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Abstract: Following a prolonged coronary arterial occlusion, heterogeneously scattered,

focal regions of low erythrocyte flow are commonly found throughout the reperfused

myocardium. Experimental studies have also demonstrated the presence of widespread,

focally patchy regions of microvascular ischemia during reperfusion (RMI). However, the

potential contribution of RMI to tissue viability and function has received little attention in

the absence of practical clinical methods for its detection. In this review, the anatomic/

functional basis of RMI is summarized, along with the evidence for its presence in reper-

fused myocardium. Advances in microcirculation research related to obstructive responses of

vascular endothelial cells and blood elements to the effects of hypoxia and low shear stress

are discussed, and a potential cycle of intensification of RMI from such responses and

progressive loss of functional capillary density is presented. In capillaries with impaired

erythrocyte flow, compensatory increases in the delivery of oxygen, because of its low

solubility in plasma, are effective only at high partial pressures. As discussed herein,

attenuation of the cycle with oxygen at hyperbaric levels in plasma is, very likely, respon-

sible for improved tissue level perfusion noted experimentally. Observed clinical benefits

from intracoronary SuperSaturated oxygen (SSO2) delivery, including infarct size reduction,

can be attributed to attenuation of RMI with improvement in microvascular blood flow.
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Background
Microvascular flow impairment associated with ST segment myocardial infarction

(STEMI) reperfusion may progress over hours to days. Noninvasive imaging meth-

ods have provided important insights regarding the prognosis of patients with

myocardial regions of no reflow and/or hemorrhage, pathologies within the infarct

necrotic core representing the extreme end of the spectrum of this problem.1–4

Reductions in microvascular flow can also progress temporally throughout the

reperfused area at risk, but in a focally heterogeneous distribution of occluded and

low erythrocyte flow capillaries, as noted by histology and microvascular casts.5

Intermixed focal regions of hyperemia and arteriovenous shunting within the zone of

reperfusion render conventional measures of regional flow misleading regarding the

severity of focal flow reductions and associated reperfusion microvascular ischemia

(RMI). The term denotes persistent/uncorrected and/or progressive microvascular

ischemia during reperfusion. Although global microvascular dysfunction within

myocardium subtending a reperfused coronary artery can be assessed clinically
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with a variety of methods,6 the spatial resolution required to

detect heterogeneously distributed microscopic regions of

low flow is currently not achievable clinically. Moreover,

interpretation of any measure of low flow in the absence of

an epicardial stenosis is ambiguous without knowledge of

metabolic demand, and clinical methods for directly ima-

ging myocardial hypoxia or ischemia are not readily

available.7–10 The potential effects of RMI on myocardial

viability, function, and healing have therefore received little

attention clinically.

In this review of RMI, anatomic/functional heterogene-

ities in focal myocardial flow, as a substrate for this problem,

are discussed. A paradigm consisting of a positive feedback

cycle of RMI and obstructive responses of vascular endothe-

lial cells (ECs) and blood elements is presented (Figure 1;

Tables 1–3), along with the rationale for treatment of RMI

with methods that effectively deliver oxygen in plasma.

Relevant literature is then reviewed in support of the concept

that treatment of RMI can enhance tissue viability as a result

of improvement in microvascular blood flow.

Myocardial Microvascular Heterogeneities
Blood flow in the normal heart is heterogeneous within all

transmural layers, reflecting the fractal nature of vascular

branching patterns.11 Regional flow variability increases

with progressively fine spatial resolutions down to <1 g.

Focal ischemia is not normally present because heterogeneity

of metabolic demand12–14 matches that of flow. The

vulnerability to ischemia is nevertheless heterogeneous, con-

tributing to a patchy distribution of infarction.15 During

hypoxic coronary perfusion, a markedly heterogeneous pat-

tern is seen in the severity of regional ischemia, as viewed

Figure 1 Cycle of reperfusion microvascular ischemia (RMI) and obstructive

responses. Effective increase in O2 delivery attenuates both limbs of the cycle,

with improvement of microvascular blood flow, viability, and function. Pathogenetic

mechanisms associated with lethal reperfusion injury can be better assessed after

RMI has been effectively treated.

Table 1 Endothelial Cell Microvascular Obstructive Responses

To Acute Hypoxia

Mechanism Response

Barrier function: ↓glycocalyx, ↑VEGF, ↑

permeability

↑edema

Inflammation: ↑selectins, ↑VCAM-1,

↑ICAM, ↑ILs

↑WBC

adhesion

Procoagulant

effects:

