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Abstract: The quality of life of animals is defined by a range of parameters including health, 

physiology, and behavior. Stress is defined as any damaging strain, force, or agent which stimu-

lates a physiologic defense reaction and is capable under certain circumstances of producing 

pathologic lesions. Disruption to normal homeostasis can impinge on other biologic processes 

such as metabolism, cardiovascular activity, immune function, and behavior. In general, chronic 

stress is considered to have a greater potential impact on animal health and welfare than acute 

stress, because the animals are exposed and reacting to the stressor(s) for longer periods, thereby 

causing prolonged disruption to homeostasis and related biologic processes. Impaired coping 

responses may trigger specific alterations in behavior, organ damage, reduced performance, 

increased susceptibility to disease, and subfertility. At a molecular level, immune function is 

mediated by the release of cytokines, nonantibody messenger molecules from a variety of cells 

of the immune system and from other cells, such as endothelial cells. Biochemical alterations in 

immune function are, in part, induced by plasma hormone concentration changes elicited by a 

stressor subsequent to activation of the sympathetic nervous system, the sympathetic adrenom-

edullary axis, and the hypothalamo–pituitary–adrenocortical axis.
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Stress and disease
It has long been observed that an association exists between stress and disease 

 susceptibility in domestic farm animals, although a definitive causal factor has yet 

to be defined. Many researchers have implicated a suppression of the host’s immune 

system by stress that allows opportunistic pathogens to invade. Furthermore, substantial 

evidence has suggested that this immunosuppression is mediated by glucocorticoids 

following hypothalamic–pituitary–adrenocortical (HPA) axis activation by a stressor.1 

However, recent research has suggested that stress, and its association with increased 

glucocorticoid concentrations, is not solely immunosuppressive and may actually 

enhance immune function.2 In either case, susceptibility to disease may increase 

because neither inadequate nor excessive activation of immune components is ideal 

in the prevention of disease.

The immune system response is considered to be one of the most important complex 

pathways in the animal to enable it to defend itself against stressful environments and/or 

conditions,3,4 and to alleviate the increased incidence of diseases and suffering arising 

from stress in animals. The mechanisms responsible for combating stressful events 

involve “innate” and “acquired” immunity. Acquired immunity is evaluated by measur-

ing an animal’s cellular and/or humoral immune responses. Innate immunity includes 
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factors such as phagocytic cells (neutrophils,  monocytes, 

and macrophages), cells that release  inflammatory  mediators 

(basophils, mast cells, and  eosinophils), natural killer (NK) 

cells, and molecular  elements such as the complement s ystem, 

acute phase proteins, and cytokines. Acquired or adaptive 

immunity consists of antigen-specific reactions through T- or 

B-cell lymphocytes and immunoglobulin  components. In the 

presence of an antigen, B-cells proliferate and mature into 

plasma cells which secrete antibodies that bind  specifically 

to that antigen. T-cell lymphocytes exhibit antigen speci-

ficity by activating macrophages or killing  pathogens. 

T-cell  lymphocytes can be classified as T-helper cells, 

T-suppressor cells, and cytotoxic T-cells. Activated T-cells 

secrete cytokines and modulate the immune system against 

 specific antigens or stress stimuli. Major cytokines that attract 

and activate lymphocytes include interleukin (IL)-2, IL-6, 

tumor necrosis factor-alpha (TNF-α) and  interferon-gamma 

(IFN-γ). These cytokines may  crossregulate with the growth 

and differentiation of their source (T-cell lymphocyte) and, 

therefore, affect further cytokine production. The production 

of these cytokines is modulated by neuroendocrine factors 

and plays a key role in immunosuppression by eliminating 

the antigen.

Stressors in livestock beef 
production
Stressors can be divided into those that are physical or 

environmental, and those that are psychologic or per-

ceived, although many routine handling procedures can 

combine both. Examples of physical stressors are extreme 

temperature, feed and/or water deprivation, electric shock, 

pain, and disease.5,6 Psychologic stressors usually include the 

fear and/or novelty of deviations from a daily routine, restraint 

and/or isolation, unfamiliar sights and noises, and presence of 

perceived predators, including humans.6,7 Extensive research 

has shown that psychologic stressors can be equally or even 

more adverse than physical stressors. An animal’s reaction to 

many of these stressors can be affected by the influences of 

genetics, previous handling and experience, the duration of 

the stressor, whether it is acute or chronic, and whether it is 

escapable or inescapable.6,9 Temperament has been found to 

be a highly heritable trait in cattle, ranging from 0.40 to 0.53, 

and an inherited temperament for high excitability may affect 

an animal’s response to handling practises.6 If an  animal’s 

memory of a novel event is one of fear and pain, it may 

react even more strongly to the same event in the future and 

may be extremely difficult or impossible to habituate to that 

event or procedure.6  Interestingly, it appears that an animal’s 

perception of a stimulus as stressful is necessary to mount a 

stress response; activation of stress response systems does not 

occur if an animal does not perceive an event to be fearful or 

stressful.8 Husbandry management procedures, for example, 

castration, dehorning, and changes in their social and physical 

environment, may induce fear responses in animals. Fear is 

an emotion and thus by definition is punctual, whereas being 

fearful depends on the personality of the animal.

Stress response
Because stress occurs when an animal’s homeostasis is 

disrupted, the stress response consists of a set of physi-

ologic mechanisms designed to return to homeostasis. 

Two distinct systems link the initial perception of the stres-

sor to this response, ie, the sympathetic adrenomedullary 

(SAM) axis and the HPA axis. Overall, both central and 

peripheral activation involves the orchestrated interplay of 

short-term (acute) behavioral and endocrine responses that 

prepare animals for an immediate response to environmental 

 adjustment, whereas long-term (chronic) responses involve 

a substantial adjustment of neuroendocrine, immune, and 

metabolic responses to the stressor in the brain. The HPA axis 

responds to a variety of stressors by synthesizing and releas-

ing four key hormones, namely, corticotrophin- releasing 

factor or hormone (CRH), arginine-vasopressin (AVP), 

adrenocorticotrophic hormone (ACTH), and glucocorticoids. 

Glucocorticoids serve as the final effectors of the HPA axis 

(shown in Figure 1) and are critically involved in modulating 

the response to any psychologic or physical stressors.

The physiologic responses of animals to stressors are 

largely mediated through the central and peripheral neu-

roendocrine pathways, culminating in profound  alterations 

in the trafficking and functioning of blood  leukocytes.9 

 Stress-induced changes in the numbers of  various leukocyte 

subsets migrating from blood and functioning in secondary 

lymphoid tissues and peripheral tissue sites of infection are 

the main factors influencing spread of infection and disease 

susceptibility in animals. Unraveling the interactions between 

stress hormones and resulting changes in circulating immune 

cells is one of the greatest challenges in the leukocyte biology 

of stressed animals.

Recent major technical developments that enabled 

full sequencing of the human (http://www.ncbi.nlm.nih.

gov/genome/seq/HsHome.shtml), mouse (http://ww.ncbi.

nlm.nih.gov/genome/guide/mouse/index.html) and bovine 

(http://www.bovinegenome.org) genomes, and creation of 

large species-specific expressed sequence tag collections 

and resources, have opened the doors of opportunity for 
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understanding biologic processes at the most sophisticated 

level. Thus, biologic knowledge of the structure, physical 

location, and linkages of genes to one another has increased 

significantly over the past decade. The next major step is 

to use these genomic resources to elucidate specific genes 

and factors that are activated or suppressed by biologic 

scenarios relevant to health. A working hypothesis of such 

research is that coexpression/repression of specific gene 

sets occurs in a complicated but well coordinated and 

orchestrated manner to regulate metabolic pathways that 

affect cell differentiation and function (ie, phenotype). 

