial Parenchymal Tissues

When ovarian cancer connects to mesothelial monolayer

in order to accomplish implantation, they need to destroy

the mesothelial lining and erode submesothelial parenchy-

mal tissues.106,107 Noticeably, α5β1 integrins combine with

myosin contractility within spheroids and destroy

mesothelial lining. At an early stage of implantation, adhe-

sion harmoniously collaborates with proteolysis, thus

greatly promoting tumor establishment process. As we all

know, tumor growth depends on the formation of new

blood vessels. When shedding ovarian cancer cells reach

a certain size, diffusion alone cannot supply enough nutri-

ents. So, angiogenesis response emerges in metastatic

sites.108 It is now apparent that VEGF is a crucial element

involved in the pluripotent activity of angiogenesis.109 Of

note, tumor-associated stromal cells also support shedding

cancer cell growth by promoting angiogenesis.110 For

example, angiopoietin receptors TIE2 positive TAMs

occur with high microvascular density,111 neutrophils

facilitate VEGFA, BV8 and Mmp9 transcription in order

to mediate pro-angiogenic functions by STAT3112–116 and

TAMs produce Semaphorin-4D (Sema4D) to contribute to

proper vessel maturation.117 Besides, the expression of

regulated in development and DNA damage response 1

(REDD1) is upregulated in hypoxic TAMs, mammalian

target of rapamycin (mTOR) inhibition is mediated by

REDD1 leading to suppression of glycolysis in TAMs,

thus inducing abnormal vessel formation.81,82,118–122

Hematogenous Metastasis
Characteristic Of Hematogenous Metastasis

It is widely accepted that the mechanism of ovarian cancer

metastasis is usually by passive transportation through

ascites, while hematogenous metastasis associated with

distant metastasis is of limited importance.121 However,

emerging evidence indicates that high grade serous ovarian

cancer arising from fallopian tube preferentially spread to

ovaries by hematogenous pathway.123 Furthermore, clini-

cal treatment methods such as inferior vena cava filter

placement can increase the risk of hematogenous

metastasis.124 This phenomenon can be attributed to IVC

filter-mediated activation of platelets and proinflammatory

response. Moreover, circulating tumor cells (CTCs), which

are exfoliated tumor cells from primary sites that have

disseminated into peripheral blood, have long been seen

as an effective indicator for hematogenous metastasis in

various solid tumors as well as in ovarian cancer.125–127

So, we should pay sufficient attention to this uncommon

pathway of ovarian cancer metastasis.

Mechanism Of Hematogenous Metastasis

The mechanism of hematogenous metastasis is complex. It

has been reported that inhibition of CCR4 can suppress

EMT transition and decrease CTCs which are related to

hematogenous metastasis. This process is associated with

downregulated levels of Src and ERKs.128 Besides,

p90RSK is intimately connected to hematogenous metasta-

sis. p90RSK activates YB-1 to sustain a pro-adhesive circuit

including α5β1 integrin, fibronectin and TGF-β1. However,
silencing RSK1/RSK2 can diminish pro-adhesive circuit

components’ translation. So, knockdown RSK1/RSK2 can

also impair hematogenous metastasis of ovarian cancer.129

Interestingly, omentum is commonly involved in transcoe-

lomic metastasis, but it has been proved that cancer cells

can spread to omentum hematogenously too. Strong expres-

sion of ErbB3 in CTCs induces this kind of hematogenous

metastasis via ErbB3/NRG1 axis130 (Figure 2).

TAMs In Cancer Metastasis
In present study, we consider that infiltration of TAMs in the

invasive frontier is associated with metastasis and reversing

the polarization of TAMs from M2 to M1 can impair

metastasis..131–133 However, the underlying mechanism of

affecting tumor metastasis through TAMs is still under

investigation.

Signal Transduction In TAMs Contribute To

Metastasis

TAMs have a wide variety of signal transduction patterns,

and there is evidence that their activity is proportional to

TAM’s tumor-promoting function. In Qian et al's research,

we can see that FLT1 signaling in TAMs is essential for

metastasis process. FLT1 regulates a range of inflammatory

response genes like CSF-1 and FLT1 loss-of-function experi-

ment reduces tumor metastatic efficiency.134 In xenograft
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cancer mouse models, PDGF-BB-SOX7 axially upregulated

IL-33 to promote metastasis by acting on TAMs.135

Meanwhile, inhibition of SOCS3 (suppressor of STAT3 sig-

naling) by TAMs prevents cancer metastasis by modifying

the macrophage phase and inhibition of the NF-kB in TAMs

can attenuate tumor metastasis by polarizing TAMs to an

anti-tumor phenotype.136,137 In a mouse model of orthotopic

4T1mammary cancer, we can conclude that Stat6 pathway in

TAMs facilitates metastasis with the aid of protumorigenic

and prometastatic function of macrophages.138

Molecular Mechanism Of TAMs In Cancer Metastasis

Abundant shreds of evidence reveal that some molecular

substances contained in TAMs play a promoting role in the

process of tumor metastasis. Cytochrome P450 (CYP) 4A

released by TAMs infiltration is positively related to pre-

metastatic niche formation accompanied with tendency to

M1 polarization.139 In Nielsen et al's experiment, it is appar-

ent that granulin secretion by TAMs transforms resident

hepatic stellate cells (hStCs) into pericyte-secreting myofi-

broblasts, forming a microenvironment that supports the

growth of metastatic tumors;140 Caveolin-1 (Cav1) has

been reported to have dual effects of promoting and inhibit-

ing tumor growth. Deletion of Cav1 in macrophages pro-

motes lungmetastasis by increasing angiogenesis;141 Release

of sphingosine-1-phosphate (S1P) by apoptotic tumor cells

stimulates TAMs to secrete Lipocalin 2 to promote

metastasis.142 In renal cell carcinoma model treated with

IL-2/anti-CD40 immunotherapy, the expression of

TAM-dependent NO in the tumor microenvironment is an

Peritoneal  metastasis

Angiogenesis

Primary ovarian cancer cells

Circulating Tumor CellsVessel

Invasion

Extravasation

Endothelial Cell

Secondary Organs

Hematogenous metastasis

Ascites flow

Omentum

Diaphragm

Primary Ovarian Cancer

Lung

Metastatic Tumor

Primary ovarian tumor
 

 Transcoelomic metastasis

Shedding from ovary

Ascite

Figure 2 The process of transcoelomic and hematogenous metastasis of ovarian cancer.
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important molecular readout, which is essential for regulat-