↑factor X, ↑PAF, ↑vWF, ↑TF

↓thrombomodulin,

↓prostacyclin

↑platelet

adhesion

↓fibrinolysis (↓ tPA, ↑ PAI-1) ↑microthrombi

Vasoconstriction: ↑ endothelin-1,

↑thromboxane A2

↓flow

EC apoptosis: ↑complement, ↑myocyte

apoptosis

Capillary

occlusion

Table 2 Other Microvascular Obstructive Responses To Acute

Hypoxia

Mechanism Response

Leukocytes: ↑ beta 2 integrin, ↑ROS ↑adhesion to ECs,

platelets

Platelets: ↑activation, ↑thromboxane

A2

↑EC adhesion, ↑plugging

↑arteriolar

vasoconstriction

Pericytes: ↑contraction ↑focal capillary

constriction

Table 3 Microvascular Obstructive Responses To Low Shear Stress

Mechanism Response

Endothelial cells: ↓glycocalyx ↑permeability, ↑edema

↑VCAM ↑leukocyte adhesion

↓NO, ↓TBM, ↓PGI2, ↓tPa ↑procoagulant effects

Whole blood: ↑microvascular viscosity ↓erythrocyte flow

Erythrocytes: ↑rouleaux, clumping ↓erythrocyte flow

Leukocytes: ↑activation ↑EC adhesion, ↓flow
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with NADH fluorescence imaging.16 Recovery from global

ischemia or high-flow anoxia similarly is spatially heteroge-

neous at the capillary level, by both NADH fluorescence

imaging and PO2 mapping during normoxic reperfusion.17,18

The size of the regulatory unit governing myocardial hetero-

geneity during low flow perfusion has been found to vary

between tens of microns to about 200 microns.19

Effects Of Microvascular Flow

Heterogeneities
Oxygen transport to tissue is dependent on convective supply

by erythrocytes to capillaries and diffusion between capil-

laries. The potential contribution of problems with both

types of oxygen transport, as a result of heterogeneities of

microvascular flow, to the pathogenesis of organ dysfunction

and failure in critical illness has been elucidated clinically with

the advent of sidestream dark field and orthogonal polarization

spectroscopic (OPS) imaging techniques.20–22 Common find-

ings include capillaries with sluggish or absent erythrocyte

flow, focal reductions in functional capillary density (FCD),

and presence of arteriovenous shunts. Evidence of tissue

ischemia (eg, lactate production) may be found despite glob-

ally normal levels of blood flow and oxygen extraction. Ince

and coworkers have described such ischemically vulnerable

focal regions in tissues, including myocardium, as “microcir-

culatory weak units”.12,18 In septic shock, persistent hetero-

geneous sublingual microvascular flow abnormalities are

associated with organ failure and are more predictive of mor-

tality than hemodynamic parameters.22 In a relevant experi-

mental model, Ellis et al found a heterogeneous

maldistribution of microscopic O2 delivery, with a marked

increase in the number of stopped flow capillaries and a

three-fold increase in O2 extraction.23 Similar peripheral

microcirculatory abnormalities have been found with OPS

imaging in association with cardiac surgery, congestive heart

failure, and cardiogenic shock.24,25

In reperfused myocardium, experimental findings consis-

tent with these observations include a reduction in FCD26 and

an increase in arteriovenous shunting.27 Evidence of myocyte

injury upon reperfusion following a relatively brief (20 mins)

coronary occlusion was seen only in regions with poor capil-

lary flow within heterogeneous microvascular flow patterns.26

A heterogeneous pattern of microvascular obstruction

was reported in an experimental myocardial infarction

model.28 A cycle of hypoxia-driven VEGF expression,

increased EC permeability, and myocardial edema contrib-

uted to progressive infarct expansion.

As another example of potential functional conse-

quences of RMI, Kay et al demonstrated that microscopic

sites of ectopic beats and tachyarrhythmias correlated with

focal regions of myocardial ischemia during postischemic

low flow reperfusion of isolated rat hearts.29

Tissue hypoxia in the perinecrotic border zone of myocar-

dial rat infarcts was quantitated by the use of a nitroimidazole

stain by Wang et al.30 Fluorescent and immunohistological

stains were also used to quantitate vascular density. Over a 1 to

4 week period post MI, a marked decrease in the density of

perfused microvessels was found. Correspondingly greater

diffusion distances and more severe tissue hypoxia were

found between vessels. In a follow-up analysis of the data

with a microvascular transport model,31 it was estimated that,

2 weeks post MI, 29% of the perinecrotic infarct zone was

severely hypoxic (PO2 <2 mmHg) from a reduction in micro-

vascular density. The vascular density estimated by the model

to prevent critical hypoxia was 75% of normal values.

Although clinical data regarding RMI are extraordina-

rily difficult to obtain, a unique clinical study by Al-Obaidi

et al32 provides some insight. Using microelectrodes in

patients undergoing coronary bypass surgery, they found

that 74% of the 29 focally interrogated myocardial regions

showed delayed recovery of PO2 over a 32-mins period of

reperfusion. No recovery was noted in 13% of the regions,

compatible with persistent severe ischemia. A poor corre-

lation was observed between changes in local flow, mea-

sured with the same microelectrodes, and changes in PO2.

The authors surmised that hypoxic regions during reperfu-

sion contribute to deterioration of left ventricular function

after bypass surgery. Pathologic microvascular changes

noted in a relevant porcine model provide an anatomic

basis for these observations.33 Scanning electron micro-

scopy (SEM) of microvascular casts demonstrated large

increases in intercapillary distances at 30 mins of reperfu-

sion compared to normal hearts. FCD and luminal dimen-

sions by SEM were significantly reduced, with a resultant

reduction in vascular cast density.

