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Purpose: Variability in patient treatment responses can be a barrier to effective care. Utilization of

available patient databases may improve the prediction of treatment responses. We evaluated

machine learning methods to predict novel, individual patient responses to pregabalin for painful

diabetic peripheral neuropathy, utilizing an agent-based modeling and simulation platform that

integrates real-world observational study (OS) data and randomized clinical trial (RCT) data.

Patients and methods: The best supervised machine learning methods were selected (through

literature review) and combined in a novel way for aligning patients with relevant subgroups that best

enable prediction of pregabalin responses. Data were derived from a German OS of pregabalin

(N=2642) and nine international RCTs (N=1320). Coarsened exactmatching ofOS andRCTpatients

was used and a hierarchical cluster analysis was implemented. We tested which machine learning

methods would best align candidate patients with specific clusters that predict their pain scores over

time. Cluster alignments would trigger assignments of cluster-specific time-series regressions with

laggedvariables as inputs in order to simulate “virtual”patients andgenerate 1000 trajectory variations

for given novel patients.

Results: Instance-based machine learning methods (k-nearest neighbor, supervised fuzzy

c-means) were selected for quantitative analyses. Each method alone correctly classified 56.7%

and 39.1% of patients, respectively. An “ensemble method” (combining both methods) correctly

classified 98.4% and 95.9% of patients in the training and testing datasets, respectively.

Conclusion: An ensemble combination of two instance-based machine learning techniques best

accommodated different data types (dichotomous, categorical, continuous) and performed better than

either technique alone in assigning novel patients to subgroups for predicting treatment outcomes

using microsimulation. Assignment of novel patients to a cluster of similar patients has the potential

to improve prediction of patient outcomes for chronic conditions in which initial treatment response

can be incorporated using microsimulation.

Clinical trial registries: www.clinicaltrials.gov: NCT00156078, NCT00159679, NCT00

143156, NCT00553475.

Keywords: coarsened exact matching, hierarchical cluster analysis, time series regressions,

agent-based modeling and simulation, machine learning

Plain Language Summary
Patients respond differently to the same treatments for chronic pain, which can make it

difficult to select the best treatment for an individual patient. Clinicians must rely on
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evidence from care delivered in real-world conditions (observa-

tional data) and from randomized clinical studies that were

designed to evaluate the cause and effect relationship of a drug

treatment using stringent predefined patient selection criteria.

This article discusses an analysis of an observational study of

patients treated with pregabalin for painful diabetic peripheral

neuropathy (a chronic pain condition that results from diabetes-

related nerve damage). Data from randomized clinical trials were

used to enrich the observational study data, using statistical

techniques and simulation to predict the potential therapeutic

responses of individual patients to pregabalin treatment.

Predicting responses of patients who are similar (but not identi-

cal) to the patients in the original studies would enable better use

of existing data. To this end, we identified how to accomplish this

by combining two “machine learning” techniques (i.e., a compu-

ter-based modeling approach that analyzes patterns without spe-

cific instructions in order to “learn” and draw a conclusion). The

analyses demonstrated the feasibility and potential application of

how machine learning techniques can be used to learn more from

observational and randomized data.

Introduction
With the increasing knowledge about patient variations in

treatment responses, the expectations and resources dedi-

cated to understanding this variability are growing, with the

hope of delivering better and more individualized care.1

Electronic health records, biomarkers, and patient-gener-

ated data (eg, related to lifestyle choices) are widely avail-

able, but effective approaches must be designed to integrate,

understand, and interpret these overwhelming amounts of

patient data.2 Proper analyses of these data may potentially

assist in identifying patient characteristics and patterns pre-

dictive of treatment responses and outcomes. The “Triple

Aim” goals are to improve population health,3 enhance

patients’ experiences of care, and reduce the cost of care

per capita.4 The use of classification, data mining, and

predictive analytic techniques has begun to explore ques-

tions related to these aims.1,2 To further the clinical applica-

tion of these large amounts of data, techniques could be

used to blend evidence-based medicine from traditional

randomized clinical trial (RCT) sources together with

observational “big data” methods.2 Since evidence from

observational data focuses on external validity that supports

confidence about the relevance of a specific treatment

choice, inference about cause-and-effect relationships

related to that treatment choice is more challenging.5 If

the strengths of observational data could be combined

with those of RCT data (which are designed to achieve

internal validity), then their respective weaknesses can be

reduced. Integrating both types of data quantitatively offers

a way to reduce the covariate bias (one of the notable

shortfalls of observational data), while still incorporating

one of its core strengths related to external validity. That

goal guided our analytical and prediction efforts.