However, the gene leaders, gene followers, and various 

roles of the biologic orchestra are currently unknown for 

most cells in most events. The problem of determining 

which genes are expressed in functional ways during key 

physiologic stress events will increasingly be solved when 

researchers adopt functional genomics approaches to 

generate comprehensive gene expression data using well 

designed experiments. This is because innovative tools 

such as DNA microarrays and next-generation sequenc-

ing tools allow simultaneous monitoring of thousands of 

genes in a system, providing detailed documentation of 

gene expression patterns in cells as they respond to their 

biologic microenvironment. These tools are very power-

ful for gene discovery research related to the health and 

well being of humans and animals. It is vital that reliable 

and robust animal models upon which to base these gene 

expression studies are available.

Therefore, the ultimate goal of animal and veterinary 

researchers studying animal welfare is to find new ways 

to eliminate the negative effects of husbandry stress that 

impair the health and well being of farm animals whilst 

maintaining acceptable levels of productivity from those 

animals. However, almost nothing is understood about the 

complex physiologic processes that link husbandry stress 

with immunity, health, and well being. This has left animal 

producers and researchers ill-prepared to handle the chronic 

production diseases that occur in livestock, the economic 

losses endured by families who raise livestock for a living, 

and the consuming public who are increasingly vocal about 

the quality of life of farm animals and implications of this 

for food safety and quality.

Castration stress
The production of beef from castrated male cattle is still pre-

ferred in Ireland, and in numerous other countries, including 

the UK, US, Australia, and New Zealand. One of the main 

animal welfare concerns in beef production is that of pain 

and distress, especially pain inflicted by normal husbandry 

procedures other than common day-to-day stress in typical 

production. Castration is a husbandry procedure, which can 

cause pain and discomfort and, if done incorrectly, may result 

in subsequent health problems.

The legal requirement for the use of anesthesia for 

castration in cattle varies considerably between different 

countries, depending on the method involved and age of 

Plasma cortisol concentration increases in
response to stress

Adrenal gland

Pituitary
gland

Hypothalamus

CRH

ACTH

Cortisol

Stress

Figure 1 hypothalamus–pituitary–adrenal axis.
Abbreviations: ACTH, adrenocorticotrophic hormone; CRH, corticotrophin-releasing hormone.
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the animals. However, the precise scientific basis for setting 

the requirements is unclear, but it may in part be due to 

consumer-driven demand for improved farm animal welfare 

by reducing the pain caused by routine husbandry procedures 

such as castration. In Ireland, use of anesthesia is required 

for surgical/Burdizzo castration of cattle over six months of 

age (Protection of Animals [Amendment] Act 1965 [S.I. 10 

of 1965]).10 In contrast, castration of calves without use of 

anesthesia must be done before they reach two months of 

age in the UK (Veterinary Surgeons Act 1966).11 In Ireland 

and the UK, rubber ring castration (or use of other devices 

for constricting the flow of blood to the scrotum) without 

use of anesthesia can only be performed in calves less than 

seven days of age.10,11 In New Zealand, cattle over nine 

months of age must be castrated using an effective anesthetic 

(Animals Protection Act 1960).12 In Germany, castration of 

cattle without use of anesthesia is allowed only in animals 

less than four weeks of age (Animal Welfare Act 1998). In 

Switzerland, castration of male cattle has been prohibited 

without anesthesia since September 2001 (Artikel 65 der Tier-

schutzverordnung vom 1 September 2001 [Article 65 of the 

Swiss Animal Protection Ordinance, Amendment 2001]).13 

Furthermore, the use of elastic rings for castration of animals 

is forbidden in Germany and Switzerland. By contrast, there 

is no legal requirement for the use of anesthesia for castration 

in the US.14 In all of the countries mentioned above, where 

the administration of anesthesia is required for castration, 

the procedure must be done either by a veterinarian or under 

veterinary supervision.

Castration is performed on calves because it reduces 

management problems associated with aggressive and sexual 

behavior.15–19 However, from an animal welfare  perspective, 

the inflammation and pain due to handling and tissue trauma 

are potent activators of the HPA axis19–26 and cause distress. 

The three main methods used to castrate calves are a rub-

ber ring or latex band to restrict the flow of blood to the 

scrotum,21,27 bloodless castration by crushing the spermatic 

cords with the Burdizzo,28 and surgical castration.29

Systemic analgesia with a nonsteroidal anti-inflammatory 

drug (NSAID), ketoprofen, has been shown to be more 

effective than local or epidural anesthesia in modulating 

cortisol and inflammatory responses, and in the suppression 

of immune function.20 Ketoprofen effectively suppressed 

the surgical castration-induced peak cortisol response, and 

the 12-hour integrated cortisol response by 56% compared 

with surgery alone and by 40% compared with surgery under 

local anesthesia in 5.5-month-old Friesian calves. Further-

more, combined administration of ketoprofen and local 

anesthesia delayed the peak cortisol response by four hours 

relative to surgery and ketoprofen (Table 1 and Figure 2). 

However, the overall integrated cortisol response over 12 

hours was greater than with ketoprofen treatment alone 

due to a delayed secondary peak in cortisol response.20 The 

reason for this was unclear. In contrast, others12 showed that 

combined local anesthetic and ketoprofen administration 

almost completely eliminated the peak and integrated plasma 

cortisol responses of two- to four-month-old Friesian calves 

to surgical castration.

Calves at 47 days of age have lower plasma cortisol 

responses to castration and the use of a NSAID is a better 

alternative to local anesthesia for the alleviation of inflam-

matory and pain-associated behavioral responses to castra-

tion.20,30,31 The findings showed that calves at 47 days of 

age exhibited lower stress responses (plasma cortisol and 

inflammatory responses) to Burdizzo castration compared 

with older calves (76 to 165 days of age).30,31

Previous studies have identified that cortisol per se may 

not be specifically responsible for reduced immune function 

following castration.25,26 Castration of cattle has an acute 

adverse effect on animal performance, cortisol response, 

and immune function and administration of local anesthesia 

to 5.5-month-old bull calves during Burdizzo castration 

induced scrotal swelling.20,24 Surgical castration induced 

greater peak and total cortisol responses than bloodless Bur-

dizzo castration24 and thus was selected for use as a model to 

study the effects of the acute stress of castration on cortisol, 

Table 1 Plasma cortisol concentrations of bull calves left untreated, surgically castrated, or surgically castrated following ketoprofen, 
local anesthetic administration, or surgically castrated following local anesthetic and ketoprofen20

Con Surg Surg + keto Surg + LA Surg + LA + keto

AUC (ng/mL-1.h) 56.8a ± 5.37 176.1d ± 27.68 78.1ab ± 13.87 130.8cd ± 15.18 117.6bc ± 19.76
Peak (ng/mL) 19.0a ± 4.63a 45.8b ± 6.16b 24.7a ± 5.12a 22.1a ± 2.69a 28.8a ± 4.23a

interval to peak (h) – 0.31a ± 0.04a 0.29a ± 0.04a 2.63b ± 0.77b 4.61b ± 1.75b

Notes: a,b,c,dwithin row P  0.05. values expressed as mean ± standard error.
Abbreviations: AUC, area under the curve; con, untreated controls; keto, ketoprofen; surg, surgically castrated; LA, local anesthetic.
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and immune and performance responses. Surgical castration 

induces greater peak and total cortisol responses than the Bur-

dizzo method20,24,32–35 The administration of ketoprofen, local 

or caudal epidural anesthesia reduced (P  0.05) the peak 

cortisol response to Burdizzo castration, but only ketoprofen 

was effective (P  0.05) in minimizing the integrated cortisol 

response when compared with castration alone and castration 

with local or caudal epidural anesthesia33 (Figure 3). There 

is a general perception that delaying castration could extend 

the production advantages of keeping animals as bulls until 

weaning or beyond puberty. However, a number of studies 

have shown that there is no advantage in delaying castration 

of bulls from birth up to 17 months of age in terms of live 

weight, growth rate, or carcass weight at slaughter. Burdizzo 

castration of spring-born calves in their first autumn at five to 

six months of age was reported to have no effect on the overall 

347-day live weight gain compared with delayed unilateral 

castration (the right testicle removed in autumn and left testi-

cle the following spring with approximately 178 days apart) or 

complete castration in spring with about a one-month interval 

between each side of the testicle. Furthermore no interaction 

was reported between castration treatment and breed type 

(Friesian versus Charolais × Friesian).36 The effects of time 

of complete or split castration on  performance of beef cattle 

were  investigated at Teagasc, Grange Beef Research Centre. 