Focal reductions in capillary hematocrit may further

contribute to impairment of oxygen delivery. The number

of capillaries perfused by cell-free plasma may greatly

exceed the number perfused by erythrocytes in pathologic

microvascular settings.34 In addition, the hematocrit may

be reduced in the capillary bed perfused by a vasocon-

stricted arteriole,35 below levels associated with a physio-

logic Fahraeus effect. During low flow myocardial

ischemia, Eliasen and Amtorp36 found that mean micro-

vascular hematocrit decreased to 23% from a control level
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of 31%, as a result of 25% and 34% decreases in red cell

volume in the subepicardium and subendocardium, respec-

tively. Importantly, Barker et al demonstrated that a mod-

erate reduction in capillary hematocrit significantly

reduced mean capillary PO2 and the amplitude of erythro-

cyte-associated PO2 transients.
37

Thus, many factors contribute to the potential presence

of heterogeneous, focally severe microvascular ischemia

during myocardial reperfusion. As discussed by De

Backer et al,21 based on an analysis of capillary oxygen

transport data,38 a loss of FCD produces a more severe level

of tissue hypoxia compared to a similar, but homogeneous

reduction in blood flow through preserved microvessels.

Paradigm: Cycle Of RMI And Obstructive

Responses Of The Microcirculation
The severity of microvascular hypoxia associated with

RMI ranges across all three thresholds defined by

Connett et al,39 with oxygen availability not coping with

aerobic ATP requirements. In regions without myocyte

viability, the term would apply to the ischemic microvas-

culature alone.

Because of microvascular injury from ischemia/reperfu-

sion (I/R),40,41 coronary flow reserve is blunted. As demon-

strated with microsphere embolization of normal

coronaries,42 hyperemic responses may nevertheless occur

in non-ischemic segments adjacent to focally ischemic ones,

possibly enhanced by diffusion of adenosine. During RMI,

the known obstructing responses of capillary endothelial

cells (ECs) and blood elements to hypoxia, very likely the

most important component of RMI, would be expected to

participate in a cycle of progressive RMI and continued

obstructive responses to RMI (Tables 1–3), commonly lead-

ing to capillary occlusion and/or loss of capillary integrity

(Figure 1). By increasing oxygen delivery to the hypoxic

microcirculation, RMI is attenuated. The hypoxic responses

of RMI are diminished, and the cycle is slowed, if not broken.

As microvascular flow improves, potential residual obstruc-

tive responses related to low shear stress (Table 3) are

reduced, resulting in persistent increases in capillary patency

and flow.

RMI: Specialized Methods Required For

Its Detection And Imaging
Direct detection of spatially heterogeneous microvascular

ischemia presents extreme technical challenges. Balaban

and Arai13 suggested that an appropriate spatial resolution

for assessment of myocardial flow heterogeneity is a tissue

volume (0.3 mm3) perfused by a single 150 micron diameter

arteriole. This flow resolution may be achievable experimen-

tally with fast high-resolution MRI experimentally.11

However, the spatial resolution for registration of functional,

metabolic (eg, BOLD and TOLD), and flow CMR images is

likely to be significantly lower. Moreover, a single arteriole

as above normally subtends approximately 450 capillaries.43

If reduced FCD and arteriovenous shunting are present

within this region, measures of mean flow and oxygenation

may not reflect the severity of even smaller focal regions of

microscopic ischemia.

The limitations of conventional clinical methods for

diagnosis and/or imaging of microvascular ischemia asso-

ciated with other myocardial pathologies were well sum-

marized by Pries et al.6 Direct noninvasive imaging of

tissue hypoxia is even more challenging.8 Experimentally,

molecular imaging techniques,44 such as PET imaging of

activated platelets that can detect minimal ischemia45 are

promising new approaches. Electron paramagnetic reso-

nance (EPR) imaging of tissue PO2 has also been used

only experimentally to study the bioenergetics of ische-

mia/reperfusion. The latter approach was used to show

that hyperoxia normalizes the hypoxic border zone (penum-

bra) adjacent to the necrotic core of reperfused ischemic

brain lesions.46

Obstructive Responses Of The

Microcirculation To Hypoxia And Low

Shear Stress
ECs can tolerate lower oxygen levels than some other cells,47

but the luminal obstructive responses of ECs and blood ele-

ments to either severe hypoxia48–64 or low shear stress65–70 are

numerous and profound ((Tables 1–3). While physiologically

adaptive in many types of wound repair, eg, walling off an

infectious agent or a site of bleeding, such responses are

maladaptive (“dysfunctional”) during reperfusion. The

changes are similar to those described for Types I and II

activation of microvascular ECs associated with generic

responses to an altered microenvironment.50 Prior to

apoptosis,53–55 earlier responses of ECs to hypoxia include

loss of barrier function, cytoplasmic swelling, and interstitial

edema. Hypoxia has been shown to disrupt the integrity of the

endothelial surface glycocalyx of cardiac capillaries, with an

increase in permeability. Retraction of the lateral margins of

adjacent ECs results from actin filament contraction associated

with a reduction in intracellular cyclic AMP needed for
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cytoskeleton maintenance; the integrity of intercellular junc-

tions is reduced, resulting in interstitial edema from paracel-

lular leakage and in EC shape change (rounding). Stabilization

of hypoxia-inducible factor (HIF-1) by hypoxia and activation

of numerous genes produce phenotypic changes in ECs,

including increased permeability from VEGF production.28

Potential adverse effects of edema include increased distance

for oxygen diffusion and increased interstitial pressure.71

Capillary luminal dimensions may be compromised by intra-

cellular EC edema/shape change and by external compression.