Pregabalin is an α2δ ligand that is currently approved in the
United States for treating neuropathic pain related to diabetic

peripheral neuropathy (pDPN) and spinal cord injury, as well

as postherpetic neuralgia (PHN), fibromyalgia, and as an

adjunctive therapy for partial onset seizures.6 It is also

approved in multiple other countries as well for treating neu-

ropathic pain, partial onset seizures (as adjunctive therapy),

and generalized anxiety disorder.7 Previously, we used hier-

archical cluster analyses, coarsened exact matching (CEM),

and cluster-specific time-series regressions with lagged vari-

ables as inputs to identify profiles that might be associated

with treatment response outcomes in patients treated with

pregabalin for pDPN.8 We then incorporated them into an

agent-based modeling and simulation (ABMS) platform that

enabled various applications.5 Applied to pDPN, ABMS pro-

vides a mechanism for comparing a novel patient’s baseline

characteristics against the cluster characteristics, to predict

trajectories for treatment response (eg, reductions in pain

levels or changes in responder status over time). In addition,

such microsimulation has the potential for use to evaluate the

impact on outcomes of changes in certain variables over time

(eg, pain, pain-related sleep interference, dosing and titration

strategies).8–10 Such simulation approaches may address the

considerable heterogeneity of patients with pDPN, which may

affect the response to pregabalin. However, specific methods

for how best to address patient heterogeneity are lacking.

Promising approaches to treatment optimization in the context

of this patient heterogeneity may be identified more efficiently

through integration of non-randomized data with randomized

data.

To improve prediction of patient pain outcomes in

response to treatment, a strict alignment method was

used in the first generation of this work.11 That work

factored in variables such as age, gender, body mass

index (BMI), pDPN duration group (5-year increments),

medical history or presence of depression, previous use

of gabapentin, pregabalin monotherapy, and pain and

pain-related sleep interference at baseline. For pain and

pain-related sleep interference at baseline, we used six

categories based on a 0–10 numeric rating scale with

higher values indicating more severe levels of pain or

sleep interference: 0–1, 2–3, 4–5, 6–7, 8–9, and 10. This

assignment to a cluster then triggered which time-series
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regression (with lagged variables as inputs) would be

applied to simulate pain levels for each novel patient

being considered. Although we considered these results

promising, they underscored the need to identify the

techniques to expand the alignment criteria to predict

the responses of a broader array of potential patients

without reducing predictive accuracy (data on file).

The objective of this study was to identify, imple-

ment, and evaluate machine learning methods as tools to

predict novel, individual patient responses to pregabalin

for the treatment of patients with pDPN, utilizing an

ABMS platform that integrates data from one large

German observational study (OS) and nine RCTs

described in detail elsewhere.8 The key steps are sum-

marized in Figure 1. The current work focuses on

improvements to Step 2 of the overall prediction effort.

More details on other steps in the overall prediction

process—including candidate predictors—are published

elsewhere.8

Materials And Methods
To identify the suitability of different machine learning

approaches, we examined the literature on other studies that

used these methods in subjects with pDPN. Kazemi et al used

a multi-category support vector machine (SVM) model to

predict the severity of diabetic neuropathy, with about 76%

accuracy.12 Rubio and Castillo used various SVM and artifi-

cial neural network (ANN) methods to examine pulse-wave

sequences of blood volume, in order to improve the classifi-

cation and prediction of diabetic neuropathy with 100%

accuracy.13 Published literature also includes a summary of

various machine learning techniques that have been used to

identify diabetic patients14 as well as a systematic review of

the applications ofmachine learning, data mining techniques,

and tools in the field of diabetes research with respect to

prediction and diagnosis, diabetic complications, genetic

background and environment, and healthcare and

management.15 The latter review noted that ~85% of the

analyses used supervised approaches and that the accuracy

STEP 2 STEP 3 STEP 4

•  The novel patient’s alignment
with one of the clusters (from

 the prior step) is evaluated
 considering demographic

variables along with pain and
 sleep interference levels at

baseline.

