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Abstract: Insulin resistance and islet (beta and alpha) cell dysfunction are major pathophysiologic 

abnormalities in type 2 diabetes mellitus (T2DM). Pioglitazone is a potent insulin sensitizer, 

improves pancreatic beta cell function and has been shown in several outcome trials to lower the 

risk of atherosclerotic and cardiovascular events. Glucagon-like peptide-1 deficiency/resistance 

contributes to islet cell dysfunction by impairing insulin secretion and increasing glucagon secretion. 

Dipeptidyl peptidase-4 (DPP-4) inhibitors improve pancreatic islet function by augmenting 

glucose-dependent insulin secretion and decreasing elevated plasma glucagon levels. Alogliptin 

is a new DPP-4 inhibitor that reduces glycosylated hemoglobin (HbA
1c

), is weight neutral, has an 

 excellent safety profile, and can be used in combination with oral agents and insulin. Alogliptin has 

a low risk of hypoglycemia, and serious adverse events are uncommon. An alogliptin–pioglitazone 

combination is advantageous because it addresses both insulin resistance and islet dysfunction in 

T2DM. HbA
1c

 reductions are significantly greater than with either monotherapy. This once-daily 

oral combination medication does not increase the risk of hypoglycemia, and tolerability and 

discontinuation rates do not differ significantly from either monotherapy. Importantly, measures 

of beta cell function and health are improved beyond that observed with either monotherapy, 

potentially improving durability of HbA
1c

 reduction. The alogliptin–pioglitazone combination 

represents a pathophysiologically sound treatment of T2DM.
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Introduction
The prevalence of type 2 diabetes mellitus (T2DM) has reached epidemic  proportions and 

continues to rise.1 Currently, T2DM has been diagnosed in nearly 24 million Americans 

and is projected to affect nearly 50 million individuals by 2050. Increases in T2DM are 

paralleled by a robust increase in people at high risk for the development of diabetes. 

Prediabetes, as of 2007, may be present in up to 57 million individuals through the 

diagnosis of impaired fasting glucose (100–125 mg/dL) or impaired  glucose tolerance 

(IGT, two-hour value on a 75 g oral glucose tolerance test [OGTT] of 140–199 mg/dL).1 

It is imperative to understand that development of diabetes is not inevitable with 

prediabetes. Lifestyle interventions and medications, which will be discussed, may be 

appropriate in select patients to prevent progression to diabetes. In T2DM,  hyperglycemia 

is the key determinant of microvascular complications,2 and the evidence that improving 

glycemic control lowers the risk of microvascular complications is unequivocal. 

Hyperglycemia also contributes to macrovascular complications,3 although to a lesser 

extent. As demonstrated in the United Kingdom Prospective Diabetes Study, glycemic 

control deteriorates  progressively over time in T2DM patients treated with sulfonlyureas, 
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metformin, and/or insulin.2,4 In ADOPT (A Diabetes Outcome 

Progression Trial), the thiazolidinedione (TZD) rosiglitazone 

markedly slowed the rise in glycosylated hemoglobin (HbA
1c

) 

in newly  diagnosed T2DM patients versus sulfonylureas 

or metformin, but even monotherapy with the TZD could 

not completely arrest the deterioration of glycemic control 

over the five years of follow-up.5 Although the progressive 

 worsening of glycemic control can be controlled with lifestyle 

intervention combined with aggressive stepwise addition of 

multiple hypoglycemic agents,3,4 clinicians often intervene 

with additional antihyperglycemic agents only when the HbA
1c

 

has risen to values that are well above target.6 To overcome 

this problem of clinical inertia and to achieve optimal HbA
1c

 

goals, early combination therapy with agents that minimize 

the risk of hypoglycemia and address the multiple underlying 

pathophysiologic abnormalities has been advocated to assist 

clinicians in attaining and maintaining glycemic goals.7

In the US, most clinicians initiate therapy with metformin, 

especially if the patient is overweight. Because metformin 

improves glucose control, reduces cardiovascular  complications 

in obese patients with T2DM, and is generic, this biguanide 

represents a logical choice as first-line therapy in diabetic 

patients.4 Addition of a TZD or a sulfonylurea is commonly 

employed as the next step by most clinicians. Sulfonylureas 

are generic and inexpensive, but are inferior to metformin and 

TZDs with respect to durability of HbA
1c

 reduction,5 may cause 

hypoglycemia, and impart no other nonglycemic advantages 

to the T2DM patient. Most importantly, sulfonylureas, like 

metformin, do not preserve beta cell function.

The core pathophysiologic disturbances (insulin  resistance 

and impaired insulin secretion) that are  present in T2DM can 

be ameliorated by improving muscle/hepatic  insulin  sensitivity 

with the addition of a TZD and  correction of glucagon-like 

peptide-1 (GLP-1) deficiency. GLP-1  agonists (exenatide 

and liraglutide) and dipeptidyl  peptidase-4 (DPP-4)  inhibitors 

( sitagliptin, saxagliptin, vildagliptin, and alogliptin) improve 

insulin secretion by  pancreatic beta cells, and decrease the 

 elevated rate of glucagon secretion by alpha cells. GLP-1 

r eceptors have been identified in the pancreas (beta and alpha 

cells), kidney, heart, stomach, lung, and brain.8,9 GLP-1 enhances 

glucose-dependent insulin secretion, causes glucose-dependent 

suppression of elevated glucagon secretion, slows gastric emp-

tying, and reduces food intake. Because the effects of GLP-1 

on insulin and glucagon secretion wane as the fasting glucose 

level returns to normal, hypoglycemia is minimized in T2DM 

patients treated with GLP-1-based therapy. The glucoregulatory 

mechanisms by which GLP-1 and exenatide/liraglutide act are 

similar, but GLP-1 suppresses gastric acid secretion, whereas 

exenatide and liraglutide do not.10 DPP-4 inhibitors augment 

insulin secretion and inhibit glucagon release, but do not slow 

gastric emptying and are weight neutral.11

Given that approximately 50% of T2DM patients have 

HbA
1c

 levels greater than 7% despite currently available 

therapies to control glycemia,12–14 adverse metabolic effects 

are often cited as therapeutically limiting by clinicians, and 

clinical inertia remains a major problem, combination therapy 

can help to overcome these multiple barriers. In practice, the 

combination of an insulin sensitizer (metformin or a TZD) 

with a GLP-1 analog or a DPP-4 inhibitor minimizes the risk 

of hypoglycemia and weight gain, and can help to achieve and 

maintain glycemic goals long term. In this review, we briefly 

examine the pathophysiology of T2DM, with an emphasis 

on the role of the TZD pioglitazone, incretin analogs, and 

specifically the DPP-4 inhibitors, with a special emphasis on 

alogliptin and the combination of pioglitazone-alogliptin.