Microvascular flow resistance follows Poisouille’s law and is

inversely proportional to the fourth power of diameter,34 so

that small reductions in capillary diameter would be expected

to significantly reduce flow. In addition, small reductions in

capillary diameter below 5 microns, similar to the mean value

of capillaries in the human left ventricle,72 exponentially

increase apparent blood viscosity in an extension of the

Fahraeus–Lindqvist effect.73

Hypoxia also induces proinflammatory phenotypic

changes in ECs, primarily via HIF-1 and other transcription

factors, including nuclear factor-kB (NF-kB).56–62 Expression

of adhesion molecules (eg, E-selectin) promotes leukocyte

rolling and subsequent binding to leukocyte integrins with

ligands such as VCAM-1 and ICAM-1, facilitated by activa-

tion of chemoattractant/activator molecules including platelet-

activating factor (PAF). Production of proinflammatory cyto-

kines and increased expression of tissue factor by ECs exposed

to hypoxia may further contribute to an inflammatory

response. Also in response to hypoxia, Weibel-Palade body

exocytosis from ECs and shedding of EC microparticles74

may increase neutrophil recruitment and inflammation. As

reviewed recently by Eltzschig and Carmeliet, hypoxia is a

common trigger of inflammatory responses in many tissues,

and such responses may contribute to progression of lesion

hypoxia.62

Hypoxia-activated ECs release endothelin-1,63 a potent

vasoactive peptide, and endothelial NO levels may

decrease from ROS scavenging. The resultant vasocon-

stricting effects may reduce downstream capillary hema-

tocrit as well as erythrocyte flow.75

Procoagulant pathways in ECs are enhanced49,76,77 and

fibrinolytic activity is reduced78 by hypoxia. Hypoxia has

also been shown to stimulate platelet aggregation and

formation of thromboxane A2.79 The latter may contribute

to arteriolar vasoconstriction, superimposed on fibrin and

microthrombi deposition.

Recently, ischemia-induced pericyte contraction that

segmentally obstructs capillary erythrocyte flow during

reperfusion has been noted in a model of brain I/R.80

Pericytes are also known to line capillaries in the mamma-

lian heart.81 It is possible that focal constrictions along the

capillary lumen noted by Glyn et al82 in reperfused rat

hearts represent the same phenomenon.

Low shear stress represents another important aspect of

RMI. Apparent blood viscosity increases at low shear rates,

and erythrocyte rouleau formation, aggregation, and clump-

ing may further reduce erythrocyte flow through capillaries.

Erythrocyte aggregation from increased local capillary flow

resistance, as a result of non-uniform leakage of plasma

through ECs, can contribute to flow heterogeneity.83

Low-velocity flow per se can activate leukocytes66 and

result in microvascular sequestration.65–67 Leukocyte

adhesion to ECs in postcapillary venules during low flow

can markedly increase resistance to flow.67 Low shear

stress may also promote obstructing responses of ECs,

via mechanotransduction originating in the glycocalyx.69

Low flow in the setting of vascular injury has also been

shown to enhance platelet activation.70

Sluggish flow of erythrocytes through injured capil-

laries reduces oxygen delivery to ECs, and the cycle of

profound hypoxia and obstructive responses to hypoxia

and low shear stress can continue unabated until capillary

occlusion occurs. If EC viability is maintained, chronic

responses to hypoxia may occur. These include continued

HIF-1 stabilization and numerous, complex biochemical

pathways that may be associated with either pathologic or

adaptive responses.84

How Can Oxygen Delivery Be Effectively

Increased To Regions Of RMI?
On room air breathing, hemoglobin O2 saturation approaches

100% in most patients with adequate lung function.

Moreover, the solubility of O2 in plasma is low.85

Therefore, oronasal supplementation in such patients is inef-

fective in increasing oxygen delivery, and studies of such

treatment in patients with acute coronary syndromes show no

benefit.86–88 The O2 content of plasma at hyperbaric PO2s,

however, is sufficient to at least partially compensate for low

erythrocyte flow. At HBOTexposures of 2.0 to 3.0 ATA (101

to 202 kPa above atmospheric), sufficient O2 can be dis-

solved in plasma to meet metabolic demands at extremely

low hemoglobin levels.89 Although physiologic autoregula-

tion of blood flow during hyperoxia results in vasoconstric-

tion of precapillary sphincters in non-ischemic tissues,90

median tissue PO2 nevertheless increases in normal
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myocardium and other tissues.91 In regions of myocardial