•  The novel patient is assigned
to one of the identified clusters
using an ensemble of two 
instance-based machine 
learning methods.

The alignment to a cluster then 
triggers which regression model
would be applied to simulate 
pain levels for the candidate 
novel patient.

•  After the novel patient is
assigned to a cluster, 1000 
virtual patients are created to
reflect the various possible 
trajectories of outcomes for the 
novel patient according to what
could occur based on the 
regression model for that cluster.

•  The cluster-specific regression 
models include variables that:
• Are fixed (e.g., similar to a 

patient)
• Vary over time (e.g., to

simulate the course of
treatment) with values that are 
randomly generated from the 
PDFs, which consider patients 
in that cluster.

•  The regression models are 
applied every week over the 
6-week period, with outputs 
generated by the previous week
used as the starting input for the 
current week.

•  The distributions of virtual
patient pain levels and
responder status are
displayed at the end of the 
6-week simulation.

•  The trajectories over the 
6-week period are also shown
in order to visualize how each
virtual patient arrived at the
final pain level.     

STEP 1

•  Cluster analyses are
implemented to identify
patient subgroups.

•  RCT data are matched to
OS data to create a patient
pool that is less biased and 
more predictive. 

•  Cluster-specific multivariable 
time series regression models 
are derived to predict pain 
levels in a training dataset.

•  Regression models are 
validated in OS data that did 
not match with RCT patient 
data.

Figure 1 Simulation steps. Reproduced from Alexander J, Edwards RA, Brodsky M, et al Using time-series analysis approaches for improved prediction of pain

outcomes in subgroups of patients with painful diabetic peripheral neuropathy. PLoS One. 2018;13(12):e0207120. Creative commons license and disclaimer available

from http://creativecommons.org/licenses/by/4.0/legalcode.8

Abbreviations: OS, observational study; PDF, probability density function; RCT, randomized controlled trial.
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of the algorithm depended heavily on the type of data

(dimensionality, origin, and kind) and preprocessing of the

data (eg, feature selection) accordingly. Emir et al used a

spectrum of modern analytic techniques for evaluation of

clinical and demographic characteristics of patients with

pDPN to identify potential predictors of treatment response

to pregabalin.16 Since we could find no suitable precedents

matching our goals, we focused our efforts on reviewing the

effectiveness of supervisedmachine learning algorithms with

different types of data (see review by Kavakiolis et al15) in

order to identify the best technique for assigning a patient

with pDPN to a cluster of sufficiently similar patients to

predict his/her pain outcomes. Five types of supervised

machine learning algorithms were examined: logic-based

(eg, decision trees, such as Random Forest,17 rule learners18),

perception-based (eg, ANNs,19 radial basis function

networks20), statistical learning (eg, Naive Bayes, Bayesian

networks18), non-linear interpolators (eg, SVM21), and

instance-based (eg, k-nearest neighbors [kNN], supervised

fuzzy c-means [SFCM]22).