In one experiment, 144 Friesian and  Charolais × Friesian 

calves (mean live weight 214 kg) at  pasture were assigned to 

three castration treatments, ie,  complete castration in autumn, 

split castration (right testicle in autumn and left in spring), 

and complete castration in spring. There was no significant 

effect of castration treatment on live weight gains to the 
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Figure 3 Mean ± SE plasma cortisol concentrations for bull left untreated (❏), 
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Burdizzo castration following lidocaine local anesthesia (∆), or burdizzo castration 
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epidural anesthesia reduced (P  0.05) the peak cortisol response to castration, 
but only ketoprofen was effective (P  0.05) in minimizing the integrated when 
compared with castration alone, castration with local or caudal epidural anesthesia. 
Copyright © 2003. Ting STL, Earley B, Hughes JM, Crowe MA. Effect of ketoprofen,  
lidocaine local anesthesia, and combined xylazine and lidocaine caudal anesthesia 
during castration of beef cattle or stress responses, immunity growth, and behavior. 
J Anim Sci. 2003;81:1281–1293.33
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end of the second grazing season. In a second experiment, 

72  Charolais × Friesian calves (mean live weight 241 kg) at 

pasture were assigned to low (silage only) or high (silage and 

2 kg of concentrates per head daily) feeding levels in winter 

using the castration procedures described in the first experi-

ment. They were then turned out to pasture for a 181-day 

grazing season. It was concluded that neither time of castration 

nor splitting of castration significantly affected live weight at 

the end of the second grazing season.36

Burdizzo and banding castration methods using 12-month 

old bulls showed that both castrate groups lost in excess of 

1.0 kg/day in the first two weeks after castration.31 Intact 

bulls lost 0.49 kg/day, which is typical for this type of animal 

going to grass. Overall, intact bulls grew faster than castrates 

and performed better than those undergoing either castration 

treatment.

Weaning stress
In suckler herds, calves remain with the dam at pasture until 

they are five to nine months old, at which time they are separated 

from the dam. Weaning of the suckled calf from its dam can be 

stressful for the calf. In addition to removal from the dam, the 

weaning procedure may be compounded by other stressors, eg, 

change of diet (grass and milk to conserved feed [EG, silage] 

with or without concentrates), change of environment (outdoors 

to indoors), transport/marketing, dehorning, and castration. 

Weaning therefore, is a multifactorial stressor, in which, nutri-

tional, social, physical, and psychologic stressors are combined. 

Psychologic stress is present in the form of maternal separa-

tion37 and social disruption,38,39 whereas physical and nutritional 

stressors are often present in the introduction of and adaptation 

to a novel diet and a novel environment.40

Previous studies have examined the effect of maternal 

separation under varying management regimes on calf 

behavior,41 plasma acute-phase protein concentrations,42 

and neutrophil:lymphocyte (N:L) ratio.43 The results have 

indicated that breaking the maternal bond is stressful to the 

calf. Management of the calf at weaning can influence its sus-

ceptibility to disease, and situations of stress have previously 

been associated with attenuation of immune function.3,44 No 

effect of late weaning on the humoral immunity of weaned 

calves has been reported.45 Attenuation of cell-mediated46,47 

but not humoral immunity25 has been identified in situations 

of chronic stress. Cell-mediated rather than humoral immu-

nity may be a more reliable indicator of the physiologic status 

of calves older than five months.48 The adrenal hormones 

are recognized indicators of stress in bovine models49 but 

no work has been identified which describes the long-term 

effect of weaning on the mediators of stress.

The effect of the combined psychologic and nutritional 

stress of maternal separation on the physiologic mediators of 

stress (cortisol, adrenaline, and noradrenaline) and measures 

of immune function (in vitro IFN-γ production, NL ratio 

and acute-phase protein concentrations) was measured in 

calves.47 Thirty-eight male and 38 female Continental calves 

were habituated to handling for two weeks prior to bleeding. 

Calves were blocked on sex, weight, and breed of dam and 

randomly assigned, within block, to either a control (C, cows 

remain with calves) or abruptly weaned group (W, calves 

removed from cows). Animals were allocated to the  respective 

Table 2 The effect of time of sampling, weaning, and calf sex on plasma noradrenaline concentration and in vitro iFN-γ response to the 
novel mitogens Con-A and KLH47

Sex (S) Male Female Statistical result

Wean (W) 
Time (T)

Control Wean Control Wean T S W T × S T × W S × W

Noradrenaline 24 3.68 7.14 5.56 6.76 F value 0.498 0.625 0.001 0.012 0.498 0.046
(nmol/L) 48 4.32 8.02 5.98 6.58 SED 0.444 0.684 0.684 0.855 0.855 0.967

168 3.89 8.6 3.59 5.16

Con-A -168 1.05 0.89 1.33 1.10 F value 0.001 0.222 0.176 0.442 0.843 0.973
24 0.85 0.64 0.84 0.94 SED 0.082 0.108 0.108 0.148 0.148 0.152
48 0.86 0.58 0.73 0.68
168 0.64 0.72 1.05 0.64

KLH -168 0.48 0.32 0.51 0.42 F value 0.001 0.847 0.01 0.384 0.569 0.697
24 0.44 0.07 0.33 0.11 SED 0.046 0.087 0.087 0.103 0.103 0.122
48 0.41 0.11 0.20 0.11
168 0.21 0.06 0.29 0.08

Abbreviations: SED, standard error of the difference; iFN-γ, interferon gamma; KLH, keyhole limpet hemocyanin; con-A, concavalin-A.
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 treatment groups at weaning (0 hours). Calves were bled at 

– 168, 6 (males only), 24, 48, and 168 hours postweaning. 

At each sampling time, an observer scored the behavioral 

reaction of calves to sampling. Blood samples were analyzed 

for cortisol, and catecholamine concentrations (not sampled 

at 168 hours), and in vitro IFN-γ production, NL ratio, and 

acute-phase protein concentrations. There was no effect 

of weaning or sex on calf behavioral reaction to handling. 

Assignment of animals to treatment groups at 0 hours, and 

hence disruption of the established social group, increased 

(P  0.001) the plasma cortisol concentration and N:L 

ratio, and reduced the leukocyte concentration (P  0.001) 

and in vitro IFN-γ response to the mitogen concanavalin-A 

(Con-A, P  0.001) and keyhole limpet hemocyanin 

(KLH, P  0.001, Tables 2 and 3). Plasma adrenaline and 

noradrenaline concentrations were not affected by group 

disruption, weaning, or sex. There was a significant wean-

ing × sex and time × sex effect on the noradrenaline response. 

