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Abstract: Recent advancements in oncolytic virotherapy commend a special attention to

developing new strategies for targeting cancer cells with oncolytic viruses (OVs).

Modifications of the viral envelope or coat proteins serve as a logical mean of repurposing

viruses for cancer treatment. In this review, we discuss how detailed structural knowledge of

the interactions between OVs and their natural receptors provide valuable insights into tumor

specificity of some viruses and re-targeting of alternate receptors for broad tumor tropism or

improved tumor selectivity.
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Introduction
Oncolytic virotherapy is a dynamic field of cancer treatment with over 70 clinical

trials registered to date.1 The majority of oncolytic viruses (OVs) are used in their

native, replication-competent form to cause a direct oncolysis of tumors. For instance,

coxsackievirus, parvovirus, Newcastle disease virus, measles virus, vaccinia virus and

Seneca Valley virus have been used in clinical trials in their native forms.2–6 On the

other hand, human pathogenic viruses such as herpes simplex virus-1, poliovirus and

adenovirus have been genetically modified to limit their replication to tumor sites and

to reduce their virulence in normal tissues.7–9 In addition to the direct oncolysis, OVs

can kill cancer cells via several indirect mechanisms: the activation of immunologic

pathways and antiangiogenesis.10,11 En route to reaching cancer cells, OVs must

overcome a range of complex physical and chemical barriers to finally interact with

specific cellular receptors.12 Perhaps the most exhaustive obstacle in systemic deliv-

ery of OVs is the neutralization of viruses by pre-existing antibodies or triggered anti-

viral immune response.13 One way to bypass the host immunity is to mask/manip-

ulate viral surface proteins to avoid recognition by neutralizing antibodies.14,15

However, eliminating antibody recognition does not guarantee a successful infection

of tumors with OVs as the cellular uptake will ultimately be dependent on virus

binding to the cellular receptors. Expression of virus cellular receptors in cancers

varies depending on tumor type as well as among different patients with the same

type of cancer.16 In such cases, OVs need to be modified to re-target the cancer via

alternative receptors. Thus, the manipulation of OV surface proteins to either cir-

cumvent anti-viral immune response or to exploit different receptors requires in-depth

knowledge of how they interact with their cellular receptors at a structural level. In

this review, we discuss the interactions between clinically evaluated OVs and their

cellular receptors and how they have been modified to target cancers.
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Oncolytic Viruses And Cancer
Tropism
Herpes Simplex Virus
Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) belong to

the family of Herpesviridae, genus Simplexvirus.17 HSV

virion has a complex architecture characterized by a

dsDNA genome, an icosahedral capsid (nucleocapsid), an

amorphous layer of protein (tegument) and an envelope

(Figure 1A).18 Both HSV-1 and -2 are genetically stable

and considered to be the most serious human pathogens in

their family. HSV-1 was shown to be associated with ence-

phalitis and orofacial herpes infections, whereas HSV-2

mostly causes genital infections.19 The remarkable patho-

genicity of HSV is attributed to its ability to establish latent

infections in sensory neurons, thus providing a logical rea-

son to manipulate these strains for therapeutic applications.

T-VEC is a genetically modified strain of HSV-1 and

represents a major breakthrough in immunotherapy being

the first and only US FDA approved oncolytic virus to

date.20–23 T-VEC is presently used as intralesional injec-

tions to treat non-resectable melanoma with many ongoing

Phase I/II clinical trials showing the possibility of using

the virus in conjunction with other treatments such as

immune checkpoint inhibitors.24,25 Furthermore, two

other strains of HSV-1, G207 (Infected cell protein (ICP)

34.5 and ribonucleotide reductase mutated) and NV1020

(ICP34.5 mutated) have completed Phase I/II clinical trials

in malignant brain tumors and in colorectal cancer liver

metastasis, showing partial clinical responses and stabili-

zation of metastasis, respectively.26,27

While modifications to the T-VEC genome are aimed at

reducing the neurotoxicity of the wild-type strain and stimulat-

ing a strong immune response in tumor site, expression levels

of cellular receptors and their interactionswithHSV still play a

vital role in virus entry into tumor cells. HSVutilizes four viral

glycoproteins, gB, gD, gH and gL (Figure 1A), expressed on

the outer envelope to establish interactions with various cell

surface receptors and to facilitate cell entry.28,29 In order to

initiate HSV cell entry, at least three different classes of cell

surface receptors should interact with the respective

glycoproteins.29,30 Current molecular and structural biology

literature identifies three steps in penetrating host cells: 1) gB

attachment to heparan sulfate proteoglycans (HSPG)244, 2) gD

binding to nectin-1,31,32 herpes virus entry mediator

(HVEM),33 or 3-O-sulfated heparan sulfate, and 3) gB binding

to paired Ig-like type 2α (PILRα),34 nonmuscle myosin IIA

(NMHC-IIA) or myelin-associated glycoprotein (MAG) and

initiation of envelope fusion with plasma membrane.29 Upon

the envelope fusionwith host-cellmembrane,HSVnucleocap-

sid is translocated to the nuclear pore throughwhich viral DNA

Figure 1 Structures of enveloped, DNA oncolytic viruses in complex with their cellular receptors. (A) Schematic diagram of herpes simplex virus-1 (HSV-1). (B) HSV-1
utilizes its surface exposed glycoprotein D ectodomain to bind host cellular receptor herpes virus entry mediator A (HveA) ectodomain (PDB: 1JMA). (C) Glycoprotein D