Based on our review, we chose instance-based methods

for this analysis because of their better performance with

mixed types of data (dichotomous, categorical, continuous),

as others have noted.23 We also selected machine learning

methods that were deterministic and more transparent for

clinicians. We assessed a novel patient’s alignment with a

cluster based on three approaches: (1) the kNNmethod alone,

(2) the SFCM method alone, and (3) the combination of the

kNN and SFCM together (hereon labeled as the “ensemble

method”). We used a training dataset and a testing dataset

that were derived from prior work.8 This analysis used data

from nine placebo-controlled, multicenter, international

RCTs, which evaluated the efficacy of pregabalin (flexible-

or fixed-dose pregabalin in doses of 75, 150, 300, or 600 mg/

day for 5–13 weeks) for treatment of pDPN (data on file for

study A0081071; www.clinicaltrials.gov registration num-

bers: NCT00156078, NCT00159679, NCT00143156, and

NCT00553475; the other trials were not registered on

www.clinicaltrials.gov).24–31 The OS data were from a 6-

week, open-label study in standard outpatient settings in

Germany,32 wherein physicians were free to prescribe

pregabalin 150–600 mg/day as either monotherapy or add-

on therapy for the treatment of neuropathic pain, in accor-

dance with the European Medicine Agency’s Summary of

Product Characteristics dosing schedule.7 The training data-

set included those patients from the OS group who matched

with patients from nine RCTs based on the following vari-

ables: gender, age group, BMI group, baseline pain score,

and baseline pain-related sleep interference score. The testing

dataset consisted of those patients in the OS dataset who had

not matched with RCT patients.

The kNN approach defines “closest” based on consid-

ering patients as vectors and calculating the Euclidean

distance between the novel patient and the patients in the

cluster, according to the considered variables. Then, the

patients are sorted from the nearest to the farthest. There is

not an absolute cutoff based on Euclidean distance. Rather,

the subgroup of patients within the nearest cluster is

defined based on the “k” patients (where “k” is the square

root of the dataset’s size) who are closest and based on

whichever Euclidean distances are associated with these

“k” patients. We selected this option after systematically

evaluating different values for k. The kNN approach also

assigned a patient to a cluster, by not selecting clusters that

would not be applicable to that patient (eg, if the patient is

male, then the all-female clusters could not be considered

for assigning that patient).

The SFCM approach belongs to the broader class of

fuzzy clustering algorithms. In contrast to “hard” or “non-

fuzzy” methods, each data point in fuzzy classifiers (in this

case, consisting of the novel patient to be assigned) can

belong to more than one cluster, and this relationship is

assessed by a certain degree of membership (ie, the degree

of membership of the novel patient to each of the existing

clusters). SFCM completes the unsupervised learning of

fuzzy c-means with labeled patterns (eg, training dataset),

incorporated additively as a part of the objective function,

which is defined as the sum of distances between the

features and the corresponding clusters’ centers. The

SFCM algorithm is an iterative process that comes to

convergence when the difference between two objective

functions, measured in two consecutive iterations, is neg-

ligible (by convention, negligible is defined as a difference

lower than 10–5). When the objective function converges,

SFCM returns the last calculated fuzzy partition matrix,

which indicates the degree of membership of the novel

patient to each of the existing clusters. We then select the

cluster associated with the higher degree of membership.

For evaluating the classifier approach, we took the

patients in the calibration dataset and tried to align each

of them to one of the existing clusters; we then counted

how many patients could be aligned with the proper clus-

ter (the cluster previously assigned in the cluster analysis).

Then, we implemented the same procedure with the

patients in the validation dataset and tried to align each

of them to one of the existing clusters, in order to count
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how many of these patients would be aligned with the

proper cluster.

We chose to examine the two instance-based algo-

rithms because:

(a) The requirement for training data is compara-

tively low;

(b) They have higher stability, since small changes in

the training dataset do not result in large changes in the

classifier;

(c) They are well suited to incremental learning (ie,

when adding data to the training dataset, it is not necessary

to perform a complete training again);

(d) They consider instances as points in an n-dimen-

sional space, and the (dis)similarity between them as dis-

tance; and

(e) The “tuning” of model parameters is straightforward.18

While several other methods have some of these

advantages, they also have notable disadvantages relative

to our aims. Logic-based algorithms typically have lower

stability, in that small changes in the training dataset may

result in greater changes in the classifier. Statistical learn-

ing algorithms typically assume that the dataset can be

summarized with a single probability distribution.

Perceptron-based algorithms: a) have requirements for

training data that are comparatively higher, b) incorporate

an operating and training process that is a “black box,” and

c) deal less easily with numerous dichotomous variables.

Non-linear interpolator algorithms also have high training

data requirements and the tuning of the parameters

strongly affects performance.18 While different variations

are possible to minimize some of these trade-offs, we

utilized instance-based algorithms, because they reflected

the best balance.