ischemia, hyperoxia increases blood flow and reduces

ischemia.92,93

Liquid infusion of oxygen (aqueous oxygen = AO) is a

new, catheter-based approach for achieving regional, site-

specific hyperbaric levels of oxygen in blood.94 AO at

high dissolved O2 concentrations can be delivered into

host liquids at ambient pressure in a bubbleless manner

because heterogeneous nucleation is prevented.95 The oxy-

gen level of host liquids such as blood can be predictably

increased to >133 kPa (1000 mmHg) without bubble

nucleation. Oxygenation occurs quite rapidly from con-

vective liquid mixing of AO with blood (in contrast to

the slow process of oxygen diffusion at a gas/liquid inter-

face) under laminar flow conditions and at physiological

velocities. Biocompatibility problems related to a large

foreign body surface area in contact with blood and low

flow shear stress, as with the use of membrane oxygena-

tors, are eliminated with this new approach.

Clinically, the PO2 of the coronary blood perfusate,

termed supersaturated oxygen (SSO2), is adjusted to about

120 ± 13 kPa (900 ± 100 mmHg) by addition of AO (typical

[AO] = 1.2 mL O2/mL saline) at approximately 50:1 volume

ratio of [arterial blood]/[AO], sufficient to increase the O2

content of plasma to approximately 3 vol %.96 The high O2

tension should markedly increase the effective O2 diffusion

distance between capillaries. Although O2 diffusion at the

level of arterioles at a normal arterial PO2 does not normally

contribute significantly to tissue oxygenation,97 hyperbaric

oxygen tensions may facilitate such diffusion.98

Studies Of Methods To Attenuate RMI
The lack of readily available methods for clinical detection

of RMI has impeded progress in the potential treatment of

the problem. Nevertheless, there has been growing

impetus to the concept that methods for improving myo-

cardial tissue perfusion, by addressing the obstructive

components of the microcirculation, may promote healing

and possibly enhance functional recovery of viable

myocardium.99–102

Hyperbaric Oxygen Therapy (HBOT) For Acute

Myocardial Infarction And Reperfusion

Experimental studies with HBOT, conducted before the

thrombolytic era, demonstrated a reduction in ventricular

fibrillation and improved survival. In the 1960s, a few

anectodal clinical reports of HBOT for acute myocardial

infarction suggested benefit. Subsequently, a small,

randomized clinical trial of HBOT for acute MI demon-

strated a reduction in mortality (approximately 50% of the

control group) that was statistically significant when the

low-risk minority group of patients (Peel Index) was

excluded.103 Of the 12 patients in cardiogenic shock, the

only survivors (n = 3) received HBOT.

In the reperfusion era, experimental studies demon-

strated that HBOT reduced infarct size when administered

during reperfusion. Two subsequent small, randomized

clinical trials of HBOT for STEMI104,105 demonstrated

reductions in CPK release and improvement in parameters

of LV function, with statistically greater values than those

of the control group in one study. In a different rando-

mized study of HBOT for either acute MI or unstable

angina, a significant reduction in restenosis and clinical

events was noted in the treatment group.106

A Cochrane meta-analysis of six small randomized clin-

ical trials of HBOT for AMI demonstrated significant reduc-

tions (p < 0.05) in major adverse events, dysrhythmias, heart

block, and time to pain relief, along with a non-significant

trend in mortality reduction (p = 0.08).107 Despite the

encouraging results of HBOT, practical problems with this

cumbersome technology,108 including lack of ready access to

critically ill patients within pressurized chambers and unde-

sirable side effects, such as middle ear barotrauma and claus-

trophobia, along with fire hazards, have limited the conduct

of studies in larger groups of patients.

However, in three randomized, double-blinded clinical

trials of HBOT for treatment of microvascular dysfunction

and ischemia of other tissues, significant improvements

(p < 0.05) were noted in skin graft survival;109 healing

of crush injuries;110 and cognitive sequelae after carbon

monoxide poisoning.111

Advances have also been made experimentally in the

understanding of potentially beneficial mechanisms of

HBOT in the treatment of a wide variety of reperfused

tissues.112 Improved FCD and inhibition of neutrophil-EC

adherence have been observed, with potential mechanisms

including inhibition of neutrophil beta2-integrin and

reduction of EC and neutrophil ICAM-1. Other suggested

benefits of HBOT include improved oxygen supply to the

ischemic microcirculation; inhibition of apoptosis; reduc-

tion of lipid peroxidation; increased superoxide dismutase

levels; improved endothelial-dependent vasorelaxation;

and stimulation of the endothelial fibrinolytic system.