The response increased for male calves with weaning and 

increased with each sampling time postweaning. For heif-

ers, the response was not affected by weaning, and plasma 

concentrations decreased at 168 hours postweaning. There 

was no effect of weaning or sex on leukocyte concentra-

tion. There was a significant effect of weaning and sex on 

the N:L ratio. Weaning significantly decreased the in vitro 

IFN-γ response to the KLH mitogen. There was a significant 

time × weaning × sex interaction for fibrinogen concentra-

tion, but no effect of  treatment on haptoglobin concentration. 

Abrupt breaking of the mother/offspring bond at weaning 

causes acute emotional, physical, and  psychologic stress38,50 

with accompanying  immunosuppression.47 Impulses from 

sympathetic nerve fibers cause the release of adrenaline and 

noradrenaline from the medullae of the adrenal glands and 

directly innervate many other organs including the skin, 

heart, skeletal muscles, and lymphoid organs.51 The IFN-γ 

response was attenuated by social group disruption, and by 

weaning for the KLH response only. The production of IFN-γ 

is associated with subsets within the CD4 T-lymphocyte 

family.52 Production of the cytokine is stimulated by mito-

gen challenge. The KLH mitogen is a nonspecific immune 

response modifier, which can induce both a cell-mediated 

and a humoral response,53 while Con-A induces T-cell pro-

liferation, evident from the higher in vitro response of IFN-γ 

to the novel challenge in this study. Although the cortisol 

concentrations recorded in the study were within the diurnal 

variations in peripheral cortisol54 (1–17 ng/mL), the increase 

from 7.4 to 14.2 ng/mL recorded during group disruption 

was associated with the decrease in cell-mediated immune 

function. The continued elevation of the cortisol response 

was also associated with the continued attenuation of both the 

Con-A and KLH responses. It is possible that an alteration in 

the lymphocyte concentration and conceivably subpopulation 

Table 3 The effect of time of sampling, weaning, and calf sex on measures of the leukocyte population and plasma noradrenaline 
concentration47

Sex Male Female Statistical result

Wean  
Time

Control Wean Control Wean Time (T) Sex (S) Wean (W) T × S T × W S × W

white blood cells –168 10.4 11.1 11.1 11.4
(× 106/L) 24 12.0 12.7 11.4 12.2 F value 0.001 0.915 0.491 0.132 0.216 0.684

48 12.0 11.9 11.7 12.1 SED 0.25 0.43 0.43 0.52 0.52 0.60

168 11.7 10.8 11.4 11.7

% Neutrophils –168 26.5 28.8 25.3 23.7
24 28.0 34.9 25.4 31.8 F value 0.008 0.011 0.001 0.747 0.005 0.090
48 28.2 34.5 26.4 28.6 SED 1.44 1.49 1.49 2.31 2.31 2.10
168 25.4 41.9 25.6 30.1

% Lymphocytes –168 70.1 66.7 70.9 72.4
24 68.2 60.4 71.1 65.0 F value 0.001 0.024 0.001 0.247 0.023 0.171
48 67.7 60.6 69.4 67.5 SED 0.99 1.27 1.27 1.76 1.76 1.80
168 70.9 64.4 70.3 66.2

N:L ratio –168 0.42 0.47 0.37 0.34 F value 0.008 0.025 0.003 0.215 0.077 0.328
24 0.44 0.61 0.36 0.51 SED 0.027 0.030 0.030 0.045 0.045 0.042
48 0.44 0.59 0.39 0.44
168 0.36 0.47 0.37 0.46

Abbreviations: SED, standard error of the difference; N:L ratio, neutrophil:lymphocyte ratio.
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profiles, was associated with the glucocorticoid response at 

group disruption,55 although the influence of glucocorticoids 

on cell-mediated immunity per se has been questioned.25,55 

It has been proposed that catecholamine production can 

influence immune function both at the tissue and cellular 

level via innervation and receptors, respectively.56–58 Both 

noradrenaline levels and IFN-γ production in response to 

KLH were influenced by weaning. However, the lack of a 

significant sex effect on the KLH response would question 

if the continued increase in noradrenaline levels for bulls 

may be associated with the depression. Because KLH is a 

nonspecific mitogen, its peripheral effects may therefore be 

associated with B-cell function. However, previous studies 

have shown no effect of chronic stress25 or weaning stress45 

on humoral immunity post-KLH challenge. The effect of 

weaning was also associated with alterations in acute-phase 

protein production because plasma fibrinogen was sensitive 

to calf weaning and sex. Weaned bulls had a higher plasma 

fibrinogen concentration compared with all other groups but, 

like other groups, the plasma concentrations had returned to, 

or were less than, preweaning values by 168 hours. Increases 

in acute-phase protein production have been reported in 

models of castration20,25 and transport.42 In the latter study, 

the authors found no effect of genotype on fibrinogen concen-

trations when examining the physiologic response of calves 

to weaning and transport. In the present study, haptoglobin 

concentrations were not affected by treatment.

Mixing of weanlings from different sources is likely to 

cause bovine respiratory disease (BRD) when compounded 

with other stressors.47 The underlying cause of BRD in 

weaned calves is extremely complex, with the involvement of 

viruses, bacteria, and mycoplasma. The main viruses isolated 

from outbreaks of calf pneumonia have been infective bovine 

rhinotracheitis, respiratory syncytial virus, parainfluenza-3 

virus, and bovine virus diarrhea/mucosal disease. In most 

cases it would appear that the primary infective agent is 

viral, producing respiratory tract damage that is subsequently 

extended by mycoplasmas and secondary bacterial infec-

tions, eg, Pasteurella sp. Factors affecting the calf’s ability 

to fight infection include stress, overcrowding, inadequate 

ventilation, draughts, fluctuating temperatures, poor nutri-

tion, and/or concurrent disease. Suckled calves eating 1 kg 

of concentrates/day in the 5–6 week period before weaning 

are less stressed than calves that have not been introduced 

to meals.

Bonding behavior between dam and calf, and between 

calves within social groups, has been established through 

behavioral observation. The stability of maternal59 and social 

counterpart38 relationships are important for young calves. 

Abrupt weaning not only disrupts the maternal bond between 

the calf and its dam, but also the social bond between the 

animal and their familiar social group.

Transportation stress
Transportation of livestock involves several potential stres-

sors that result in increased cortisol levels,60–64 mobilization 

of energy and protein metabolism,66 and a challenged immune 

system,3,67–72 resulting in increased disease susceptibility. 

Studies have been carried out to determine the optimum 

stocking density, the maximum duration of transportation, the 

timing of rest stops and which components of the transport 

process are the most stressful to cattle.40,60–63,73–75 Physical 

factors such as noise and vibration, psychological/emotional 

factors such as unfamiliar environment or social regroup-

ing, and climatic factors such as temperature and humidity, 

are also involved in the transport process. The transport of 

livestock can have major implications for their welfare, and 

there is strong public interest and scientific endeavor aimed at 

ensuring that the welfare of transported animals is optimal.76 

Steers (aged 12–18 months) transported by road for 5, 10, 

and 15 hours lost 4.6%, 6.5%, and 7.0% of their live weight, 

respectively, and recovery to pretransport live weight took 

five days.77 There are limited scientific data on the physiologic 

and hematologic recovery of animals after long durations 

of transport and, in particular, the physiologic recovery of 

animals during the 24-hour period posttransport.