We evaluated the performance of the methods we

chose using the accuracy ratio defined as the proportion

of true positive and true negative outcomes in all evaluated

cases.33

Results
The full sample sizes and additional details of this model

have been published previously and are available via open

access.8 The results of utilizing the kNN approach alone

and the SFCM approach alone are shown in Table 1 and

Figure 2. In the training dataset (n=1766), the accuracy

ratio for evaluating a patient’s alignment with a cluster

varied widely across the clusters, ranging from 2.4% to

96.3% for the kNN approach alone, with an overall accu-

racy of 59.5%. The overall accuracy for the SFCM

approach alone was 42.0% (range: 23.1% to 67.2% across

the individual clusters). The best assessments of novel

patient’s alignments resulted from the ensemble method

(combined kNN and SFCM). When we used the ensemble

method, we correctly classified 98.4% (range: 95.3% to

100.0% across the individual clusters) of the patients over-

all in the training dataset (Table 1 and Figure 2).

The results in the testing dataset (n=876) are also shown

in Table 1 and Figure 2. They mirrored those in the training

dataset with a 95.9% (range: 92.4% to 100.0% across the

individual clusters) overall accuracy when the ensemble

method was used. When we analyzed the kNN method

alone, it yielded an accuracy ratio of 51.0% overall in the

testing dataset (range: 0% to 91.9% across the clusters).

When we used the SFCM method alone, we correctly classi-

fied 33.4% of the 876 patients in the testing dataset (range:

18.8% to 69.3% across the clusters). Figure 3 shows the steps

for the ensemble method.

Discussion
In our predictive analytics strategy, the assignment of a

novel patient to a specific cluster is critically important

given the role of the time-series regressions with lagged

variables as input in the platform for predicting pain scores

for individual patients.34 Consequently, we focused sub-

stantial efforts in this next generation of the platform on

how to broaden the characteristics of patients who could

be assigned to a cluster, since each cluster has its own

specific regression. When broadening the range of patients

whose outcomes could be predicted, we also wanted to

maintain or enhance the accuracy of the prediction. Due to

the inherent numerous dichotomous characteristics of the

data combined with some variables that were continuous,

determining how to assign a patient posed formidable

challenges for various machine learning techniques.

Moreover, we sought to include an ability to incorporate

additional data as it might become available. After analyz-

ing the inherent strengths and weaknesses of a number of

machine learning techniques, we determined that the

instance-based methods (kNN and SFCM, in particular)

proved to be the best choices. However, alone, neither

provided the performance required to achieve at least

95% accuracy, so we adopted an “ensemble method” that

utilized both. This ensemble approach entailed implemen-

tation of the kNN method separately from the SFCM

method, in order to determine independently to which

cluster each method would ordinarily assign a novel

patient. If the kNN and SFCM methods agreed in their

Dovepress Alexander Jr et al

Pragmatic and Observational Research 2019:10 submit your manuscript | www.dovepress.com

DovePress
71

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


cluster assignments (essentially converging on the same

result), then the choice would be straightforward. When

these methods disagreed, however, we chose to select the

cluster assignment generated by the method that afforded

the strongest evidence of alignment for the novel patient

(ie, the highest value in terms of a probability for kNN or

degree of membership for SFCM). This enabled a repro-

ducible way of comparing options for assigning a patient

to a cluster and reduced the overall likelihood of the

undesirable impacts of any limitations specific to a given

method. The effects were particularly striking for patients

in Clusters 2 and 5, in which the kNN method performed

poorly as compared to our “ensemble method” that led to

97.9% and 94.1% correct assignments for those clusters,

respectively (see Table 1 and Figure 2). Since the ensem-

ble method achieved excellent performance in assigning

patients, we had greater confidence that the variables that

were underlying the creation of the clusters initially were

being effectively captured and utilized within this com-

bined approach.