of HSV also interacts with the first Ig domain of nectin 1 at 1:1 stoichiometry. Nectin-1 binding site on gD differs from HveA binding site, as evident from the crystal

structures arranged in the same orientations (PDB: 3SKU).
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is released into the nucleus.35 Evidence from various clinical

studies points toward a direct relationship between the expres-

sion of HSV receptors in tumors, cancer progression and

prognosis. For instance, herpesvirus entry mediator (HVEM),

a member of the tumor necrosis factor (TNF) superfamily, has

been shown to play a role in activating inhibitor signaling in

T-cells upon binding to BTLA ligand (B-lymphocyte and

T-lymphocyte attenuator).36 Increased expression of HVEM

has been reported in hepatocellular carcinoma,37 gastric

cancer38 and melanoma.36 Structural evidence for interactions

between HVEM and HSV gD protein arises from a crystal

structure of gD ectodomain truncated at residues 285 (gD285)

bound to the ectodomain of HVEM (Figure 1B).33 In both

HSV-1 and -2, gD is structurally unique in comparison to other

members of the family due to diverging N-terminal hairpins.39

The interface between gD285 and HVEM is comprised of

interactions between short, N-terminal hairpin (1–37) that

extends towards the V-like immunoglobin core of gD to estab-

lish interactions with two cysteine-repeat-domains (CRDs) of

HVEM. C-termini of gD and HVEM are arranged in opposite

directions, presumably anchored to viral and cellular mem-

branes, respectively. The observation that only a small segment

of gD protein is involved in HVEM binding suggests the

possibility of manipulating gD protein to redirect HSV to a

different receptor, such as nectin-1 or 3-O-sulfated heparan

sulfate, depending on their expression levels in cancers.14

Nectin-1 is another cell surface receptor that binds gD of

HSV.32 Nectin-1 belongs to the family of nectin or nectin-

like receptors that play an important role in cell adhesion.40

Results from various in vitro and clinical studies have identi-

fied increased expression of nectin-1 and nectin-2 in cancers

such as breast cancer,41 highly migratory and invasive

carcinoma,42 squamous cell carcinoma43 and colorectal

cancer.44 In such instances, nectin-1 serves as an excellent

predictor of HSV oncolytic sensitivity. Interactions between

gD and nectin-1 have been characterized by crystallization of

truncated forms of the gD ectodomain (gD285, truncated resi-

dues 1–285) complexed with nectin-1 (Figure 1C).31 The

crystal structure identifies both N- and C-termini and a residue

located in Ig core interacting with the first Ig domain of nectin-

1 at 1:1 stoichiometry, resembling an interaction pattern similar

to nectin-1 homodimers. Interestingly, interactions in gD285-

nectin 1 interface are similar to those observed in nectin-1

homodimer interface and distant from gD285-HVEM inter-

face due to the absence of N-terminal hairpin. From a

physiological point of view, gD binding to nectin-1 can

abolish nectin-1 dimerization, eventually affecting cell–cell

adhesion.31 Therefore, modified HSV strains could have an

additional mechanism of hampering tumor progression apart

from triggering anti-tumor immunity.