Abnormal glucose homeostasis  
in type 2 diabetes
Insulin resistance and beta cell failure represent the two cor-

nerstone pathophysiologic abnormalities in T2DM.7,15–19 Liver, 

muscle, and adipose tissue are resistant to the actions of insulin. 

Basal hepatic glucose production (HGP) is increased despite 

elevated fasting plasma insulin  concentrations,  indicating 

the presence of hepatic insulin resistance. The increase in 

basal HGP is the primary disturbance  responsible for the 

elevation in fasting plasma glucose (FPG)  concentration, 

and impaired suppression of HGP by insulin contributes to 

postprandial hyperglycemia. The ability of insulin to increase 

glucose uptake by peripheral tissues (primarily muscle) is 

markedly reduced and this peripheral insulin resistance plays 

a major role in postprandial hyperglycemia.7,15 Insulin binds 

to the insulin receptor, resulting in tyrosine phosphorylation 

both of the insulin receptor and insulin receptor substrate-1 

with subsequent activation of phosphoinositol 3 kinase and 

Akt (Figure 1). Activation of the insulin signaling pathway 

leads to increased glucose transport into the cell, enhanced 

glucose  phosphorylation (hexokinase II), and stimulation of 

glycogen synthesis (glycogen  synthase) and glucose oxidation 

( pyruvate dehydrogenase).

The adipocyte is also resistant to insulin, and the  accelerated 

rate of lipolysis contributes to day-long elevation in the plasma 

free fatty acid (FFA) concentration.20 Elevated plasma FFA 

levels aggravate insulin resistance in both liver and muscle.21 

FFA metabolites, such as long-chain FACoAs, impair 

 insulin  signaling and inhibit glycogen synthesis and glucose 

 oxidation.22 In addition, FFAs increase HGP in the liver7,16,23 
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and impair insulin signaling.24 Muscle and hepatic insulin 

resistance, in combination with impaired insulin secretion, are 

responsible for postprandial hyperglycemia (Figure 2).

Prior to the development of T2DM, the insulin resistance 

in liver and muscle is compensated by enhanced insulin 

secretion.7 With time, however, pancreatic beta cell function 

declines (both because of reduced beta cell sensitivity to 

 glucose and decreased beta cell mass) and the plasma glucose 

concentration rises. Both “glucotoxicity”25 and “lipotoxicity”26 

contribute to the decline in beta cell function. Even small 

increases in the mean plasma glucose  concentration, if 

 present on a chronic basis, can impair insulin secretion by 

beta cells.27 Additionally, elevated plasma FFA concentra-

tions impair insulin secretion and promote beta cell failure.28 

Beta cell dysfunction can be identified during the OGTT long 

before the diagnosis of T2DM. At the time of diagnosis of 

IGT, about 50%–60% of beta cell function has already been 

lost, while individuals in the upper tertile of IGT (two-hour 

 postprandial glucose 180–199 mg/dL) have lost approximately 

70%–80% of their beta cell function.29 Thiazolidinediones,30–33 

exenatide,34,35 and possibly the DPP-4 inhibitors,36,37 can slow 

or prevent the decline in beta cell function.

In addition to impaired insulin secretion and moderate to 

severe insulin resistance, T2DM patients have elevated fasting 

plasma glucagon levels that fail to suppress normally after a 

mixed meal and may even rise paradoxically.38–40  Evidence for 

hepatic hypersensitivity to glucagon has also been  provided.41 

The elevated plasma glucagon levels stimulate HGP and con-

Figure 1 insulin signaling system in healthy normal glucose tolerant A) and T2DM B) subjects.
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tribute to fasting and postprandial  hyperglycemia. During 

hyperglycemia, the rate of gastric emptying is normally 

slowed, resulting in a better match between glucose appear-

ance and glucose disappearance from the circulation. In 

contrast, patients with newly diagnosed T2DM, despite 

hyperglycemia, often have an abnormally accelerated gastric 

emptying rate.42 In this review, we first explore the use of 

pioglitazone for the treatment of T2DM, and then examine 

therapies designed to augment plasma GLP-1 levels.

Pioglitazone
insulin sensitivity and metabolic effects
Pioglitazone is a potent insulin sensitizer, which binds to the 

peroxisome-proliferator activated receptor-gamma, resulting 

in enhanced muscle, liver, and adipose tissue sensitivity to 

 insulin, with a resultant decline in fasting and postprandial 

plasma glucose levels.43–45 Pioglitazone also augments beta 

cell  function46 (Figure 3), reduces inflammation,47 improves 

endothelial dysfunction,48,49 corrects diabetic dyslipidemia,50 

and improves the defect in insulin signaling in muscle, leading 

to impaired glucose transport/metabolism results in increased 

generation of nitric oxide (NO). NO is a potent vasodilator 

and antiatherogenic molecule,51,52 and deficiency of NO 

contributes to the markedly increased rate of atherogenesis 

in T2DM individuals. The compensatory increase in insulin 

secretion that occurs as the beta cell tries to  compensate for 

the insulin resistance leads to  hyperinsulinemia,  causing 

excessive stimulation of the mitogen- activated protein (MAP) 

kinase pathway which retains normal  sensitivity to insulin 

in T2DM patients. Activation of MAP kinase  stimulates 

 multiple  intracellular pathways involved in inflammation and 

 augments vascular smooth muscle cell growth and prolifera-

tion, thereby promoting atherosclerosis.53 TZDs, including 

pioglitazone, improve insulin signaling and insulin sensitivity 

in muscle,43,44 augment NO generation, and simultaneously 

inhibit the MAP kinase pathway, thus reducing the risk of 

atherosclerosis in T2DM (Figure 4).