The addition of the ensemble method for assigning a

novel patient and achieving the correct cluster assignment

at least 95% of the time has important implications. The

ability to assign a novel patient to a cluster is a critical

component when subgroup-specific (cluster-specific) regres-

sions are used for prediction. The rationale for different

patient clusters has been described elsewhere34 and incorpo-

rates the clinical recognition that different patients have

different pathways to outcomes, and that they might be

grouped according to those pathways for improved predic-

tion. By using the ensemble of two machine learning techni-

ques for aligning a patient with a cluster, we could enable

correct prediction of a wider range of patients, with charac-

teristics that differ to some extent from those in the dataset.

By predicting outcomes accordingly, we were able to extend

the capabilities of our dataset, which was already unique in

its incorporation of OS and RCT data with cluster-specific

regressions. Expanding the potential utility of integrated OS

and RCT data by applying machine learning techniques is a

promising way to leverage available evidence to improve

patient outcomes—an approach that deserves further inves-

tigation in various applications.

The superior performance of the ensemble method is

not surprising, given other evidence in the literature of

using two or more methods together to converge on a

correct prediction.35–37 Given the mixed types of data

Table 1 Results for Training Dataset and Testing Dataset for kNN Method Only, SFCM Method Only, and the Ensemble Method

Training Data Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Total

Total 431 189 437 266 127 316 1766

N° of correct classifications kNN only 415 71 232 188 3 141 1050

SFCM only 246 127 101 92 45 130 741

Ensemble method*

(kNN + SFCM)

431 188 432 262 123 301 1737

Accuracy ratio

(%)

kNN only 96.3% 37.6% 53.1% 70.7% 2.4% 44.6% 59.5%

SFCM only 57.1% 67.2% 23.1% 34.6% 35.4% 41.1% 42.0%

Ensemble method*

(kNN + SFCM)

100.0% 99.5% 98.9% 98.5% 96.9% 95.3% 98.4%

Testing Data Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Total

Total 148 94 189 207 68 170 876

N° of correct classifications kNN only 136 37 111 108 0 55 447

SFCM only 70 69 49 39 17 49 293

Ensemble method*

(kNN + SFCM)

148 92 183 196 64 157 840

Accuracy ratio (%) kNN only 91.9% 39.4% 58.7% 52.2% 0.0% 32.4% 51.0%

SFCM only 47.3% 73.4% 25.9% 18.8% 25.0% 28.8% 33.4%

Ensemble method*

(kNN + SFCM)

100.0% 97.9% 96.8% 94.7% 94.1% 92.4% 95.9%

Note: *The Ensemble Method consists of three steps, shown in Figure 3.

Abbreviations: kNN, k-nearest neighbors; SFCM, supervised fuzzy c-means.
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(dichotomous, categorical, continuous), it makes sense that

no single method would outperform an approach that

utilizes multiple methods to converge on a correct

prediction.

Limitations And Future Work
One limitation of these analyses was that they were confined

to a single large OS, in terms of assessing which patients

could be correctly assigned. Future workwill need to see how

these same five variables (gender, age group, BMI group,

baseline pain score, and baseline pain-related sleep interfer-

ence score) could be utilized to assign novel patients to a

cluster. It remains to be explored what other variables might

be needed for which patients; however, these variables pro-

vided a solid starting point, because they are typically col-

lected in RCTs and OSs.

We have not yet tried prospectively to assign an actual new

patient to predict pain outcomes using our platform. Future

work will need to examine how such efforts could work in

practice. We need to explore how the proposed approach—

including a capability for dynamic real-time updates of experi-

ences with patients through ongoing use—could be used in

providing care to patients. Finally, these findings are specific to

patients with pDPN, and not all patient variables associated

with pDPN have yet been studied. Other clinical circum-

stances may require less or more complex approaches to

enable prediction.

Conclusion
Better prediction of treatment outcomes for patients upon

initiation of therapy holds tremendous potential for improving

treatment decisions, the patients’ experiences of care, and

overall health care system performance. These analyses with

pregabalin in patients with pDPN suggest that instance-based

machine learning techniques hold promise as a way of evalu-

ating and applying the diverse types of patient data. Combined

with microsimulation, they enabled a novel, individual patient

to be assigned to a patient subgroup that could be utilized for

predicting individual patient outcomes.
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