ing MMP activity and adhesion molecule expression, and is

the basis for inhibiting the metastatic process;143 CCL18

from TAMs acts on its receptor, PITPNM3, to promote breast

cancer metastasis.144

The Underlying Mechanism Of TAMs In

Promoting Ovarian Cancer Metastasis
Abundant studies indicate that TAMs are frequently identi-

fied in patients with ovarian cancer and progression of ovar-

ian cancer is accompanied by an increase in TAMs in the

surrounding ascites. However, the in-depth mechanism of

TAMs in promoting ovarian cancer metastasis are under

exploring. In a severe combined immunodeficient and a

syngeneic immunocompetent mouse model, the prometa-

static effect of inflammation can be detected. Deletion of

macrophages alone, resulting in decreasing of vascular

endothelial growth factor, presenting inhibition of ascites

formation and peritoneal metastasis.145 In Kaitlin et al's

research, experimental validation proves that secretomes

derived from macrophages promoting MMP-9 mediated

spheroid spreading by activating JAK2/STAT3 signaling.146

Liu et al found that upregulation of lipid leads to decrease in

M1/M2 ratio, thus facilitates ovarian cancer adhere to lipid-

loaded mesothelial cell.147 In an M2 co-cultured system, it is

obvious to see that ovarian cancer cells present stronger

migration ability with increased concentration of epidermal

growth factor (EGF). However, these effects can be reversed

by inhibitor of EGF and overexpression of lncRNA inhibit-

ing metastasis (LIMT).148 In the process of ovarian cancer

metastasis, we can see that P-selectin is overexpressed in

mesothelial cell surface, resulting in an increased rolling

under ascites flow and adhesion between cancer cells and

mesothelial cell. The overexpression of P-selectin is

mediated by macrophage inflammatory protein-1β
(MIP-1β) secreted by macrophages via CCR5/PI3K

signaling.149 The characteristics of the peritoneum of ovarian

cancer include massive infiltration of macrophages and high

expression of coagulation factors FXII. After treatment of

FXII, macrophages exhibit strong tendency to M2 pheno-

type. Matrigel results proved that the metastasis of ovarian

cancer cells was strengthened when infiltrated in medium

from FXII-stimulated macrophages.150

Conclusion
TAMs are involved in various aspects of ovarian

cancer treatment like radiotherapy, chemotherapy and

immunotherapy.151–153 Macrophage subpopulations with

identifiable markers are attractive therapeutic targets for

standard and immune therapy. TAM-targeted approaches

consist of TAM depletion, inhibition of TAM recruitment

and reprogramming of TAMs.10,12 Targeting CSF1–CSF1R

axis can be an effective method to deplete TAMs.154–156

Chemokines have long been associated with macrophage

accumulation in tumors.42,56 Antibody-specific inhibition of

CCL2 greatly reduces tumor development and inhibit inva-

sion process in different experimental models.157,158 In con-

clusion, TAMs significantly influence the pathophysiological

process of metastasis.10,19,21 Editing M2 phenotype repolar-

ize to M1 is a promising strategy for cancer therapy. For

instance, intraperitoneal paclitaxel in combination with

MicroRNA-125b can consolidate the anti-tumor efficacy of

paclitaxel as seen by impeding formation of ascites and cut

down VEGF levels.159 In mouse models of several adeno-

carcinomas, like colon cancer, breast cancer and sarcoma,

CSF-1R antibody antagonists combined with CD40 agonistic

antibody drive repolarization from M2 to a tumoricidal phe-

notype and prolong survival.160 Similarly, bacteria-mediated

macrophage repolarization is also applicable in cancer ther-

apy. It was found that the combination of heat-killed

Mycobacterium indicus pranii (Mw) and agonistic GITR

antibody (DTA-1) is effective for advanced tumor therapy.

Mw aims at repolarizing macrophages synergized with

DTA-1 aims at impairing the acquisition of intratumor reg-

ulatory Tcell create antitumor atmosphere.161 So, identifying

the underlying mechanism of TAM in ovarian cancer metas-

tasis is pivotal in inhibiting the spread of ovarian cancer cells

into the peritoneum, omentum and vasculature, thus improv-

ing the five-year survival rate and reducing mortality.

Additionally, it has been elucidated that TAMs play causative

role in ovarian cancer metastasis. Removing peritoneal

macrophages, rather than other immune cells resident in

TME, abrogated tumor progression as shown by peritoneal

metastasis.162 As mentioned earlier, macrophages are

involved in various aspects of ovarian cancer progression.

Macrophage infiltration is a marker of poor prognosis in

ovarian carcinoma, but there is no direct evidence or litera-

ture supporting the presence of macrophages as a diagnostic

marker for ovarian cancer metastasis. In consequence, we

need to explore macrophage-specific biomarker in metastatic

ovarian carcinoma. It helps us to clinically screen patients

with a strong tendency to metastasize and intervene in

advance. It is also of great clinical significance in improving

the prognosis of ovarian cancer patients.
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