Hepatic glucose metabolism
In the liver, pioglitazone increases splanchnic glucose 

uptake, reduces HGP via inhibition of gluconeogenesis, 

and decreases hepatic fat content.54 Belfort et al22 studied 

Figure 2 The triumvirate: insulin resistance in liver and muscle with impaired insulin 
secretion represent the three core defects in T2DM. Reproduced with permission 
from DeFronzo RA. Lilly lecture. The triumvirate: Beta-cell, muscle, liver. A collusion 
responsible for NiDDM. Diabetes. 1998;37:667–687.16 Copyright © 1998 American 
Diabetes Association.
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Figure 3 effect of thiazolidinedione (TZD) treatment on beta cell function.  
Abbreviations: PiO, pioglitazone; ROSi, rosiglitazone; SU, sulfonylurea; iSR, insulin secretion rate; AUC, area under the curve.
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55 subjects with T2DM or IGT and biopsy-confirmed 

nonalcoholic steatohepatitis. Subjects were randomized to a 

hypocaloric diet ± pioglitazone 45 mg/day. After six months 

of pioglitazone treatment, muscle/hepatic insulin sensitivity 

improved, liver fat content (measured by magnetic resonance 

spectroscopy) decreased by 54%, and liver aminotransferase 

levels were normalized. Liver biopsy demonstrated histologic 

improvements in steatosis, inflammation, ballooning necro-

sis, and fibrosis. Pioglitazone also reduced inflammation, as 

manifested by reductions in C-reactive protein (CRP), tumor 

necrosis factor alpha, and transforming growth factor-beta, 

and increased plasma adiponectin levels.

Adipose tissue
Pioglitazone also exerts positive effects on adipose tissue 

metabolism. By improving adipocyte sensitivity to the anti-

lipolytic effects of insulin, pioglitazone reduces plasma FFA 

levels,54,55 leading to enhanced insulin sensitivity in muscle/

liver and improved insulin secretion.55–57 Pioglitazone also 

causes a redistribution of fat from highly metabolically active 

visceral fat (which is associated with accelerated atherogen-

esis) to subcutaneous fat stores (Figure 5).

Lipids
Pioglitazone also improves diabetic dyslipidemia, increasing 

high-density lipoprotein (HDL) cholesterol, reducing 

plasma triglycerides, and causing a shift from small dense 

low-density lipoprotein (LDL) to larger more buoyant LDL. 

Pioglitazone has a neutral effect on LDL cholesterol. In 

contrast, rosiglitazone increases both LDL and triglyceride 

levels.50,58 Goldberg et al compared the metabolic effects 

of pioglitazone and rosiglitazone in lipid-lowering agent-

naïve subjects over 24 weeks. Pioglitazone significantly 

increased HDL and lowered triglycerides compared with 

rosiglitazone.50 These differences in plasma lipids may, in 

part, explain the adverse cardiovascular signal that has been 

reported with rosiglitazone.59,60

Pioglitazone dose-response effect
Miyazaki et al examined the effect of placebo and 

pioglitazone 7.5, 15, 30, and 45 mg/day daily for 26 weeks 

in subjects poorly controlled on diet alone. Patients taking 

previous antidiabetic therapy underwent a 6–8 week washout 

period. Compared with placebo, HbA
1c

 was significantly 

reduced in the 15 mg (−1.3%), 30 mg (−2.0%), and 45 mg 

(−3.0%) groups versus placebo (1.2%). During the OGTT, 

the insulinogenic index (change in the area under the plasma-

concentration time curve [∆AUC] insulin/∆AUC glucose) in 

the 30 mg/day and 45 mg/day groups increased significantly 

versus placebo. Insulin sensitivity, measured by the Matsuda 

index of whole-body insulin sensitivity, improved with all 

doses of pioglitazone, and was greatest at the 45 mg/day 

dose. The hepatic insulin sensitivity index (k/FPG × fasting 

plasma insulin) was also significantly improved.61

Figure 4 Pioglitazone positively affects the insulin signaling system resulting in improved glycemic control, generation of nitric oxide and decreased MAP kinase pathway 
activation.
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In summary, pioglitazone improves insulin sensitivity in 

liver, muscle, and adipose tissue, resulting in improvements 

in glucose and lipid metabolism.

Beta cell effects and impaired  
glucose tolerance
TZDs, along with the GLP-1 analogs, are the only classes 

of drugs that have been shown to enhance and preserve 

beta cell function.30–33,62–64 It is not widely recognized that 

individuals with IGT are already maximally/near maximally 

insulin resistant and have lost as much as 70%–80% of their 

beta cell function. At baseline in the ACT NOW (Actos Now 

for Prevention of Diabetes) trial (see subsequent discussion) 

subjects with IGT had a 48% reduction in insulin sensitivity, 

as measured by the Matsuda index, and a 78% reduction in 

ability of pancreatic beta cells to respond to an oral glucose 

load versus normal glucose tolerant individuals.65 Similar 

observations have been reported in the VAGES (Veterans 

Administration Genetic Epidemiology Study) and SAM (San 

Antonio Metabolism) studies.29,66

Buchanan et al first reported on the use of troglitazone 

400 mg daily versus placebo in Hispanic women with a 

previous history of gestational diabetes and IGT. Over a 

30-month follow-up period, troglitazone reduced the risk 

of diabetes by 55%, and this protective effect persisted 

eight months after discontinuation of troglitazone  therapy.31 

Subjects who completed the study without diabetes were 

asked to continue in an open-label observational study 

using pioglitazone 45 mg daily for up to three years.32 The 

annual incidence of diabetes remained low (about 5%), 

similar to the rate observed during troglitazone treatment. 