Because of the wide expression of nectin-1 in human

cells,45 targeting nectin-1 expressing tumors with HSV-1

could be problematic in the case of systemic immunother-

apy. Such off-target effects can be minimized either by

developing HSV mutants capable of escaping nectin-1

while still retaining its ability to bind HVEM, or by

identifying potential bi-soluble adapters for targeting cog-

nate tumor receptors.46 First evidence for latter strategy

comes from targeting of epidermal growth factor receptor

(EGFR) expressing cells with a HSV variant modified with

P-V528LH adapter consisting of gD ectodomain binding

region of nectin-1 fused to an EGFR-specific monoclonal

antibody.46

Vaccinia Virus
Vaccinia virus (VV) is a large, enveloped dsDNA virus

(~191 kbp) from the genus Orthopoxvirus of the

Poxviridae family.47 The natural host and origin of VV are

not known.48 Characteristic to VV is its replication strategy

which takes place in cytoplasmic viral factories of infected

cells.49 The genome of VVencodes more than 200 proteins,

of which approximately 20 are envelope proteins.50 During

the life cycle of VV, three distinct particle types are pro-

duced; (1) intracellular mature virions (IMV), (2) wrapped

virions (WV) and (3) extracellular enveloped virions

(EEV).50 Mature virions (MV) are stable under virus pur-

ification conditions, remaining the most extensively studied

form of the virus. By contrast to other dsDNA viruses, IMV

has a complex, asymmetric structure that consists of a

nucleoprotein core surrounded by a single lipoprotein

membrane.51

Since its use in eradicating smallpox,52 VV has played

a seminal role as recombinant vectors in gene therapy.53

Both wild-type and recombinant strains of VV have been

of particular interest in oncovirotherapy.54 As an oncolytic

agent, VV has several advantages such as the ability to

incorporate a large amount of foreign DNA, fast and

efficient replication and safety.55 Moreover, VV displayed

natural cancer tropism, selectively targeting tumors after

systemic administration.54 Clinical trials on VV thus far

have employed a potent, yet safe form of VV (JX-594),

which encodes granulocyte-macrophage colony-stimulat-

ing factor as an immunomodulator.55,56,57

Vaccinia virus MVs entry into host cells is either mediated

by fusion of MV membrane with the plasma membrane at

neutral pH or through receptor-mediated endocytosis under

Dovepress Jayawardena et al

Oncolytic Virotherapy 2019:8 submit your manuscript | www.dovepress.com

DovePress
41

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


acidic conditions.58,59 Nonetheless, no receptors have been

unequivocally identified. Glycosaminoglycans (GAGs),

highly polyanionic compounds present on the surface of stro-

mal tumor cells, have been suggested as putative receptors

facilitating VV entry.59,60 VV membrane proteins A27L and

H3L are essential for fusion of viral membrane with cell

membrane.61,62 Positively charged amino-terminal of A27L

can also act as a site for binding of heparan sulfate (HS).63 The

involvement of additional GAGs such as chondroitin sulfate

(CS) in binding the VV surface protein D8L has been shown,

but subsequent studies eliminated the essentiality of these

receptors.59,64,65 To date, an exact mechanism behind VV-

induced oncolysis is unknown. Whether the anti-tumor effi-

cacy is receptor-mediated or attributed to tumor vasculature66

or whether overexpression of ribonucleotide reductase is

essential for viral replication67 still remains an open question.

Rhabdoviruses
Members of Rhabdoviridae family are enveloped, nega-

tive-sense single-stranded (ss) RNA viruses with a 11–15

kb linear genome encoding five proteins: glycoprotein (G),

matrix protein (M), phosphoprotein (P), polymerase (L)

and nucleoprotein (NP).68 Rhabdoviruses (RhVs) virions

are about 180 nm long and 75 nm wide and have a rod- or

bullet-shaped geometry. The G proteindecorating the

envelope is involved in receptor binding, whereas NPs

are associated with RNA (NP-RNA). Together with L

and P, NP-RNA complex forms a ribonucleoprotein parti-

cle, which makes contact with M proteins beneath the

envelope (Figure 2A).

RhVs have a broad and diverse host specificity with

Lyssavirus and Vesiculovirus genera, infecting animals and

the remaining RhVs infecting plants.69 RhVs present sev-

eral advantages that recommend them for development as

oncolytic agents. RhV infections are relatively rare, there-

fore there is no pre-existing immunity. Additionally, they

do not show genetic reassortment, integration in the host

genome or malignant transformation due to cytoplasmic

replication and have a relative ease of large-scale virus

production in a broad range of cell lines. Several RhVs

have been investigated for their oncolytic properties.70,71

Vesicular stomatitis virus (VSV) is a vesiculovirus that

infects cattle, horses, pigs, and other mammals. VSV

infections are usually asymptomatic in human and non-

lethal in animals, with mild flu-like symptoms.70 VSV

exhibits a robust infectivity and broad tropism to tumors,

attributed to the defective interferon (IFN) responses in

tumor cells.72 Entry of VSV into tumor cells is initiated by

the interactions between its coat protein VSV-G

(Figure 2A) and highly ubiquitous cellular receptor, low-

density lipoprotein receptor (LDLR).73 LDLR is a trans-

membrane receptor whose functions include cell-signaling,

endocytosis and trafficking of cellular proteins. The most

abundantly expressed form of LDLR in solid tumors is

LDLR1, shown to be linked to low patient survival rate.74

The ligand binding domain of LDLR is comprised of

cysteine-rich repeats conserved among other members of

LDLR family,75 therefore presenting alternative entry

points for VSV. Crystal structures of VSV-G in complex

with two different cysteine-rich domains, CRD2

(Figure 2B) and CRD3 (Figure 2C) of LDLR demonstrate

that both binding sites on VSV-G are identical.76 VSV-G-

LDLR complex is internalized into host cells through a

clathrin-mediated endocytosis.77,78 In the case of recombi-

nant VSVΔM51 encoding reovirus fusion-associated small

transmembrane (FAST) protein, this mechanism extends

from the virus-cell fusion to cell-cell fusion.79 The process

repeats, expanding to un-infected cells and could lead to

large multinucleated giant cells (syncytia).80 In another

study, the use of VSV-G substituted with lymphocytic

choriomeningitis virus glycoprotein (LCMV-GP) has

shown minimal neural toxicity and potent anti-tumor

effect in mice brain tumor models.81 LMCV-GP may

bind differentially glycosylated α-dystroglycan (αDG) in

brain tumors with high-affinity82,83 despite the lower

expression levels of αDG in human glioblastoma.84

Maraba virus is another vesiculovirus which binds

LDLR and has the capacity to infect a broad range of

human cancers.85,86 In order to specifically target cancer

cells and to enhance replication efficacy, two mutations

were introduced: L123W and Q242R in M and G proteins,

respectively.87,88 Maraba virus strain MG1 expressing

human melanoma-associated antigen-A3 (MAGE-A3)

and an adenoviral vector (Ad) expressing the same antigen

have been developed as an oncolytic vaccine strategy with

high immune priming efficiency.89

Newcastle Disease Virus
Newcastle disease virus (NDV) is a ssRNA virus in the

genus Avulavirus of Paramyxoviridae family.90 The envel-

oped NDV capsid harbours a non-segmented negative-

sense ssRNA that codes for six proteins (Figure 2D).