The behavioral, physiologic, and immunologic conse-

quences of animal transport research with relevance to the 

dairy industry have been summarized, and the conclusion 

is that the duration of the journey has a greater impact than 

the distance travelled on young calves, and that after long 

transport, most animals drink and then rest.78 Studies have 

also shown that young calves habituate to transport, unlike 

cows. The physiologic and behavioral consequences of 

transport of heifers, bulls, and steers by road from northern 

Germany to Mediterranean ports was examined and the 

authors concluded that animals should be prepared carefully 

pretransport, ie, with reference to energy and fluid balance, 

and be fed at sufficient time intervals during the journey to 

maintain physiologic homeostasis and expression of normal 

behavior.79

The effects of space allowance during transportation 

and duration of a mid-journey lairage period on measures 

of stress, injury, dehydration, food restriction, and rest was 

investigated in young calves.80 The authors concluded that 

the duration of the mid-journey lairage was not an important 
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factor, and while there was little evidence that transport 

affected immunologic variables, there was evidence to 

indicate the health of the calves was adversely affected 

posttransport. While studies have reported that confining 

animals on a moving vehicle is the most stressful component 

of transportation,60,61 other studies have reported that loading 

and unloading cause the most stress to cattle.65

The effects of fasting animals for eight hours prior to 

an eight-hour road journey and their ability to cope with 

the stress of transport was investigated, and the authors 

concluded that there was no significant difference in rectal 

body temperature pre- and posttransport and there were no 

significant differences in live weight on days 0 (pretransport), 

and on days 1, 4, and 10 (posttransport).62 Bulls (230 kg) 

undergoing an eight-hour transportation at stocking densi-

ties of 0.82 m2/animal showed physiologic and hematologic 

responses that were within normal referenced ranges.63

It is well established that transportation of cattle is a stres-

sor that causes a quantifiable response; however, excessive 

stress during transport resulting in physiologic or pathologic 

changes can be reduced with good management practises.64 

Transportation can combine physical and psychologic stres-

sors, and weaning, adverse handling during loading and 

unloading, comingling of unfamiliar animals, loud noises, 

overcrowding, food and water deprivation, extreme tempera-

ture, and the novelty of the truck or new feedlot facility can 

be individually stressful, let alone in combination with each 

other.7,74,81,82 While some authors have observed that being 

confined on a moving vehicle is the most stressful component 

of transportation,60,61 others contend that loading and unload-

ing cause the most stress to cattle.65

Measurements of transportation stress encompass 

 physiologic and behavioral measurements. Circulating corti-

sol as an indicator of HPA axis activation is clearly the most 

commonly utilized measurement, and increases have been 

observed in nearly all transportation studies of cattle com-

pared with pretransportation concentrations or those obtained 

from nontransported cattle.60,68,73–75,81,83–86 The highest levels 

observed were 51.0 ng/mL after four hours in Holstein 

steers68 and 84.9 ng/mL in lactating Holstein × Friesian cows 

after two hours of transportation.87 A decrease in glucocor-

ticoid and β-adrenergic receptor expression in lymphocytes 

has been observed, and measurement of these receptors has 

been suggested as a more reliable indicator of stress than 

measurement of their corresponding stress hormones.88 

Indicators of activation of the SAM axis are seldom used, 

although increases in plasma adrenaline and noradrenaline 

have been observed in transported calves.50,89,90

Markers of altered protein, energy, and mineral 

 metabolism in cattle as well as rumen function have all been 

investigated during transportation stress. An  alteration in 

protein metabolism is evidenced by changes in  circulating 

total protein, albumin, and urea, which are usually 

increased.62,63,74,75,81,84,86 Altered energy metabolism may be 

marked by increases in blood glucose,60,74,81,85 lactate dehydro-

genase, glutamic pyruvic transaminase, and glutamic oxalo-

acetic transaminase,84 and decreases in β-hydroxybutyrate.62 

An increase in energy metabolism is a hallmark of the stress 

response as the body prepares to react to a potentially danger-

ous situation.91 Changes in mineral metabolism of calcium, 

copper, iron, magnesium, inorganic phosphorus, potassium, 

and zinc were not found,84 while others observed a decrease 

in circulating calcium following transportation.86

Changes in growth, weight, and feed intake have been 

investigated following transportation. Weight loss of up 

to 11% in total body weight has been observed in many 

transportation studies, which is attributed to loss of gut fill, 

urination, dehydration, and fasting.74,75,81,83,84 Dry matter 

intake may not be affected after transportation.83 In addition, 

transportation to the slaughter plant can affect subsequent 

carcass yields and meat quality. The loss of live weight dur-

ing transportation results directly in decreased hot carcass 

weights, especially at high stocking densities.64,74 Plasma 

creatine kinase is often monitored as an indicator of muscle 

breakdown and bruising and is frequently elevated,62,63,81,84 by 

as much as 818% with long distance transportation.75 Bruising 

that occurs during transit reduces meat quality, and carcass 

bruise scores have been observed to increase linearly with 

stocking density.75 Furthermore, fasting and physical stress 

during transportation prematurely deplete muscle glycogen 

which is necessary for conversion to lactic acid and subse-

quent pH decrease in the meat after slaughter.64 High meat 

pH has been observed after transport to slaughter and is 

associated with reduced shelf-life and the incidence of “dark 

cutting” or “dark, firm, and dry” meat.74,75

Alterations in calf immunity are of great importance 

following transportation stress because these alterations are 

thought to be associated with increased incidence and sever-

ity of respiratory diseases.3 Most measures of immunologic 

changes relate to immune cell numbers in the blood and 

immune cell function. Most studies observe a leukocytosis 

marked by neutrophilia, which may occur in conjunction 

with a decrease in the number of other cells (lymphopenia, 

eosinopenia).3,68,75 On a related note, hematocrit levels are 

elevated with transportation in association with higher eryth-

rocyte counts in the circulation.75,86
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Other measures include the function of cells involved 

in innate immunity. Bovine alveolar macrophages, 

 isolated from bronchoalveolar lavage fluid, have a reduced 

 respiratory burst function after four hours of  transportation.92 

The respiratory burst function is necessary to produce 

reactive oxygen species that are toxic to phagocytosed 

pathogens, and these results may represent impaired lung 

defense. In contrast, enhanced respiratory burst activity has 

been found in neutrophils of transported calves.68 Decreased 

apoptosis of neutrophils in combination with increased 

migratory capacity in dairy cows was reported after four 

hours of transportation, supporting a potential enhancement 

of immune function.87

Additional observations include differences in the 

adaptive immune response. A decrease in lymphocyte 

blastogenesis or cytokine production in response to an anti-

gen has been observed.3,68,73,75,85 Others have observed that 

lymphocytes produce the stress hormone ACTH and that 

long-term transportation increased this production.93 Inter-

estingly, IgG1 concentrations were elevated in transported 

calves compared with nontransported controls,45 indicating 

a possible enhanced function of the B-lymphocyte subset. 

This possible enhancement of components of immune 

function is supported by increases in NK cell counts and 

expression of major histocompatibility complex class II 

(MHC-II) in lymphocyte cell subtypes.94 Another marker 

of inflammatory response is the release of acute-phase 

proteins. These proteins are secreted by hepatocytes in 

response to injury, trauma, or infection and may be directly 

stimulated by glucocorticoids.95 Their presence in the cir-

culation may be an excellent biomarker of inflammation 

because they are readily measurable in serum or plasma, 

and may even discriminate between acute and chronic 

inflammation in cattle.96 Results in the literature concern-

ing changes in acute-phase protein concentrations during 

transportation stress are variable. Serum haptoglobin was 

elevated in calves transported for two days and was nega-

tively correlated with lymphocyte function.97 In a separate 

experiment of transporting bulls at different stocking densi-

ties, plasma haptoglobin concentrations were unchanged, 

while plasma fibrinogen levels were reduced.62,63 In another 

study, plasma fibrinogen was greatly increased by long 

distance transportation.75 Fibrinogen, ceruloplasmin, serum 

amyloid-A, and α-acid glycoprotein were assayed in the 

plasma of transported and comingled calves and found 

to be increased posttransportation; however, haptoglobin 

concentrations were higher in nontransported versus 

transported calves.83

An additional inflammatory measure is oxidative stress. 