The best predictor of reduced risk of progression to diabetes 

was a reduction in early insulin output, as measured by the 

frequently sampled intravenous glucose tolerance test. Sub-

jects who failed to reduce insulin output during TZD therapy 

did not have a significant reduction in the risk for T2DM. 

Thus, “off-loading” the pancreatic beta cells was the best 

predictor for preventing the progression of IGT to T2DM.

Most recently, pioglitazone has been evaluated in 

a randomized, double-blind, placebo-controlled trial in 

602  subjects confirmed by OGTT to have IGT. Over a mean 

follow-up of 2.6 years, the risk of progression of IGT to 

T2DM was reduced by 70% (P , 0.000001). Pioglitazone 

significantly improved both insulin sensitivity (measured by 

the Matsuda index and frequently sampled intravenous glucose 

tolerance test) and pancreatic beta cell function (measured by 

the insulin secretion/insulin resistance [disposition] index).33 

In a double-blind, placebo-controlled, four-month study 

carried out in poorly controlled, drug-naïve, and sulfonylurea-

treated T2DM patients, both pioglitazone and rosiglitazone 

significantly improved beta cell function (Figure 3).57 In 

eight of eight long-term (.1.5 years), double-blind, placebo-

controlled or active comparator studies, pioglitazone, as well 

as rosiglitazone, caused a durable reduction in HbA
1c

64–73 

(Figure 6). Such a durable reduction in HbA
1c

 can only be 

explained by preservation of beta cell function.17

Figure 5 effect of thiazolidinediones (TZDs) on body fat distribution.
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Cardiovascular effects
Both pioglitazone and rosiglitazone improve endothelial 

dysfunction, decrease high-sensitivity CRP, reduce elevated 

levels of prothrombotic and inflammatory cytokines, 

increase plasma adiponectin, and reduce blood pressure.47,74 

Pioglitazone also lowers plasma triglycerides, raises HDL 

cholesterol, and converts small dense LDL particles to larger, 

more buoyant, less atherogenic particles. Both TZDs reduce 

restenosis after coronary stent placement, and decrease the 

need for revascularization when given up to six months after 

stent placement.75

Pioglitazone has also been associated with a reduced risk 

of cardiovascular disease. In a meta-analysis of pioglitazone 

studies, Lincoff et al76 reported that the combined endpoint of 

death, myocardial infarction (MI), and stroke was significantly 

reduced (hazards ratio [HR] 0.82, 95% confidence interval 

[CI] 0.72–0.94; P = 0.005]). The PROactive  (Prospective 

Pioglitazone Clinical Trial in Macrovascular Events) trial 

was designed to explore the cardiovascular  benefits of pio-

glitazone in T2DM subjects at high cardiovascular risk. Entry 

criteria included history of a prior cardiovascular event. In 

this double-blind,  randomized, placebo-controlled study, 

eligible subjects were assigned to pioglitazone 45 mg/day or 

placebo for three years. The primary endpoint (composite of 

death, MI, stroke, leg amputation, acute coronary syndrome, 

cardiac bypass, or leg revascularization) was reduced by 10% 

but this did not reach statistical significance because of an 

increase in leg revascularization (HR 0.90, 95% CI 0.80–1.02; 

P = 0.095). There were 195 events in the pioglitazone group 

versus 240 in the placebo group. The principal secondary 

endpoint  (Kaplan-Meier time to death, non-fatal MI, or stroke) 

was reduced by 16% and did reach statistical significance 

(HR 0.84, 95% CI 0.72–0.98; P = 0.027).77 In  conclusion, 

pioglitazone was effective in reducing cerebral and car-

diac events, but did not decrease peripheral arterial events. 

Interestingly, only subjects with baseline peripheral artery dis-

ease had an increased risk of leg revascularization (HR 1.68, 

95% CI 1.15–2.47; P = 0.008). Subjects without peripheral 

artery disease at baseline had no higher risk of leg revascu-

larization. Overall, pioglitazone tended to reduce the primary 

composite endpoint and significantly reduced the principal 

secondary endpoint of time to death, MI, and stroke.

In addition to the Lincoff meta-analysis76 and PROactive,77 

two ultrasound studies have provided evidence of anatomic 

regression of atherosclerotic disease. In the CHICAGO 

(Carotid Intima-Media Thickness in Atherosclerosis Using 

Pioglitazone) study, T2DM subjects were randomized 

to pioglitazone or glimepiride for 18 months and carotid 

intima-media thickness was measured before and after 

randomization. In pioglitazone-treated subjects, carotid 

intima-media thickness did not progress (−0.001 mm), 

whereas subjects receiving glimepiride had significant 

atherosclerosis progression (+0.012 mm). The absolute 

difference between treatment groups was −0.013mm (95% 

CI −0.024 to −0.002; P = 0.02).69

PERISCOPE (Pioglitazone Effect on Regression of 

Intravascular Sonographic Coronary Obstruction Prospective 

Evaluation) was a prospective, randomized, double-blind 

study comparing the effect of 18 months of pioglitazone 

versus glimepiride on coronary atheroma volume, quan-

titated with intravascular ultrasound. After 18 months 

pioglitazone reduced the percentage atheroma volume 

from baseline (−0.16%), whereas glimepiride significantly 

increased the percentage atheroma volume by 0.73% (95% 

CI 0.33%–1.12%; P , 0.001), resulting in a significant dif-

ference between treatment groups (P = 0.002).67

Side effects
Side effects encountered with all TZDs, including pioglitazone, 

include fat weight gain, fluid retention, and bone fractures. 

Paradoxically, the greater the fat weight gain, the greater is the 

decrease in HbA
1c

 and the greater are the increases in insulin 

sensitivity and beta cell function.78,79 Thus, the fat weight 

gain is purely a cosmetic, not a metabolic, issue. Fluid reten-

tion occurs in 5%–10% of TZD-treated T2DM patients who 

are inadequately controlled with sulfonylureas, metformin, 

and/or insulin and less than 1% of these individuals develop 

congestive heart failure (CHF).80,81 In PROactive, diabetic 

subjects who developed CHF on pioglitazone had no increase 

in mortality,77 and in a study by Masoudi et al82 TZD-treated 
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diabetic individuals who developed CHF had a lower risk of 

mortality at one-year compared with individuals not treated 

with an insulin sensitizer. Because of occult diastolic dys-

function in T2DM subjects, fluid overload can lead to CHF. 