As perhaps the most extreme problem in reperfusion,

resuscitation beyond a 15-mins period of cardiac arrest is

usually not possible. However, Van Meter et al demonstrated
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that high-dose HBOT was usually successful for resuscita-

tion of swine subjected to 25mins of cardiac arrest compared

to normoxic and low-dose HBOT groups.113 HBOT has also

been shown to reduce mortality in experimental studies of

shock, sepsis, and multiorgan failure.114

Preclinical SSO2 Studies

As a catheter-based approach for providing regional arterial

hyperoxemia, SSO2 infusion is a potentially more practical

approach than HBOT for critically ill patients, and precise

control of regional arterial oxygen levels is achievable. In a

canine model of regional low flow myocardial ischemia,

intracoronary SSO2 infusion prevented the fall in echo

LVEF associated with normoxemic low flow perfusion.94

The potential benefits of intracoronary SSO2 infusion for

acutely enhancing post MI reperfusion in animal models

were described by Spears et al115–117 and Johnson et al,118

and reviewed by Glazier119 and Bartorelli.120 A 90-mins

treatment, initiated 15–30 mins after the onset of reperfu-

sion following a 60–90 mins coronary occlusion, was asso-

ciated with normalization of left ventricular ejection

fraction (LVEF) compared to no improvement of this para-

meter in control groups. The frequency of ventricular extra-

systoles was significantly reduced by the treatment.

Microvascular blood flow upon completion of SSO2

infusion was doubled compared to that of controls.116

Histologically, microvascular hemorrhage, tissue myelo-

peroxidase, and infarct size were each markedly reduced

(60–80%)(p < 0.05) by SSO2 compared to three control

groups at 3 hrs of reperfusion.117 By transmission electron

microscopy (TEM), striking differences were noted

between SSO2 (n = 3) and autoreperfusion control (n = 3)

groups (Figure 2).115,120 In the control group, EC edema and

loss of nuclei were noted, along with prominent disruption

of myofibrillar structure. In the SSO2 group, EC edema was

not observed, and EC nuclei were preserved. Myofibrillar

disruption was not noted.115 Evidence of apoptosis in myo-

cardium reperfused for 3 hrs was found in control group, but

not in the SSO2 group (Figure 3).
115 The scattered pattern of

apoptosis is consistent with the concept of RMI.

Interestingly, intracoronary SSO2 infusion, when

delayed by 24 hrs after the onset of reperfusion following

a 1 hr occlusion of the LAD in swine, still resulted in

significant improvements in infarct size and LVEF com-

pared to the control group.121 No significant improvement

in LVEF was noted in the control group despite 24 hrs of

reperfusion. The results suggest that RMI in this model

persists for a prolonged period but is nevertheless amen-

able to treatment. The observations suggest that myocar-

dial “stunning” following 24 hrs of reperfusion in this

model simply results from uncorrected microvascular

hypoxia that is reversible with SSO2 infusion.

Figure 2 Transmission electron microscopy (TEM) of porcine myocardium at 3 hrs of reperfusion following 1 hr of coronary occlusion. Representative images from control

(left panel) and SSO2-treated (right panel) groups (masked assignment selection by cardiac pathologist [Vander Heide R]) (data from Spears et al,117). EC = Endothelial Cell.

RBC = Red Blood Cell (within lumen of EC). EC edema, loss of EC nuclei, and prominent disruption of myofibrillar structure was evident in the Control group only.

Reprinted by permission from Springer Nature (Springer Nature) (Am J Cardiovasc Drugs) (Hyperoxemic perfusion for treatment of reperfusion microvascular ischemia in

patients with myocardial infarction) Bartorelli AL., Copyright (2003).120
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Clinical SSO2 Studies

In a Phase I multicenter clinical trial of SSO2 for treatment

of STEMI within 24 hrs of symptom onset, hyperoxemic

perfusion was performed for 60 to 90 mins after successful

stenting of the infarct coronary artery in 29 patients.122

Over a three-month period after the procedure, progressive

improvement in echocardiographic regional wall motion

score was observed, primarily as a result of infarct zone

improvement. In a similar small trial of SSO2 for patients

with anterior STEMI, Trabattoni et al123 found significant

improvements in global and regional left ventricular

function at 3 months, compared to a matched control

group (p < 0.01). The time-to-peak and half-life of creatine

kinase were shorter compared to the control group

(p < 0.01), and the rate of complete ST segment resolution

(78%) compared to the control group (42%) was signifi-

cantly greater (p < 0.01).

In a randomized trial of SSO2 infusion vs autoreperfusion

controls post PCI, STEMI patients were treated within 24 hrs

of symptom onset (AMIHOT trial).124 The primary endpoints,

SPECT sestamibi infarct size (% LV mass) at 2 weeks (treat-

ment = 9% vs control = 23%), acute ST-segment resolution,

and echo wall motion score index at 3 months (0.75 vs 0.54)

were significantly improved (p< 0.05) only in the subset of

anterior STEMI patients treated within 6 hrs of symptom

onset. In the follow-up, AMIHOT II randomized clinical

trial, only patients with anterior wall myocardial infarction

who were reperfused within 6 hrs of symptom onset were

therefore included.125 The trial followed a Bayesian statistical

design, wherein the results of the Phase II study were incor-

porated into those of the follow-up trial, with weighting of the

Phase II data according to degree of similarity between trials.