Oxidative stress is marked by an imbalance of reactive 

oxygen species produced by metabolic and inflammatory 

reactions and the antioxidants that neutralize these species. 

Oxidative stress can cause severe tissue damage, altered 

metabolism, and impaired reproduction in dairy cows.98 

Attenuated antioxidant capacity and elevated lipid peroxida-

tion were observed in transported calves in association with 

respiratory disease,99 indicating that the calves may be under 

oxidative stress. The wide range of results reviewed here 

concerning inflammatory measures affected by transporta-

tion stress supports a growing suspicion that stress may not 

be entirely immunosuppressive.2,8

The age of the cattle being transported can have a great 

effect because morbidity and mortality increase in trans-

ported calves younger than three weeks of age,100 which 

may be confounded by the stress incurred by simultaneous 

weaning.82 Several differences have been found between 

calves of Bos indicus and Bos taurus during weaning and 

transportation,101 while it is generally agreed that cattle 

with genetically more excitable temperaments may remain 

agitated during handling procedures and transportation.7 

Cattle that are habituated to the presence of humans and 

calves that are group-reared have lower plasma cortisol 

concentrations and lower heart rates following handling 

and transportation than extensively reared cattle or calves 

reared in isolation without contact with humans.64,82 Road 

conditions are another contributing factor, and higher heart 

rates have been observed in cattle transported on rough 

country roads or suburban roads with many stops and turns 

than those transported on highways.102 Most losses of bal-

ance during transportation that result in injury and bruising 

are driving-related and occur during cornering and braking, 

thereby adding the variable of the driver.60

In addition to the diseases associated with stress that 

were mentioned earlier, one of the most prevalent examples 

is “shipping fever” in transported cattle. The disease may 

have appeared as early as the late 1800s to early 1900s 

when cattle were first transported by railroad.103 The exact 

definition of shipping fever is not entirely agreed upon, nor 

its exact cause, although the simple description “the occur-

rence of pulmonary infections during or after transit” has 

been utilized.103 It is also recognized as being encompassed 

by the BRD complex, although the terms are often used 

interchangeably.

A series of scientific studies was conducted to evaluate 

the effects of transport by land and sea (roll-on, roll-off) 

journeys and of stocking density on the welfare of cattle 
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transported within Ireland, from Ireland to Spain, and from 

Ireland to Italy under conditions outlined in Directive 

91/628/EEC. Transport from Ireland to Spain, and from 

Ireland to Italy, had no adverse effect on animal welfare 

based on physiologic, hematologic, and immunologic 

measurements.

There was no welfare advantage in transporting bulls at a 

stocking density of 1.27 m2 versus the standard of 0.85 m2 on 

a 12-hour road journey (Table 4). Within the conditions of the 

transport studies, and based on the physiologic, hematologic, 

and immunologic measurements that were done to assess the 

welfare of control and transported animals, transport had no 

adverse effect on animal welfare.63

Housing stress
The welfare status of an animal depends on its ability to 

cope and exist in harmony with its environment, such 

that good physical and psychologic health is maintained. 

Improving animal welfare is an increasingly important 

aspect of livestock production systems and is due in large 

part to increased consumer concern about the source of 

animal products. Animal welfare has become an integrated 

part of quality assurance programs for sustainable animal 

production, considering that welfare, health, management, 

economy, consumer acceptance, and environmental impact 

are dependent on each other. The Organisation for Economic 

Cooperation and Development has acknowledged the fact that 

animal welfare is an emerging trade issue, and the interna-

tional conventions already in place and ongoing work with 

the World Organization for Animal Health confirms this. 

Criteria for the assessment of farm animal housing have 

been proposed by several groups, and minimal standards for 

animal welfare are already implemented in the legislation of 

most European countries.

In Irish beef production systems, animals are generally 

housed in a concrete slatted-floored facility for a 4–5 month 

winter period at 2.2 m2/head per 500 kg animal,104 and fed 

grass silage ad libitum with concentrate supplementation. 

High stocking densities of less than 2.0 m2/head have been 

shown to affect adversely the frequency and duration of lying 

and levels of aggression within groups. Animal behavioral 

studies indicate that intensive stocking rates on slatted 

floors can present a significant challenge to the successful 

adaptation of cattle to confinement. High stocking densi-

ties have been shown to affect adversely the frequency and 

duration of lying behavior25,105–107 and levels of aggression 

within groups. High stocking densities can adversely affect 

production levels,25,26,107 with a positive response suggested 

to exist between daily gain and space allowance up to 

4.7 m2 /head.108–110

The effect of reduced space allowance (1.5, 2.0, 2.5, and 

3.0 m2/head) on the welfare of finishing heifers housed for a 

three-month period on slats was examined.25 Animals were 

fed silage ad libitum and 3 kg of concentrate DM, achieving 

a low daily live weight gain (mean  0.70 kg/day). There 

was no effect of treatment on the measured immune response 

(serum IgG concentrations) to a mitogenic challenge. Neither 

was there any effect of treatment on the cortisol response of 

animals to an ACTH challenge at three different intervals 

during the study. However, because the critical welfare 

indicators (immune function, production, and behavior) 

may be influenced in a high production environment. When 

comparing deep-bedding accommodation with slatted floors 

for finishing cattle, short-term studies have concluded that 

animals have a greater preference for straw-bedded lying 

facilities than for slats. Long-term studies have shown that 

lying frequency can be affected by floor type.111,112 However, 

the conclusions of many long-term studies are confounded 

by space allowance (4.6 versus 2.2 m2/head for straw and 

slats, respectively).108 In another study, the effects of space 

allowance and floor type on the welfare of beef cattle was 

examined.46 Friesian steers were blocked on body weight 

(mean 516 kg) and randomly assigned to one of five groups 

(1.5, 2.0, 3.0, or 4.0 m2/head on slatted floors or 4.0 m2/head 

on straw [n = 15 per treatment], Table 5). Over a three-month 

period, animals were offered concentrates ad libitum and 2 kg 

silage DM daily. Duration of time spent lying and eating 

Table 4 Treatment means for plasma cortisol concentration and 
for iFN-γ production by cultured lymphocytes following induction 
by either Con-A or KLH prior to transport and after a 12-hour 
journey63

Treatment2 Pretransport Posttransport

Cortisol 
(ng/mL)3

Control
T127
T085

7.48 ± 6.91ax

8.17 ± 5.22axy

9.15 ± 4.64ay

6.91 ± 4.44a

7.09 ± 4.80a

7.94 ± 3.00a

Con-A iFN-γ1,3 
(absorbance at  
450 nm)

Control
T127
T085

0.278 ± 0.20a

0.230 ± 0.216a

0.197 ± 0.169a

0.224 ± 0.179a

0.189 ± 0.158a

0.181 ± 0.190a

KLH iFN-γ1,3 
(absorbance at  
450 nm)