Nucleoprotein (NP), phosphoprotein (P) and RNA depen-

dent RNA polymerase (RdRP) bind the RNA genome to

form the nucleocapsid.90 Other NDV proteins include

matrix protein (M), which forms the inner layer of virus
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envelope, hemagglutinin-neuraminidase (HN) and fusion

protein (FP), involved in receptor binding and entry,

respectively.91

Numerous in vitro studies have shown that NDV is

non-pathogenic to humans and elicits anti-tumor effects

without any genetic modifications or limitations in

Figure 2 Structures of enveloped, RNA oncolytic viruses in complex with their cellular receptors. (A) Schematic diagram of vesicular stomatitis virus. (B and C) Vesicular

stomatitis virus (VSV) surface glycoproteins (VSV-G) identify and interact with cysteine-rich domains (CRD) on low-density lipoprotein receptors (LDLR) expressed in

cancer cells. Different CRDs interact with VSV-G at identical locations as evident from crystal structures arranged in the same orientation (PDB: 5OLY and 5OY9). (D)

Schematic diagram of Newcastle disease virus (NDV). (E) Newcastle disease virus (NDV) surface protein hemagglutinin-neuraminidase (HN) exploits cell surface sialic acid

(SA) as the cellular receptors. Two SA binding sites exist on HN dimers, SA1, and SA2 (PDB: 1USR). (F) Schematic diagram of Measles virus (MV). (G and H) measles virus

(MV) H binds CD46 short consensus repeats (SCR) 1, SCR2, SCR1-2 interface (PDB: 3INB) and domain 1 of nectin-4 (PDB: 4GJT).
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delivery methods.92–94 MTH68/H, PV701 and NDV-HUJ

are three attenuated strains of NDV with highly efficient

intratumoral replication, tumor cell lysis and immunosti-

mulation, currently in Phase I/II clinical trials.4,95 In addi-

tion, NDV-HUJ strain is able to bypass the effect of an

anti-apoptotic protein Livin.4

NDV binds tumor cells via interactions between HN and

cell surface sialic acids (SA) receptors.96 SA is a derivative

of neuraminic acid overexpressed in multiple cancers145–147

and was shown to be associated with the metastasis of breast

cancer.97 HN has a dual function: to recognize the cell sur-

face receptors, and subsequently to promote the fusion activ-

ity of the F protein and to cleave off the sialic acid from

progeny virus particles.98 HN is composed of a long stalk

connected to a globular head that consists of a six-bladed β-
sheet propeller.99 Two sites have been identified on HN

dimers that form interactions with sialic acid (Figure 2E).

The first binding site is involved in mediating neuraminidase

activity, receptor binding and promoting the fusion activity of

F protein.100 The second binding site is located at the mem-

brane-HN distal region interface, which aids in tethering the

virus in close proximity to the host membrane during

fusion.101,102

Measles Virus
Measles virus (MV) is an enveloped, spherical-shaped,

negative-sense ssRNA virus (Figure 2F) from the genus

Morbillivirus of the Paramyxoviridae family.103 Due to its

highly contagious nature, MV remains a major human

health concern worldwide, causing approximately 150,000

deaths annually.104 Similar to RhVs, the non-segmented

RNA genome (15–16 kb in size) of MV encodes five

structural proteins: glycoprotein (G), matrix protein (M),

phosphoprotein (P), large protein (L) and nucleoprotein

(NP).103,105 On the MV envelope there are two types of

glycoproteins characteristic to paramyxoviruses: 1)

hemagglutinin106 and 2) fusion protein,107 responsible for

cell receptor attachment and fusion, respectively.

Live-attenuated MV vaccine strains can be used as onco-

lytic agents to target different receptors overexpressed in

tumors.3 Measles virus hemagglutinin (H) binds CD46,108

signaling lymphocyte activation molecule (SLAM)109 or

nectin-4 in epithelial cells.110 Overexpression of CD46 and

nectin-4 receptors has been identified as a strategy to prefer-

entially target cancers with MV.111,112 In addition, SLAM

expressed on activated B and T-lymphocytes, monocytes,

and dendritic cells has been reported to be the main entry

port for wild-type MV.113

CD46 structure is comprised of a C-terminal domain,

a transmembrane domain, a short region with unknown

function and four modules of short consensus repeats

(SCR) 1-4 at the N terminus.143,114 The crystal structure

of dimeric H-CD46 identifies interactions between MV-

H and SCR1, SCR1-SCR2 interface and SCR2 of CD46

(Figure 2G). CD46 SCR1-2 is pivotal to capsid binding

in adenoviruses,115 discussed later in this review.

However, the binding sites of MV-H for CD46 and

SLAM overlap,116 supporting the need to develop

strains that can preferentially bind CD46. Two amino

acid substitutions, N481Y and S546G in MV-H protein,

have been shown to arm MV strains to efficiently use

CD46 as an entry receptor in CD46+ cells.117 In another

study, structural characterization of MV-H-nectin-4 com-

plex revealed that the amino-terminal of nectin-4 binds

β4-β5 groove of MV-H (Figure 2H).110 This study iden-

tified a hydrophobic pocket located in the groove sug-

gested to be involved in binding all three receptors for

MV, with different residues involved for different

receptors.110

Similar to RhVs, MV exerts its oncolytic activity by a

sequence of virus-cell fusion through H protein, cell-cell

fusion through F protein and subsequent apoptosis.118 The

Edmonston vaccine strain of MV (MV-Edm) has been

modified for non-invasive imaging of MV activity in

tumors by introducing either sodium iodide symporter

(NIS), the β subunit of human chorionic gonadotropin

(βhCG) or human carcinoembryonic antigen (CEA) into

the MV genome. The MV-CEA strain has been tested in

Phase I clinical trials in patients with platinum-resistant

ovarian cancer, with evidence pointing towards the recruit-

ment of anti-tumor effector T-cells to establish an anti-

tumor immunity.119,120 Selective tumor tropism of MV

was further validated in a Phase I clinical trial in myeloma,

where systemically administered MV-NIS showed replica-

tion within tumors.121 Alternative to live-attenuated vac-

cines, recombinant, replication-competent MV could be

developed to re-target different surface receptors

expressed on tumor cells. This requires the mutation of

SLAM and CD46 binding sites, thus resulting in a double

ablated chimeric H protein to prevent the binding of MV

to normal cells expressing SLAM and CD46.122 Mutations

at Y481 and R533 on MV-H and subsequent incorporation

of single-chain antibodies directed against cognate recep-

tors such as EGFR has shown to elicit oncolysis of EGFR-

positive tumor models in mice.123,124
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Adenovirus
Human adenoviruses (HAdVs) belong to the family of