Therefore, pedal edema, an easily detected clinical sign for 

volume overload, should be treated promptly and aggressively 

with diuretics (triamterene, spironolactone, amiloride) 

that work in the collecting duct,83,84 and reduction in the 

pioglitazone dose if necessary to promote diuresis. If the pedal 

edema does not resolve, pioglitazone should be discontinued. 

This will minimize the risk of CHF. There is a small increase 

in the incidence (approximately one per 100 patient treatment 

years) of bone fractures in postmenopausal diabetic women 

treated with TZDs.5 An increased incidence of fractures has 

not been seen in premenopausal women or men. The fractures 

most commonly are related to trauma and involve the distal 

portions of the long bones of the extremities. To negate the 

fracture risk completely, one simply could avoid the use of 

TZDs in postmenopausal women. Alternatively, one could 

consider obtaining a bone mineralization scan and, if bone 

density is reduced, avoid the use of TZDs.

Pharmacoeconomic considerations may play a role in 

the use of pioglitazone in some managed markets, although 

the previous discussion should clearly delineate TZDs as a 

unique class of medication for the treatment of T2DM. The 

cost-effectiveness of pioglitazone, using the CORE (Center 

for Outcomes Research) diabetes simulation model on the 

PROactive study data and discounting 3.5% per annum, was 

examined. Pioglitazone, using a 35-year time horizon of use, 

was shown to provide an incremental cost-effectiveness ratio 

(cost per quality-adjusted life year gained) of ,$50,000 based 

on 2005 dollars, which is considered to be cost-effective.85

Summary
In summary, because of the beneficial effects of pioglitazone 

on insulin sensitivity, beta cell function, durable HbA
1c

 

control, and cardiovascular disease, in conjunction with a low 

risk of hypoglycemia and manageable side effects, we feel 

that pioglitazone should be considered as first-line therapy 

in T2DM patients.

Incretinomimetic agents
Glucose-dependent insulin secretion  
and loss of incretin effect
The incretin effect accounts for approximately 70% of all 

insulin that is secreted during an OGTT in normal glucose 

tolerant subjects,86 and GLP-1 and glucose-dependent 

insulinotrophic polypeptide (previously called gastric 

inhibitory polypeptide, GIP) account for over 90% of the 

incretin effect. GLP-1 is secreted from the L-cells in the distal 

small intestine/colon in response to mixed meals (glucose or 

fat). Circulating concentrations of GLP-1 rise rapidly within 

minutes after food ingestion indicating that neural signals, 

initiated by food entry in the proximal gastrointestinal tract, 

stimulate GLP-1 secretion via the L-cells.87 Acutely, GLP-1 

promotes normal glucose homeostasis by augmenting insulin 

secretion, inhibiting glucagon secretion and delaying gastric 

emptying.

GIP is secreted by the K-cells of the early small intestine 

in response to meal ingestion. However, unlike GLP-1, GIP 

does not inhibit glucagon secretion, does not slow gastric 

emptying, inhibit food intake, or promote weight loss.88 Both 

GLP-1 and GIP are rapid degraded by the DPP-4, which is 

ubiquitously present in plasma and on all cell membranes. 

Thus, the secreted GLP-1 and GIP have a short half-life in 

the range of 2–3 minutes.

As individuals progress from normal glucose tolerance to 

IGT to T2DM, stimulated GLP-1 levels decline89,90 (Figure 7), 

and there is beta cell resistance to the glucose-dependent 

stimulatory effect of both GLP-1 and GIP on insulin secre-

tion.91 In T2DM the contribution of incretin hormones to the 

insulin response has been estimated to be reduced to about 

36% in T2DM subjects.86,92 From the therapeutic standpoint, 

one can increase circulating GLP-1 levels by administering 

a GLP-1 analog that is resistant to DPP-4 degradation or by 

giving a DPP-4 inhibitor.7,93,94

The insulinotropic action of GLP-1 is glucose-dependent. 

In order for GLP-1 to enhance insulin secretion, the plasma 

glucose concentration must be higher than 90 mg/dL.95–99 In 

contrast, sulfonylureas stimulate insulin secretion irrespec-

tive of the ambient glucose concentration. Clinically, this 

results in an elevated risk of hypoglycemia with sulfony-

lureas. GLP-1 does not produce significant hypoglycemia. 

In addition to its stimulatory effect on insulin secretion, 

GLP-1 augments insulin biosynthesis and gene transcription, 

thereby restoring the cellular supplies of insulin for subse-

quent release.100–103 Of great interest, studies in animals have 

shown that GLP-1 stimulates islet neogenesis, causes beta 

cell replication, and inhibits beta cell apoptosis, leading to an 

increase in beta cell mass.104 However, short-term washout 

studies with exenatide suggest that exenatide is unlikely to 

increase beta cell mass in humans.64

elevated plasma glucagon levels
For over 30 years, it has been known that fasting plasma 

glucagon levels are increased in T2DM and that gluca-
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gon secretion is not appropriately suppressed following 

a carbohydrate or mixed meal or may paradoxically 

increase.105–107 This abnormality is evident before the 

diagnosis of diabetes, and has been observed in subjects 

with IGT.108–110 Hyperglucagonemia in the fasting state 

results in excessive HGP and elevated FPG levels, while 

impaired suppression of plasma glucagon levels following 

a meal results in postprandial hyperglycemia. The main 

physiologic role of glucagon is to oppose the action of 

insulin on HGP in order to protect against hypoglycemia 

and restore normoglycemia.111 GLP-1 inhibits the inappro-

priately high glucagon secretion after a meal, both directly 

through the GLP-1 receptor on the alpha cell and indirectly 

by stimulating insulin secretion, although the absolute 

contribution of each component is still debated.112 This 

glucose-dependent inhibitory effect of GLP-1 on glucagon 

secretion reduces HGP and decreases postprandial plasma 

glucose levels.113

Correction of accelerated gastric 
emptying
The rate of gastric emptying is a key determinant of 