Control
T127
T085

0.026 ± 0.046a

0.024 ± 0.037a

0.021 ± 0.031a

0.029 ± 0.047a

0.009 ± 0.035a

0.012 ± 0.048a

Notes: 1Expressed as optical density measured at 450 nm; 2Control, not transported; 
3values are expressed as mean ± SD. T127 = transported for 12 hours at a stocking 
density of 1.27 m2 per animal; T085 = transported for 12 hours at a stocking density 
of 0.85 m2 per animal; a,bwithin row means not having a common superscript differ 
significantly (P # 0.001); x,ywithin column means not having a common superscript 
differ significantly (P # 0.001).
Abbreviations: iFN-γ, interferon gamma; con-A, concavalin A; KLH, keyhole limpet 
hemocyanin; SD, standard deviation.
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and the frequency of social and stereotypic behaviors were 

recorded. Hematologic and biochemical (nonesterified fatty 

acids, creatine kinase, β-hydroxybutyrate, haptoglobin, and 

fibrinogen)  measurements were made. The immune status of 

all animals was assessed by immunizing against KLH and 

assessing in vitro IFN-γ production. There was no effect 

of space allowance on time spent eating. Lying time was 

affected by treatment (P  0.05). Time spent lying on slats 

was decreased at 2 m2/head (P  0.05), while animals lay 

longer on straw beds (P  0.05). The frequency of social 

interactions increased with space allowance (P  0.001), 

while aggressive interactions were greatest at the lowest 

and highest space allowances (P  0.01). The provision of 

a straw bed increased the frequency of grooming behav-

iors (P  0.05). There was no effect of space allowance 

on blood cell counts, blood metabolites, haptoglobin, or 

fibrinogen. There was a significant effect of space allowance 

on dirt score. Increased space allowance increased carcass 

gain (P  0.001) and decreased feed conversion ratio (kg 

DM intake/kg carcass gain, P  0.05). In vitro IFN-γ was 

compromised when animals were housed at 2 m2/head 

(P  0.05). There was no effect of floor type on carcass gain, 

feed conversion efficiency, or IFN-.γ response. The authors 

concluded that space allowance 3 m2/animal, but not floor 

type, adversely influenced animal welfare.

Provision of adequate space allowances during the hous-

ing period for cattle determines their welfare status and also 

enables control over labor costs.113 Housing protects animals 

from adverse weather conditions and provides structured 

management (feeding, drinking, health checking,) under 

controlled conditions. However, insufficient space  allowance 

induces prolonged stress by preventing animals from per-

forming their natural behavior, altering HPA axis  secretion, 

immune function, and performance.47,108,113 Therefore, 

inadequate space allowance is viewed as a potential welfare 

concern for cattle kept under confined conditions.

Several studies have been conducted on the effect of var-

ied (greater versus lesser) space allowances on the behavioral 

activities of cattle, with conflicting results. No change in lying 

behavior was noted in bulls housed at 2 m2 versus 3 m2 aver-

age individual space allowance.114 While Dome115 reported a 

tendency for a reduction in lying behavior in bulls (housed 

at 1.95 m2 compared with 2.60 m2),115 others demonstrated 

reduced lying time and reduced number of eating bouts in 

cattle with reduced space allowances (1.5 m2 and 2.0 m2 space 

allowance26 and 2.3 m2 and 2.7 m2 space allowance116,117), 

respectively. Increased levels of aggressive behavior was 

reported in cattle housed at 1.95 m2 versus 2.60 m2 space 

allowance,115 while other authors reported interruption in 

expressing natural behavior in cattle housed in pens with 

slatted flooring and low space allowances.118,119 and reduced 

lying time when cattle were housed at a space allowance of 

1.5 m2 compared with 3.0 m2 per animal.47

As space allowance for young bulls on slatted floors was 

increased, the level of aggression120 and abnormal behavior115 

was decreased. Others reported that increasing the resting 

area from 1.8 to 2.7 or 2.65 m2 per animal improved the wel-

fare of group-housed cattle.121 While some authors26,47 found 

no effect on lying time at 2 m2 per animal or greater (3 m2) 

others found that fattening bulls spent a greater percentage 

of their time lying at 4 m2 than at 2 m2 per animal.107 From 

these findings it is concluded that cattle housed in groups 

require more than the individual lying area suggested by a 

nallometric equation,122 which defines a minimal space of 

1.5 m2 required by an animal when lying. Under conditions 

of excessively large groups (.100 animals) with minimum 

space allowances,120,123 individual animals appear to have 

difficulty in memorizing the social status of all peers, which 

Table 5 The effect of space allowance and floor type on animal performance46

Parameter Space allowance (m2/head)w Significance

1.5 2 3 4 4 Straw

Average daily live weight gain (kg/day) 0.60b 0.80b 1.10a 1.10a 1.10a ***
Final carcass weight (kg) 315.5d 323.0c 334.3b 341.6a 341.3a ***
Kill out 0.552a 0.549ab 0.535b 0.541ab 0.541ab *
initial carcass weight (kg) 268.7 265.9 269.7 269.5 269.7 ns
Daily carcass gain (kg/day) 0.48a 0.59ab 0.67b 0.74b 0.74b ***
Conformationx 1.9 1.8 2.0 2.1 2.1 ns
Fat scorey 3.9 4.1 4.3 4.1 4.3 ns
Kidney/channel fat (g/kg carcass) 40.8c 43.1b 47.3a 43.0b 46.8a *
Feed conversion efficiencyz 20.6b 19.0b 18.2ab 16.0a 15.9a *

Notes: wWithin rows, means without a common superscript are significantly different (P  0.05); xScale 1–5 (best conformation); yScale 1–5 (fattest); zFeed conversion 
efficiency = kg DM intake/kg carcass gain.
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increases the incidences of social aggressiveness and ste-

reotypies in cattle.115,124,125 Bulls housed with reduced space 

allowance were found to spend several minutes in every hour 

showing tongue-rolling behavior that indicates increased 

aggression, probably associated with reduced feeding space 

or when animals cannot eat at the same time.126 It was also 

observed that reduced trough length in slatted-floor housing 

increased the frequency and decreased the duration of feeding 

periods.119 In contrast, when others26 compared 1.5 m2 and 3.0 

m2 space allowances for housed cattle on slatted floors, the 

restricted space allowances reduced the incidence of nonag-

gressive social interaction and increased leaning behavior 

(head resting either on an inanimate object or upon other 

animals). Similar observations were reported in another hous-

ing study which showed no effect of space allowances (1.5, 

2.0, and 4.0 m2) on social interaction, stereotypic behaviors, 

grooming, or aggressive interactions of housed cattle.47

There are limited studies to evaluate the effect of space 

allowances on the immunologic parameters of cattle. While 

one study47 reported the attenuation of lymphocyte prolifera-

tion in ex vivo immune function tests for cattle at less than 

2 m2 space allowances, another study found no differences 

for ex vivo cellular functions between 1.5, 2.0, 2.5, and 3 m2 

per heifer space allowances.25 In the latter study, there were 

no effects of space allowance on anti-KLH IgG1 or IgG2 

antibody responses. Mean preimmunization anti-KLH IgG1 

and IgG2 were less than 0.03 and 0.06 absorbance units, 

respectively.25 No effects on white blood cells, red blood 

cells, hematocrit percentage, and hemoglobin from day 0 to 

day 96 in heifers housed at 1.5 m2 or 3.0 m2 average indi-

vidual space allowance25 and steers housed at 1.5, 2.0, 3.0, 

or 4.0 m2 each47 have been reported. In an experiment with 

water buffalo calves, it was reported that the in vivo cell-

mediated immune response to phytohemagglutin-A (PHA) 

injection was influenced by space allowance.127 The authors 

reported that a higher spatial density (1.5 and 1.0 m2/calf 

versus 2.6 m2/calf) reduced hypersensitivity to PHA, indicat-

ing that space restriction has detrimental effects on cellular 

immune responses.

Implications for biomedical models
Studies have examined phenotypic alterations of blood leu-

kocytes as potential biologic indicators of physiologic stress 

and disease susceptibility in humans and animals. However, 

most of the indicators tested have been used with little 

biologic justification. Rather, indicators such as the ratio of 

CD4:CD8 lymphocytes or the NL ratio in blood have been 

used in such studies because researchers have the equipment 

to perform these measurements and can show impressive 

changes in these parameters due to imposed stressors.128–131 

In cattle, for example, clear changes in circulating numbers 

of neutrophils and lymphocytes, attenuated proliferation of 

T- and B-lymphocytes, and modified expression of surface 

adhesion and antigen-presenting molecules on leukocytes 

subjected to stress hormones in vivo and in vitro have been 

documented.4,68,132 While these measurements may indicate 

that something is going on in the test animals, they are in no 

way diagnostic of what the overall physiologic response is. 