A statistically significant, smaller median infarct size, mea-

sured at twoweeks by SPECTsestamibi imaging, was noted in

Figure 3 Representative histologic sections of porcine myocardium stained with both propidium iodide (red fluorescence of all nuclei, left column) and terminal

deoxynucleotidyl transferase dUTP nick end labeling of apoptotic cells (green fluorescence; DeadEndTM Fluorometric TUNEL System, Promega)(middle column).115

Superimposition of the fluorescent images in right column (Dual). Normal = myocardium not subjected to ischemia (top row). Control AutoRP = 3 hrs of reperfusion

(AutoRP = passive reperfusion) after one hour ischemia (LAD occlusion)(middle row). SSO2 = 3 hrs of reperfusion after one hour ischemia (LAD occlusion), with SSO2

perfusion performed for 90 mins, 15 mins after the onset of reperfusion (bottom row). Apoptosis, in a heterogeneously distributed pattern (green dots), was noted in each

Control AutoRP animal (n = 3) and in none of the animals in the Normal group (n = 3) and the SSO2 group (n = 3).
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the treatment group compared to the control group (18.5 vs

25% of left ventricular mass, or a relative infarct size reduction

of 26%). In patients with a baseline LVEF <40%, even greater

salvage was noted, with an absolute infarct size of 33.5% in

controls and 23.5% in SSO2-treated patients. The relatively

small infarct size in this STEMI population was recently

confirmed by cardiac magnetic resonance imaging at 30 days

in 100 anterior STEMI patients treated post-stenting with 60

mins of intracoronary SSO2 (IC-HOT Trial).126 The remark-

ably low 30-day complication rate (mortality = 0%; new onset

CHF = 1%), with no significant change in these complications

at 1 year,127 are consistent with a favorable clinical outcome

associated with a reduction in infarct size.

Attenuation Of RMI: Potential

Mechanisms Of Improved Microvascular

Flow
Many of the observed in vivo responses of reperfused

tissues to HBOT and SSO2 may be explicable by attenua-

tion of hypoxia-mediated obstructive effects of ECs and

blood elements (Table 4). For example, Ali et al demon-

strated that the increase in EC monolayer permeability

induced by prolonged hypoxia was reversible during a

subsequent hour of normoxia.128 A reduction in ROS-

mediated cytokine secretion, which was increased by

hypoxia, appeared responsible for the effect. In a related

study, reoxygenation reduced EC-neutrophil adhesion trig-

gered by hypoxia.129 Since inflammation can trigger

increased EC permeability, a reduction in inflammation

may improve EC barrier function. Rapid reassembly of

EC microfilaments from an increase in ATP levels,130

with restoration of cytoskeleton integrity, may also occur

with attenuation of hypoxia.

Destabilization of HIF-1 upon correction of hypoxia

may help attenuate a cycle of hypoxia and inflammatory

responses.62 In addition, S-glutathionylation of protein thiols

under oxidative stress provides a reversible metabolic switch

governing eNOS uncoupling.131 As another potentially rever-

sible pathway, hypoxic repression of eNOS may occur from

eviction of histones from the eNOS promoter, while the ATP-

dependent chromatin-remodeling enzyme brahma-related

gene 1 (BRG1) can help restore eNOS expression following

reoxygenation.132 Additional studies will also be required to

define reversible biochemical pathways associated with shear

stress-triggered mechanotransduction, but S-nitrosylation of

EC proteins may represent one example.133

Injured but still viable myocytes may be rescued by

improvement in oxygen delivery. The potential contribution

of improvement in microvascular integrity on infarct size,

function, healing, and survival was described byWeis et al.28

Molecular mechanisms related to improved capillary integ-

rity and myocyte survival from attenuation of RMI may be

difficult to define, however, in view of the complex biochem-

istry of cell death,134,135 including apoptosis, necrosis, and

autophagy. Reduction of tissue hypoxia might reduce oxida-

tive stress, with inhibition of mitochondrial permeability

pore transition opening.136 Scarabelli et al137 found in a rat

heart I/R model that apoptosis of ECs occurs earlier than

myocyte apoptosis; moreover, release of soluble pro-apopto-

tic mediators associated with EC apoptosis appears to induce

myocyte apoptosis. Prevention of EC apoptosis may prevent

myocyte apoptosis. The findings of Pozzi et al,138 showing

that hypoxia alone, without the need for reperfusion, causes

apoptosis of myocytes in Langendorff-perfused hearts, are

consistent with this concept. Maintainance of myocyte via-

bility may allow time for other beneficial effects, such as

resolution of myofibrillar edema with improvement of myo-

cyte function.139

Even in the absence of myocyte viability, the presence of

microcirculatory flow through the infarct zone is a critical

determinant of complications. Hypoxia may increase the

activity of certain metalloproteinases (MPs)140 and decrease

that of tissue inhibitors of MPs.141 Enhanced degradation of

structural myocardial proteins such as collagen by MPs may

contribute to myocardial wall thinning, infarct expansion,

and adverse left ventricular remodeling.142 If so, hyperoxic

reperfusion may attenuate such pathologic responses.143

Oxygen Radicals
Hypoxia per se is well known to result in an excessive

load of ROS that can adversely affect proteins, nucleic

Table 4 Observed Effects Of HBOT/SSO2 On Reperfused

Tissues. The Effects Are Consistent With Attenuation Of RMI

Mechanism Response

Endothelial cells: ↓activation, ↓edema ↑flow

Inflammation: ↓WBC/EC adhesion ↑flow

↓COX-2, ↓TNF-alpha

Coagulation: ↓TXB2, ↑tPa ↑fibrinolysis, ↑flow

Metabolism: ↑ATP, ↑phosphocreatine ↓apoptosis,

↑viability

↑catalase, ↑SOD,

↑glutathione

↓ROS
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acids, and lipids.144 Injury to the distal electron transport

chain during ischemia is an important mechanism for the

formation of ROS during subsequent reperfusion.