Adenoviridae, genus Mastadenovirus and are divided into

seven different species from HAdV-A to -G.125 They are

non-enveloped viruses with an icosahedral capsid protect-

ing a dsDNA genome of 26–46 kbp (Figure 3A). The

icosahedral capsid is comprised of 252 capsomeres, con-

sisting of 240 hexon trimers and 60 penton bases

(PB).38,126 Attached to PB plates are trimers of fiber mole-

cules, which utilize the conserved N-terminal (residues

1–20) to bind the PB and the C-terminal knob to bind

cellular receptors. Collectively, hexon trimers, PBs, and

fiber molecules are known as the major capsid proteins. In

addition, 240 copies of the minor protein IX, and several

copies of the minor proteins IIIa, VI and VII are located on

the capsid exterior and interior, respectively. All the HAdV

Figure 3 Structures of non-enveloped, DNA oncolytic viruses in complex with their cellular receptors. (A) Schematic diagram of human adenovirus (AdV). (B)
Coxsackievirus-adenovirus receptor (CAR) extracellular D1 domain interacts with a monomer of AdV12 knob (PDB: 1P69). (C) AdV 11 exploits CD46 as the primary

receptor. AdV knob monomer interacts with short consensus repeat (SCR) 1 and SCR1-2 interface. Another knob monomer binds the base of SCR2 (PDB: 3O8E). (D)

AdV52 utilizes its short fibers to bind polysialic acid (polySA) and monomer 1 and 3 of the knob trimers interact with two polySA (PDB: 6G47). (E) Desmoglein 2 (DSG2)

acts as the receptor for AdV3 with two distinct receptor:knob ratios of 1:1 and 1:2 observed. DSG2 EC2 and EC3 interact with monomer 1 and 2 of AdV3 knob,

respectively (PDB: 6QNT). (F) Schematic diagram of human Reovirus (RV). (G) RV exploits cell surface sialic (SA) acid as its attachment receptor to tether the virus in close

proximity to host membrane to interact with an entry receptor, junction adhesion molecule-A (JAM-A). SA binds to the stalk of the trimeric sigma protein (PDB: 3S6X),

whereas (H) JAM-A D1 domain interacts with the head of the trimeric sigma protein (PDB: 3EOY).
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strains can cause gastrointestinal infections, with some

subtypes being reported to cause respiratory, urinary tract

infections and keratoconjunctivitis.127 HAdV is also

responsible for viral-induced tumors in mice, with subtype

A showing the highest oncogenicity, subtype B being

weakly oncogenic,128,129 while C, E and F are known to

be non-oncogenic.127

Adenoviruses are one of the most extensively studied viral

vectors due to ease of genome manipulation. In addition,

HAdVs provide several distinct advantages such as inherently

potent lytic activity and feasibility of manufacturing high viral

titers.130 Numerous HAdV strains have been genetically engi-

neered (ONYX-015 and DNX-2401) to reduce infection in

normal tissues and to selectively target tumors.131,132

HAdV entry into host cells is a two-step mechanism,

which involves the initial attachment of the viral fibers to

cell surface receptors, followed by interactions with other

capsid proteins and internalization receptors.133 Upon

virus internalization by endocytosis, the capsid escapes

into the cytosol through lysis of endosomal membrane

and is subsequently trafficked to the nuclear envelope

along microtubules, where the viral genome enters the

host nucleus via nuclear pores.134 Most of the HAdVs

and other AdV subtypes except HAdV B use the coxsack-

ievirus and adenovirus receptor (CAR) for cellular

attachment.135 CAR is a type I transmembrane glycopro-

tein that belongs to the immunoglobulin (Ig) superfamily.