Lack of availability of appropriate stress diagnostics is due 

to a lack of basic knowledge about what stress and stress 

hormones do to blood leukocytes at the molecular level.

Because interactions between stress hormones and leu-

kocytes are highly complex, influenced by the animal,133 

leukocyte type,128 leukocyte activation status, and presence 

of concurrent metabolic and infectious disease,134 in addi-

tion to the blood hormonal milieu, simple functional assays 

alone will never elucidate or explain the full response of the 

cells to stress. To enable reliable and precise diagnosis and 

treatment of stress in the future will require that we move 

beyond the isolated study of gross cellular responses to stress 

and begin to identify the molecular mechanisms associated 

with these responses.

Increasingly, microarray technology and next-generation 

sequencing technology are being used to overview the 

genomic response of cells to specific experimental and/or 

biologic conditions. More recently, the expression changes 

of candidate neutrophil genes known to be altered in other 

stress models as well as novel genes on a transcriptome-wide 

scale by cDNA microarray analysis in relation to transporta-

tion of young cattle were investigated.70,72 The genes selected 

for profiling were sensitive to glucocorticoids in other stress 

models and included Fas, A1, matrix metalloproteinase-9 

(MMP-9), L-selectin, bactericidal/permeability-increasing 

protein (BPI), transforming growth factor-β receptor Type III 

(subsequently referred to as betaglycan), and glucocorticoid 

receptor-α. Eighty-eight genes were found to be differentially 

expressed (P  0.05) between -24 and 4.5, 9.75, or 14.25 

hours relative to transport, when cortisol and neutrophilia 

were at their peaks. These 88 genes were grouped into 

ontological clusters based on their relevance to respiratory 

tract defense and potential roles in the “neutrophil paradox”: 

signal transduction (n = 16), immune response (15), unknown 

(14), protein trafficking (7), apoptosis (6), transcriptional 

regulation (6), ribosomal (6), wound healing (5), mitochon-

drial (3), metabolic enzymes (2), translational regulation 

(2), ubiquitin pathways (2), protein activation (1), RNA 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Animal Physiology 2010: 2submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

38

Earley et al

processing (1), steroid (1), and cell structure (1). Thirty-one 

genes involved in the immune response,  apoptosis, wound 

healing, and unknown clusters were selected for independent 

validation by quantitative real-time polymerase chain reac-

tion (qRT-PCR); the expression changes for 14 of these genes 

were validated or tended towards validation (P  0.10). 

Proapoptotic caspase 13 and tumor necrosis factor receptor-

associated factor 6 (TRAF6) were downregulated by trans-

port stress (P  0.01), while expression of death-associated 

protein kinase was not confirmed as changed (P = 0.80). The 

antiapoptotic bcl-2 family member mcl-1 tended to decrease 

at 14.25 hours (P = 0.06). Expression of the neutrophil 

chemoattractant Gro-γ increased numerically but was not 

significant (P = 0.21). Antifibrotic and anti-inflammatory 

betaglycan was profoundly downregulated during transport 

stress (P  0.05). In fact, the altered regulation of many 

genes may suggest a reprogramming of neutrophils with 

a greater potential for antibacterial capacity and potential 

tissue injury. Differentially expressed genes fell in three 

major functional groups that would support this, ie, immune 

function, apoptosis, and wound healing. The candidate genes 

identified as differentially expressed by transportation, ie, 

L-selectin and BPI (immune function), Fas (apoptosis), and 

MMP-9 (wound healing), could easily fall into these same 

groups. A general upregulation in genes responsible for the 

regulation of chemotaxis, activation, migration, and antibac-

terial capacity in immune function was observed (L-selectin, 

BPI, IL-8, eotaxin-2-like protein, ICAM-3, semaphorin 4A, 

and erythropoietin). Apoptosis genes (Fas, p21, and caspase 

13) were regulated so as to suggest a delay in apoptosis and 

prolonged neutrophil survival. The expression of wound 

healing genes (MMP-9, peroxisome proliferator-activated 

receptor gamma, and platelet-derived growth factor alpha) 

were altered in a way that would propose an increase in tissue 

remodeling and wound healing functions which may lead to 

excessive degradation or excessive fibrous deposition.

Neutrophils, as well as many other immune cells, are 

well-known targets of stress hormones, possessing receptors 

for catecholamines and glucocorticoids secreted during an 

acute stress response. Bovine neutrophils have been shown to 

exhibit differential expression of genes which have important 

roles in immune function, apoptosis, tissue remodeling, and 

various metabolic and cellular functions in response to glu-

cocorticoids in vitro and in vivo. Although many reports have 

investigated neutrophil function during natural and experi-

mental cases of BRD, none have investigated the effects 

of weaning alone or in combination with transportation on 

neutrophil gene expression, let alone on a transcriptome-

wide scale. Tools developed in the past decade in the fields 

of functional genomics and proteomics have allowed for the 

identification of thousands of molecular changes at once in 

physiologic or disease states. Use of these tools may discover 

potential targets for therapeutics and genetic selection, and 

may present a pattern of genomic or proteomic changes as 

biomarkers of a disease. The ability to treat BRD especially 

in multiple-sourced and comingled transported animals is 

becoming more difficult. With the emergence of antibiotic-

resistant pneumonia in feedlot cattle, more targeted and 

selective use of antimicrobials in the animal industry is 

sought. It has long been observed that an association exists 

between stress and disease susceptibility, namely BRD, in 

domestic farm animals, although a definitive causal factor 

has yet to be defined. Many researchers have implicated a 

suppression of the host’s immune system by stress that allows 

opportunistic infectious pathogens to invade. Furthermore, 

substantial evidence has suggested that this immunosuppres-

sion is mediated by glucocorticoids following activation of 

the HPA axis by a stressor. However, recent research has 

suggested that stress, and its association with increased 

glucocorticoid concentrations, is not solely immunosuppres-

sive and may actually enhance immune function.135 In either 

case, susceptibility to disease may increase because neither 

inadequate nor excessive activation of immune components 

is ideal in the prevention of disease.

Conclusion
The living environment is not benign and exposes animals 

to various threats from normal physiologic processes such as 

parturition, or externally from pathogens, stress, transport, 

social interactions, or interference for health reasons. They 

are also of fundamental economic importance to the economy. 

Advances in molecular biology will become driving forces 

in the development of innovative technologies that will help 

underpin economic development and prosperity in the next 

two to three decades. Gaining an insight into the genes that 

regulate the basic biology of the stress-immune axis will 

provide a unique understanding of its fundamental mecha-

nism of action at the molecular level. The unlocking of these 

molecular mechanisms will help lead to the discovery of key 

genes and proteins that can be exploited in the future to boost 

the immune system and modulate the environment of the 

animal in order to improve the health and well being of both 

animals and humans. The recent major advance of under-

standing functional genomes through the development of 

DNA microarray technology and next-generation sequencing 

allows scientists to investigate the gene expression profiles 
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of thousands of genes simultaneously and over critical physi-

ologic time periods. Gene expression patterns can be mea-

sured in control and challenged animals (poor stress/welfare 

and reduced immunocompetency) and the array of genes that 

are up- or downregulated can be discovered for the first time. 

This knowledge will help lead to the discovery of new ways 

to control or boost the stress-immune axis in cattle.
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