Although reintroduction of oxygen necessarily results in

the generation of ROS, Lesnefsky et al145 found that

additional injury to the distal electron transport chain

was not observed during reperfusion in the isolated

rabbit heart.

The statistically significant, marked reduction in tissue

myeloperoxidase levels, a quantitative measure of neutro-

phil counts,146 in the reperfused myocardium treated with

SSO2 compared to control groups in two independent

models of myocardial infarction117,118 suggests that

inflammation was reduced experimentally by the treat-

ment. If ROS had been increased by SSO2, one would

have expected evidence of more inflammation.147 The

findings are consistent with inhibition of neutrophil adhe-

sion by HBOT in reperfused tissues. Although a burst of

ROS is generated during early myocardial reperfusion,

hypoxic reperfusion has been shown by EPR spectroscopy

to greatly increase ROS formation compared to normoxic

and hyperoxic reperfusion in an isolated rat heart I/R

model.148 ROS formation in this model was subsequently

found to be compartment-specific, however; low O2 per-

fusate promoted extracellular ROS, while high O2 perfu-

sate promoted intracellular ROS.149 Given the relatively

brief period of ischemia (20 mins), the high O2 perfusate

may have produced supranormal intracellular PO2s, rather

than attenuated RMI.

As reviewed by Thom, oxidant stress may provide a

beneficial role in the effects of HBOT, similar to the role

of ROS in signal transduction cascades related to ischemic

preconditioning.150 In addition to the possibility that

attenuation of RMI may reduce leukocyte activation,

hyperoxia per se has been shown to increase nitrosylation

of B-actin, so that filamentous actin distribution within the

cell is altered and inhibits B2 integrin clustering at the

membrane surface. HBOT has also been shown to inhibit

lipid peroxidation via a reaction between hydroperoxyl

radicals and organic radicals.150 The reaction, in addition

to attenuation of ischemia, may help explain the reduction

in lipid peroxidation products associated with HBOT for

carbon monoxide poisoning.

Limitations
The remarkably low adverse event rate at 30 days and 1 year in

the IC-HOT trial126,127 is consistent with clinical observations

regarding the effect of intracoronary hyperoxemia during

reperfusion on infarct size.124–126 However, the optimal level

and duration of SSO2 reperfusion is unknown. Whether brief

intermittent infusions or repeat infusions of SSO2 over several

days would be advantageous has also not been studied. Real-

time assessment of cellular ischemia or hypoxia during treat-

ment would be helpful but currently possible only in animal

models with technologies still in evolution. The potential

contribution of osmotic removal of tissue edema (including

within endothelial cells) by hyperoxemia151 is unknown but

may acutely reduce myocardial edema that compresses capil-

laries (similar to “compartment syndromes” that respond to

HBOT). Unlike HBOT, however, dissolved nitrogen is not

removed in association with AO-induced hyperoxemia, so

that this mechanism may be enhanced.

In order to mimic the clinical setting, SSO2 infusion

has been performed in animal models 15–30 mins after the

onset of coronary artery reperfusion. Substantial microvas-

cular and myocyte injury resulting from pathogenetic

mechanisms associated with reperfusion per se (eg, Ca2+

overload, ROS, mitochondrial permeability transition pore

opening, etc.) may have already occurred prior to treat-

ment. Indeed, Johnson et al118 showed experimentally that

immediate perfusion with SSO2 post coronary ischemia

via a retrograde coronary venous route was more effective

in infarct size reduction compared to similar treatment

following a 30-mins period of reperfusion.

It is possible that successful treatment of pathogenetic

mechanisms associated with reperfusion would reduce the

severity of RMI. Conversely, improvement in microvascu-

lar flow by reduction of RMI may enhance the efficacy of

therapeutic strategies directed at specific aspects of poten-

tially lethal reperfusion injury.152–154

Conclusions
Physiologic heterogeneities in flow and in vulnerability to

ischemia provide a substrate for RMI after a prolonged

arterial occlusion. Highly specialized methods have been

required for its detection even experimentally, however, so

that the problem has received little attention clinically. The

recent advances in OPS imaging of the microcirculation in

man have provided important insights regarding the implica-

tions of a reduction in functional capillary density and het-

erogeneously low erythrocyte flow on tissue viability. The

results of studies of HBOT and SSO2 during postinfarction

reperfusion provide compelling evidence that enhanced oxy-

gen delivery in plasma can be used to attenuate a cycle of

RMI and obstructive responses of ECs and blood elements,

thereby improving tissue level flow and myocardial viability.
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