It contains a cytoplasmic C-terminal, a hydrophobic trans-

membrane domain and two extracellular Ig-like domains,

D1 and D2.136 CAR D1 domain alone is sufficient to

establish interactions with HAdV fiber knob

(Figure 3B).137,138 However, the variable expression of

CAR in cancers is a significant challenge for HAdV

oncovirotherapy.139 Low expression of CAR was reported

for gastric, colon, and prostate cancer cell lines under

hypoxic conditions.140 In addition, CAR expression is

downregulated in cancer cells treated with chemotherapy

or radiation, which poses an issue when using HAdVs in

combination therapies.141

The majority of subtype B HAdVs and some of subtype D

(AdV37) have been shown to exploit CD46, a type I trans-

membrane protein overexpressed in tumors, as the attachment

receptor.142,143 Crystallographic studies showed that AdV11

trimeric fibers form a compact knob that interacts with the

SCR1-2 regions of three CD46 molecules (Figure 3C).115

Complementary or not to CD46, sialic acid has been shown

to interact with the top region of AdV37 knob trimer. This has

been further confirmed by structural studies on AdV52, which

utilizes its long fibers to bind CAR and short fibers to bind

polysialic acid (Figure 3D).144,145,146,147 CD80 and CD86 are

another two members from the Ig superfamily that play a key

role in subtype B AdV3 entry. Both CD80 and CD86 are

expressed in dendritic cells, thus targeting these receptors by

AdV can elicit a strong immune response via T-cell

activation.148,149,150

Recent studies have identified desmoglein 2 (DSG2) as

a new receptor for HAdV3, HAdV7, HAdV11 and

HAdV14 strains of subtype B.151 DSG2 is a type 1 trans-

membrane glycoprotein present in epithelial cells that

plays an essential role in cell-cell adhesion.152,153 The

extracellular domain of DSG2 is comprised of four cad-

herin domains, EC1-EC4, with EC2 and EC3 accounting

for the region that binds trimeric fiber knob of HAdV3.154

DSG2 is overexpressed in a range of epithelial cancers,

acting as a marker for targeting such cancers with

AdV.155,156,157,158 A cryo-EM study showed that DSG2

EC2-EC3 fragment binds the top of the trimeric HAdV3

in 2:1 or 1:1 stoichiometry (Figure 3E).159 EC2 and EC3

establish interactions with the loop regions of monomers 1

and 2, respectively, while the third HAdV monomer of the

knob is not engaged. Furthermore, mutagenesis experi-

ments identified D261 as an essential knob residue

required for DSG2 binding.159

Endocytosis of the HAdV-CAR complex is mediated by

the interactions between internalization receptors, integrins

and five-fold capsid vertices.160 Structural information is

available on entry receptors αvβ3 integrins bound to adeno-

virus, which shows the requirement of Arg-Gly-Asp (RGD)

moiety on the penton base to interact simultaneously with

several integrins in different orientations to facilitate integrin

clustering and subsequent viral entry into host cells via

endocytosis.161,162 However, mutation of RGD sequence

was associated with only a reduced viral infection but not

complete abolishment.163 Though no plausible mechanisms

have been proposed for an integrin-independent entry path-

way of AdV, there is evidence for compensation for loss of

penton-integrin interactions through recruitment of fiber

receptors.163,164 In the absence of sufficient levels of CAR

for a successful infection, re-targeting of integrin receptors

by incorporation of an RGD moiety in the fiber knob of

AdV5 has shown to be efficient in promoting infection of

ovarian tumor cells.165

Reovirus
Reoviridae is a family of non-enveloped, dsDNA viruses

with an icosahedral capsid structure (~85 nm in diameter)
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composed of a large outer layer, and a smaller inner layer

(Figure 3F). Reovirus (RV) dsDNA is structured into 12

segments, categorized into three size-dependent groups:

large, medium and small.166,167 The outer shell of the

capsid and at the vertices of the virion are formed by

heterodimers of µ1 and σ3 proteins, while pentamers of

λ2 protein form a channel connecting to trimers of attach-

ment protein σ1.168

RV requires interactions with junctional adhesion

molecule-A (JAM-A)169 and cell surface monosaccharides

such as sialic acid170 to penetrate the host cell. JAM-A

expression has been proposed to be linked to tumor cell

proliferation and progression, whereas in some cases an

inverse relationship was observed.171 The first step of the

RV binding to host cells involves a low-affinity interaction

of the lower part (stalk) of σ1 protein with cell surface

sialic acid (Figure 3G). This process facilitates the anchor-

ing of RV capsid in close proximity to host-cell membrane

in order to initiate interactions with a secondary receptor.

High-affinity interactions between JAM-A D1 domain and

the head domain of σ1 protein (σ1H)169 serve as the

second step in RV host-cell attachment (Figure 3H).

Reolysin, a wild-type, non-pathogenic, serotype 3 RV,

has been widely investigated in preclinical and clinical

settings.172 Phase I and II clinical trials of advanced

solid tumors and recurrent gliomas,173–175 and combina-

tion therapy with paclitaxel/carboplatin or docetaxel176,177

showed Reolysin to be safe and effective.

Parvovirus
Human parvovirus (HPV) is a single-stranded DNA virus in

the Parvoviridae family, associated with a wide variety of

diseases in humans.178 The genome of HPV is packaged

inside an icosahedral capsid of ~280 Å in diameter. The

capsid is composed of 60 structural subunits, in which

major capsid protein VP2 is the primary protein (~95%)

while the minor capsid protein VP1 is less abundant

(~5%).179 Capsid proteins have an eight-stranded, antipar-

allel β-barrel “jelly roll” fold. Engineered and wild-type

strains of HPV demonstrate a tumor-selective replication

with excellent safety profiles. Oncolytic activity of HPV is

attributed to the direct oncolysis as well as induced anti-

tumor immunity.180

HPV B19 strain binds the erythrocyte P19 antigen

expressed in erythroid progenitor cells.181 However, entry

into host cells requires the involvement of α5β1 integrin co-

receptor,182 known to be essential for tumor progression in

certain cancers.183 Modifications of I367S and H373R in the

dimple region of the capsid in rat parvovirus strain H-1PV

have engineered the virus to re-target integrin receptors

expressed in cancers.184 In another study, transferrin receptor

1 (TFR1) has been identified as the cellular receptor for

canine parvovirus (CPV).185 TFR1 is a membrane glycopro-

tein linked to many diseases including cancers.185 However,

TFR1 expression is variable across different cancers.186 The

structure of CPV-TFR1 complex demonstrates an example

for a receptor saturating only a few of the 60 equivalent

binding sites on the capsid, resulting in an asymmetric

interaction.185

Coxsackievirus
Coxsackievirus (CV) is a non-enveloped, positive-sense

ssRNA virus (~7.4 kb) from the family of Picornaviridae,

genus Enterovirus (Figure 4A). CV is a major human patho-

gen causing a number of diseases including myocarditis and

meningoencephalitis.187 CV serotypes are categorized into

two groups; (1) coxsackievirus A (CVA) and coxsackievirus

B (CVB).188 CV RNA genomes code for four structural

proteins VP1–VP4 that form an icosahedral capsid, and

seven non-structural proteins.189,190 Characteristic to enter-

oviruses is the presence of four types of particles in their life

cycle: mature virion, procapsid devoid of RNA, an expanded

A-particle and an empty particle after RNA exit.191

Receptor binding in enteroviruses takes place in the

“canyon”, a depression located at 5-fold axis of the capsid.