postprandial glucose excursion.114–116 Mismatch between 

the rate of glucose appearance in the systemic circulation 

and the rate of glucose disappearance can account for 

as much as 34% of the variability in peak postprandial 

glucose concentrations following glucose ingestion in 

normal glucose tolerant subjects.114,117,118 The normal 

physiologic response to hypoglycemia is to accelerate 

gastric emptying. This increases nutrient delivery into the 

systemic circulation and restores normal plasma glucose 

concentrations. During hyperglycemia, the rate of gastric 

emptying is slowed, resulting in a better match between 

glucose appearance and glucose disappearance from the 

circulation. Despite hyperglycemia, newly diagnosed 

T2DM patients often have an accelerated rate of gastric 

emptying that can exceed the rate of gastric emptying in NGT 

subjects by 25%–30%.116–119

GLP-1, which is deficient and to which the beta cell is 

resistant in T2DM, is a potent inhibitor of gastric emptying, 

and slows the rate of glucose appearance in the systemic 

circulation.86 GLP-1 agonists, such as exenatide, delay gastric 

emptying in healthy, nondiabetic subjects93 and in individuals 

with T2DM.113,120 The effect of GLP-1 and exenatide on 

inhibition of gastric emptying is centrally mediated by vagal 

afferent nerves.121

Reduction in food intake
GLP-1 administration reduces food intake and body weight 

in a dose-dependent manner. In animal models, the inhibitory 

effect on food intake is observed when GLP-1 is administered 

peripherally122 or intraventricularly.123,124 The inhibition of 

food intake by GLP-1 results from activation of GLP-1 recep-

tors in the hypothalamus and the area postrema, which are 

accessible from the systemic circulation.125 A meta-analysis 

of seven human studies has demonstrated that GLP-1 admin-

istration reduces energy intake and increases satiety in lean 

and overweight subjects.126

incretin formulations
Because the half-life of GLP-1 is extremely short (less than 

minutes), it is not practical for use in the treatment of T2DM 

patients. To overcome the rapid degradation of GLP-1 by 

DPP-4,127 two approaches have been developed, ie, alteration 

of the peptide structure of GLP-1 to prevent its degradation by 

DPP-4, but allow GLP-1 receptor activation, and development 

of DPP-4 inhibitors, which block the degradation of GLP-1 by 

DPP-4, thus increasing the reduced concentrations of GLP-1 

back to normal physiologic levels in T2DM.

In a mechanism of action study, DeFronzo et al10 compared 

sitagliptin, a DPP-4 inhibitor, with exenatide, a GLP-1 agonist. 

T2DM subjects on a stable dose of metformin were randomized 
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to sitagliptin 100 mg daily for two weeks or exenatide 5 µg 

bid for one week, then 10 µg bid for one week. Subjects were 

crossed over after two weeks and followed for an additional 

two weeks. At baseline and at the end of each two-week period, 

subjects received a meal tolerance test with acetaminophen to 

measure gastric emptying. After the initial two weeks of treat-

ment, the mean plasma glucose concentration and the two-hour 

post-meal plasma glucose concentration were markedly reduced 

in the exenatide versus sitagliptin groups (133 versus 208 mg/

dL, P , 0.001). The greater reduction in postprandial glucose 

excursion with exenatide was accounted for by a higher insu-

linogenic index, a greater inhibition of glucagon secretion, and 

delayed gastric emptying. Sitagliptin had no effect on gastric 

emptying, but did reduce plasma glucagon levels. The greater 

reduction in FPG and plasma glucagon concentrations and the 

greater increase in insulin secretion in the exenatide-treated 

group was explained by the pharmacologic exenatide levels 

achieved (64 pM) compared with the more physiologic GLP-1 

concentrations (15 pM) achieved with sitagliptin.10

Alogliptin
Alogliptin benzoate (formerly called SYR-322) is a non-

covalent, selective inhibitor of DPP-4.28 Active GLP-1 is 

rapidly converted to inactive GLP-1 (9-36 amide or 9-37 

amide) by the serine protease DPP-4. Alogliptin prevents 

the degradation of endogenous GLP-1 (and GIP), thus 

extending its half-life and restoring endogenous GLP-1 to 

normal physiologic levels.

Animal data
Rats with streptozotocin-induced diabetes and maintained on 

glibenclamide 10 mg/kg per day for 27 days were divided into 

four groups at 20 weeks of age and treated with placebo, gliben-

clamide 10 mg/kg/day, nateglinide 50 mg/kg/day, or alogliptin 

1 mg/kg/day prior to an oral glucose load (1 mg/kg). Alogliptin 

significantly increased the plasma insulin concentration at 

10 minutes and decreased the glucose AUC from 0–120 minute 

glucose compared with rats receiving glibenclamide and nat-

eglinide prior to the oral glucose load. In a separate group of 

diabetic rats, DPP-4 activity and plasma GLP-1 levels (GLP-1 

[7-36 amide] and GLP-1 [7-37 amide]) were inversely related 

to the dose of alogliptin over the range 0.03–3.0 mg/kg.129

Pertinent to the use of combined alogliptin-pioglitazone 

therapy, seven-week-old male Lepob/Lepob (ob/ob) mice 

and their nondiabetic male littermates received placebo, 

alogliptin 45.7 mg/kg/day, pioglitazone 4.0 mg/kg/day, or 

both (alogliptin-pioglitazone) for 33 days. In mice treated with 

alogliptin, plasma DPP-4 activity was inhibited by 80%, and 

plasma active GLP-1 levels were increased 3.5-fold and 4.1-

fold in the alogliptin alone and alogliptin-pioglitazone groups, 

without a change in the pioglitazone alone group. Insulin 

levels were increased approximately 1.5-fold in alogliptin- and 

pioglitazone-treated mice, and 3.2-fold in alogliptin-pioglitazone 

mice. Glucagon levels were decreased by approximately 25% 

in alogliptin-treated and alogliptin-pioglitazone treated mice, 

whereas no change was seen in the pioglitazone or placebo 

groups. Adiponectin increased only in mice who received 

pioglitazone. HbA
1c

 levels decreased by 1.0, 1.5, and 2.3 in the 

alogliptin-, pioglitazone- and alogliptin-pioglitazone-treated 

mice, respectively. Pancreatic insulin content increased by 1.3-, 

1.5-, and 2.2-fold in mice treated with alogliptin, pioglitazone, 

and alogliptin-pioglitazone, respectively. In conclusion, the 

addition of alogliptin to pioglitazone produced completely addi-

tive metabolic and hormonal effects in ob/ob mice.130

Human data
Pharmacokinetic and pharmacodynamic profile
Healthy males (n = 36) received a single dose of alogliptin 