The binding of the receptor displaces a fatty acid molecule

called the “pocket factor” located in a hydrophobic pocket

within VP1, below the canyon base. Loss of the pocket

factor induces a series of conformational changes in capsid

architecture, leading to capsid expansion and externaliza-

tion of VP1 N-terminus as well as VP4 for membrane

anchoring and subsequent RNA transfer.192 This mechan-

ism holds true for most of the enteroviruses and has been

well characterized for poliovirus (PV),193,194 enterovirus

71 (EV71)195 and CV196.

CVs utilize three different receptors for cellular entry.

CAR acts as both attachment and entry receptor for

CVB3.196 Cryo-EM reconstruction of CVB3 bound to

full length human CAR has shown that the N-terminal

region of CAR D1 domain contains the binding sites for

CVB3 (Figure 4B).196 In the CVB3-CAR interface, A and

G β strands of D1 domain form contacts with the north and

south rims of CVB3 canyon. All the external CVB3 capsid

proteins are involved in CAR binding with majority of the

interactions localized to VP1. Of note is the moderately

conserved nature of these receptor binding residues across
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six different CVB serotypes.197 VP2 residue N165 has

been suggested to be critical in stabilizing the electrostatic

interactions between the capsid and CAR.198 The distal

end of CAR D1 domain is a shared site for CVB3 and

adenovirus (as previously discussed) and their binding

sites overlap on C β strand and FG loop.196 Additionally,

the involvement of decay-accelerating factor (DAF) as an

attachment receptor in the CVB3-RD strain has been

demonstrated by another cryo-EM study,199 with one

DAF molecule linking two adjacent protomers on the

capsid exterior. The northern end of the VP2 puff (residues

129–180) in one protomer is linked to the south end of the

Figure 4 Structures of non-enveloped, RNA oncolytic viruses in complex with their cellular receptors. (A) Schematic diagram of coxsackievirus (CV). (B) D1 domain of

coxsackievirus-adenovirus receptor (CAR) acts as the binding site for coxsackievirus B (CVB) capsid proteins VP1-VP3 (PDB: 1JEW). (C) Coxsackievirus A variant 24

(CVA24v) capsid proteins VP1 and VP2 interact with the D1 domain of intracellular adhesion molecule-1 (ICAM-1) (PDB: 6EIT). (D) Schematic diagram of poliovirus (PV).

(E) Poliovirus utilizes CD155 on the cell surface as its cellular receptor. Similar to ICAM1 and CAR, CD155 D1 domain binds PV capsid proteins VP1 and VP2 from one

protomer and VP3 from the adjacent protomer (PDB: 3J8F). (F) Schematic diagram of Seneca Valley Virus (SVV). (G) Anthrax toxin receptor 1 binds to surface-exposed

loops of VP1–VP3 on SVV capsid (PDB: 6CX1).
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puff of the adjacent protomer, and the bulk of the interac-

tions are condensed between short consensus repeat (SCR)

2 and the north end of the puff. Unlike CAR D1 domain,

DAF does not enter the canyon and thus, does not induce

the conformational changes required for genome delivery

into the host cell.200

On the other hand, CVA binds both DAF and intercellular

adhesion molecule-1 (ICAM-1).201,202 DAF binding does not

induce conformational changes and primarily acts as an attach-

ment receptor,203 whereas ICAM-1 acts as an attachment/entry

receptor for CVA. Overexpression of DAF and ICAM-1 has

been reported inmultiple cancers.204,205,206,207,208 ICAM-1 is a

transmembrane immunoglobin with three structural compo-

nents: extracellular N-terminus, transmembrane domain, and

cytoplasmic C-terminus.209 Structural insights into CVA-

ICAM-1 stem from several cryo-EM investigations

(Figure 4C).201,202 Similar to other enteroviruses, the canyon

of CVA24v binds ICAM-1 D1 domain at the quasi 3-fold axis

of the capsid.202 The CVA24v-ICAM-1 interface is comprised

of interactions established between the FG loop of ICAM-1D1

domain and VP1. Finally, C and D β strands of ICAM-1 D1

domain interactwith theVP1GH loop,whereas theDE loop of

D1 forms additional contact with VP2 in CVA24v. This study

also provides insights into adapting CVA strains for a sialic

acid binding as a secondary receptor by mutating residue 250

of VP2 to tyrosine. Sialic acid metabolism has been shown to

be upregulated in metastatic cancers and acts as a receptor for

other oncolytic viruses discussed here such as adenovirus,

Newcastle disease virus and reovirus.