(five subjects for each dose at 25, 50, 100, 200, 400, or 

800 mg) or placebo (one subject per each dosing cohort) 

30 minutes prior breakfast, and pharmacokinetic and phar-

macodynamic parameters were measured over the next 24 

hours. Alogliptin was rapidly absorbed and reached maximal 

concentrations in approximately two hours. Over the dosing 

range, the rise in plasma alogliptin concentration was linear, 

and the t
1/2

 was approximately 16–20 hours after the single 

dose. In these normal healthy subjects, plasma GLP-1 levels 

increased 2.5- to 4.0-fold versus placebo over the 24-hour 

period, with the highest levels achieved 60–120 minutes after 

ingestion of the meal.131

In a second randomized, double-blind, placebo-controlled 

study, diet-treated T2DM subjects received alogliptin 25, 100, 

or 400 mg daily for 14 days. Alogliptin was rapidly absorbed, 

with a time to maximal concentration of about one hour. At 

14 days, the half-life was consistent at approximately 20 hours, 

supporting daily dosing of alogliptin. Most of the alogliptin 

(nearly 60%) was recovered unchanged in the urine after 

24 hours. The data suggest that alogliptin undergoes some renal 

secretion, and, similar to other marketed DPP-4 inhibitors, 

requires a dose reduction in patients with moderate to severe 

renal impairment.132,133 One active metabolite (N-demethylated 

alogliptin), which is as active as the parent compound, was 

identified, but it accounted for only 1% of the recovered drug. 

After 14 days, all three doses of alogliptin inhibited plasma 

DPP-4 by more than 80% at 24 hours.  Consistent with other 

DPP-4 inhibitors, alogliptin reduced postprandial plasma 
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glucose levels, but plasma insulin  levels did not change 

significantly. However, the increment in  insulin per increment 

in glucose clearly increased, indicating an effect on the beta 

cells to augment insulin secretion. Glucagon levels were not 

measured but, in previously reported animal studies, plasma 

glucagon was reduced by 25%.128,134

Clinical studies
Alogliptin has been studied in T2DM subjects as  monotherapy 

and in combination with metformin, sulfonylureas,  pioglitazone, 

and insulin (see Figure 8). DeFronzo et al135 in a randomized, 

double-blind, placebo-controlled trial, reported on drug-naïve, 

poorly controlled (HbA
1c

 7.9% ± 0.8%) T2DM patients 

(n = 329) treated with alogliptin 12.5 and 25 mg/day or 

placebo for 26 weeks. Baseline  characteristics were similar 

(Table 1) in all three groups. Alogliptin 12.5 mg/day (−0.56% 

and −10 ± 4 mg/dL; P , 0.001 for both) and 25 mg/day 

(−0.59% and −16 ± 4 mg/dL; P , 0.001 for both) similarly 

reduced HbA
1c

 and FPG compared with placebo (−0.02% 

and +11 ± 5 mg/dL). More subjects were able to achieve an 

HbA
1c

 # 7.0% with alogliptin 12.5 mg/day (47.4%; P = 0.001) 

or 25 mg/day (44.3%; P = 0.008) versus placebo (23.4%). 

Approximately 50% of subjects on either dose of alogliptin had 

at least a $0.5% HbA
1c

 reduction, and about 29% had a $ 1.0%  

reduction in HbA
1c

. Alogliptin was weight neutral and, at both 

doses, improved the proinsulin-to-insulin ratio. Alogliptin 

25 mg/day resulted in a small, but significant reduction in 

plasma total cholesterol and triglyceride concentration.

In a double-blind, randomized, placebo-controlled 26-week 

trial, Pratley et al136 compared alogliptin 12.5 and 25 mg/day 

versus placebo in 500 poorly controlled (mean HbA
1c

 8.1%) 

T2DM subjects taking background sulfonylurea therapy. 

Subjects were required to be on sulfonylurea monotherapy for 

at least three months prior to screening and had to be without 

serious concomitant diabetic complications. Subjects were 

switched to glyburide at equivalent dose, if necessary, and com-

pleted a four-week glyburide run-in period (Table 1). HbA
1c

 was 

reduced in the alogliptin 12.5 mg/day (−0.39%) and 25 mg/day 

(−0.53%) groups versus placebo (+0.1%; both P , 0.001). As 

with other antihyperglycemic agents, the HbA
1c

 reduction was 

correlated positively with baseline HbA
1c

. In subjects with a 

baseline HbA
1c

 $ 9.0%, the HbA
1c

 reduction with alogliptin 

12.5 mg/day (−0.82%) and 25 mg/day (−1.06%) were more 

robust. Weight increased slightly (0.6 kg) over the 26-week 

study, and there were no significant lipid changes.

In a randomized, double-blind, placebo-controlled 

trial of 26 weeks, Nauck et al137 treated poorly controlled 

T2DM with alogliptin 12.5 mg/day (n = 213), 25 mg/day 

(n = 210), or placebo (n = 104). Prior to randomization, all 

subjects entered a four-week run-in period on a stable dose 

of metformin $1500 mg/day (mean dose = 1847 mg/day). 