The therapeutic potential of CVA21 or CAVATAK has

been investigated in various preclinical melanoma studies

as monotherapy210 or in combination with doxorubicin.211

Furthermore, CAVATAK has completed a Phase I clinical

trial in patients with advanced melanoma with promising

safety and anti-tumor activity recorded.22 In vivo studies

of non-small-cell lung cancer xenograft models treated

with CVB3 demonstrated abscopal effect of this therapy,

suggesting an enhancement of antitumor immunity.212

Poliovirus
Poliovirus (PV), a member of Enterovirus genus, family

Picornaviridae, is the main causative agent of paralytic

poliomyelitis.213 Three different PV serotypes can be differ-

entiated according to their antigenic properties.214 Similar

to CV, PV possesses a negative-sense ssRNA genome of 7.5

kb coding for seven non-structural proteins and four struc-

tural proteins, which constitute the icosahedral capsid

(Figure 4D) as previously described for CV.215,216

Poliovirus entry into host cells is initiated by the inter-

actions between poliovirus receptor CD155, and capsid

canyon.217–220 PV undergoes the same conformational

changes characteristic to other enteroviruses. A-particle

formation,194,221 exit of RNA genome at a location on 2-

fold axis193 and empty particle formation222 have been

extensively characterized. CD155 is an onco-immunologic

protein overexpressed in human cancers with a role in

tumor cell invasion and migration.223 CD155 is a type I

immunoglobulin-like transmembrane protein that contains

three ectodomains D1–D3.218,224 CD155 expression is

upregulated in carcinomas225–227 and less abundantly

expressed in normal tissues with the exception of liver

development or regeneration.228 In the PV-CD155 com-

plex (Figure 4E), the D1 domain of CD155 binds VP1, and

VP2 of one protomer and VP3 of adjacent protomer at the

capsid quasi 3-fold axis.219 In the PV capsid, C-terminal,

GH, EF, BC loops, C β strand of VP1, B β strand, GH loop

of VP3 and EF loop of VP2 occupy the CD155 binding

site.

Poliovirus infection is rapid and remarkably efficient,

releasing as high as 10,000 mature virions per infected cell

at 6 hrs post-infection.229 Even though a rapid replication

warrants the applicability of PV in oncovirotherapy, a

counter mechanism must be in place to minimize the

neurotoxicity associated with wild-type PV. The neuro-

attenuated variant of PV, PVSRIPO has completed a

Phase I dose-finding clinical study in patients with grade

IV malignant glioma with no neurotoxicity reported.230

Seneca Valley Virus
Seneca Valley Virus is the only member of Senecavirus

genus of the Picornaviridae family. The overall structure of

SVVhas an icosahedral symmetry and is comprised of a non-

enveloped protein capsid harboring a positive-sense ssRNA

genome of approximately 7.3 kb (Figure 4F).231 Similar to

CV and PV, the SVV genome encodes seven non-structural

proteins and four structural proteins. To date, the SVV strains

have been classified into 3 clades,232–234 with the prototype

SVV-001 being the sole member of clade I.

SVV cell entry is dependent on its cellular receptor:

anthrax toxin receptor 1 (ANTXR1), also known as tumor

endothelial marker 8 (TEM8).235 ANTXR1 is a type I

transmembrane protein overexpressed in many types of

cancers, but weakly expressed in healthy tissues.236 The

role of ANTXR1 is unknown beyond its function as a

toxin and virus receptor; indeed, ANTXR1 knockout

mice exhibit no major phenotypic abnormalities.237
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However, ANTXR1 blockade has been shown to decrease

tumor angiogenesis and to potentiate an anti-tumor effect

towards certain cancers.238 Our group identified the sur-

face exposed loops on SVV-001 capsid exterior, BC loop,

loop II of VP1, the “puff” loop of VP2, and the “knob”

loop of VP3 which form the binding site for the extracel-

lular domain of ANTXR1 (Figure 4G).239 Furthermore, we

showed that SVV binding site on ANTXR1 is non-con-

served in its paralogous receptor, ANTXR2, which is

expressed in normal cells, thereby providing a structural

basis for tumor specificity of SVV.240 SVV empty capsid

binds ANTXR1, suggesting it may have potential as a

vaccine or as virus-like particles for the development of

tumor-targeted delivery of drugs.240

As suggested from both functional and structural stu-

dies, the tumor tropism of SVV-001 is attributed to recep-

tor-mediated internalization of the virus, a phenomenon

common to other oncolytic picornaviruses. However, a

successful SVV-001 infection may also require an addi-

tional innate immune defect.235 SVV-001 in its native form

provides several advantages for oncovirotherapy: the

native virus is genetically stable and non-toxic to healthy

tissues, it is safe and it homes to tumors when adminis-

tered systemically and pre-existing immunity for SVV is

rare.241 Several preclinical, Phase I/II clinical studies have

demonstrated the anti-tumor potential, intratumoral repli-

cation and safety of SVV in treating solid tumors with

neuroendocrine features.242,243

Conclusion
Oncolytic viruses (OVs) either have an inherent ability to

successfully replicate in cancer cells or they have been

modified to exploit de-regulated signaling pathways in

tumors. Nevertheless, the attachment of OVs to specific

receptors found in cancers plays a pivotal role in OV

tumor cell entry, subsequent viral replication and cell

lysis. However, the expression of these receptors varies

in different cancers and also among individual patients.

Furthermore, the presence of natural receptors of OVs in

normal cells may pose a potential challenge when the virus

is pathogenic in nature. Therefore, understanding the

structural details concerning how OVs interact with their

receptors can inform the development of more efficient-

targeted therapies to exploit cognate receptors and to

reduce off-target cytotoxicity. Additionally, oncovirother-

apy is constantly facing the challenge of overcoming anti-

viral immunity in cancer patients. In this case, the knowl-

edge of OV-receptor interactions is necessary to modify

the viral capsid or envelope proteins in order to bypass the

immune response without impairing the ability to bind

their cellular receptors.
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