Subjects could not have significant diabetes-related complica-
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Figure 8  Percentage (%) of subjects achieving select HbA1c targets with alogliptin in Phase 3 trials.135–138 
Abbreviations: ALO, alogliptin; SU, sulfonylurea; MeT, metformin; iNS, insulin; MONO, monotherapy with alogliptin.
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tions. At baseline, all three groups were well matched, with an 

HbA
1c

 of 7.9%–8.0% and FPG of 168–180 mg/dL. HbA
1c

 was 

significantly reduced by −0.6% on the 12.5 and 25 mg/day 

alogliptin doses versus placebo (−0.1%). The reduction from 

baseline in FPG was greater in the alogliptin 12.5 mg/day 

(−19 mg/dL) and 25 mg/day (−17 mg/dL) groups versus 

placebo (no change; both P , 0.001, Table 1).

Rosenstock et al138 explored the addition of alogliptin 

12.5 and 25 mg/day versus placebo in T2DM subjects 

inadequately controlled on insulin (at least 15 U/day but not 

more than 100 U/day) ± metformin therapy in a 26-week, 

randomized, double-blind, placebo-controlled trial. Sub-

jects were not allowed to have significant diabetes-related 

complications. The groups were well matched at baseline, 

with a mean HbA
1c

 of 9.3%, FPG about 190 mg/dL, and 

diabetes duration of 12–13 years. At baseline all subjects 

were on insulin (64%, premix or insulin “combo”; 34%, 

long-acting insulin; 2%, short-acting insulin), and 60% 

of subjects were taking metformin (mean dose .1500 mg 

daily). After 26 weeks, alogliptin 12.5 and 25 mg/day signif-

icantly reduced HbA
1c

 (−0.63% and −0.71%, respectively) 

compared with placebo (0.13%). Only alogliptin 25 mg/day 

significantly reduced FPG (−11 mg/dL; P = 0.03). Insulin 

doses were fairly stable throughout the 26-week study. 

Weight changes were similar in the placebo and alogliptin 

groups, and no significant changes in the lipid profile were 

noted (Table 1).

In all four of these trials,135–138 the reduction in HbA
1c

 

was 0.5–1.0% on mean (Figure 8). All four trials provided 

information on the number of subjects who required rescue 

therapy. For alogliptin in combination with metformin or 

glyburide, or as monotherapy, rescue therapy guidelines 

were FPG $ 275 mg/dL after more than one week of 

treatment, $ 250 mg/dL after week 4, and $225 mg/dL 

after week 8, or HbA
1c

 $ 8.5% with a # 0.5% reduction 

from baseline by week 12.135–137 In the Rosenstock et al138 

paper, the rescue criteria were FPG $ 300 mg/dL after 

more than one week of treatment, $ 275 mg/dL after 

week 4, and $250 mg/dL after week 8, or HbA
1c

 $ 8.7% 

with a # 0.5% reduction from baseline by week 12 (Figure 9). 

The combination of metformin with alogliptin required fewer 

hyperglycemic rescues, although no statistical analysis was 

done on the differences.

Adverse events and tolerability  
in Phase iii trials
DPP-4 inhibitors, including alogliptin, are very well 

tolerated.135–138 The incidence of all adverse events was, 

in general, similar to placebo, and not dose-dependent. 

Discontinuation rates were not different from placebo in any 

of the studies. The most common adverse events reported 

across studies were upper respiratory infection, urinary tract 

infection, nasopharyngitis, headache, diarrhea, arthralgia, and 

peripheral edema. Headache occurred more frequently than 

placebo in one study.135 Alogliptin monotherapy had slightly 

higher gastrointestinal events (abdominal pain, nausea, diar-

rhea, and vomiting) versus placebo. Other adverse effects of 

special interest were skin lesions and pruritus, which were 

closely monitored. Skin lesions were very rare. With alogliptin 

monotherapy, at 25 mg/day, one case of subcorneal pustular 

dermatosis was reported. There were no cases of skin lesions 

with glyburide-alogliptin.136 In the metformin-alogliptin study, 

skin lesions were observed in 7.7% of placebo versus 12% 

of alogliptin-treated subjects.137 In the insulin ± metformin 

study, skin lesions occurred in about 12% of alogliptin-treated 

patients versus 10.9% of patients receiving placebo.138 Pruritus 

occurred slightly more frequently with alogliptin. The sever-

ity of side effects was mild to moderate, and serious adverse 

events were not common and did not occur more frequently 

than placebo. Serious adverse events potentially related to 

alogliptin included one subject with cholecystitis and pan-

creatitis, one with CHF, one with pulmonary embolism, and 

one with severe hypoglycemia when alogliptin was combined 

with glyburide.135–138

Hypoglycemia rates were dependent upon concomitant 

therapy. In monotherapy, hypoglycemia rates were 1.5%–3.0% 

and similar to placebo.135 When alogliptin was combined with 

metformin, hypoglycemia occurred in 3% of the placebo 

group, 1% of the alogliptin 12.5 mg/day group, and in none of 

the subjects in the alogliptin 25 mg/day group.137 Hypoglyce-

mia was defined as ,60 mg/dL with symptoms or ,50 mg/dL 

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%

MONO 12.5 mg

ALO 12.5 + SU

ALO 12.5 + MET

ALO 12.5 + INS

MONO 25 mg

ALO 25 + SU

ALO 25 + MET

ALO 25 + INS

Figure 9 Necessity for hyperglycemic rescue* in Phase iii trials with alogliptin.135-138

*see text for definitions 
Abbreviations: ALO, alogliptin; SU, sulfonylurea; MeT, metformin; iNS, insulin; 
MONO, monotherapy with alogliptin.
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with or without symptoms. These clinical observations rein-

force the mechanism of action of endogenously-secreted 

GLP-1 on insulin secretion as being glucose-dependent and 

demonstrate that, when the DPP-4 inhibitor alogliptin is 

administered with agents that do not augment insulin secre-

tion, hypoglycemia is uncommon and does not occur more 

frequently than in the placebo group. Rates of hypoglycemia 

when alogliptin was combined with glyburide were 11.1% in the 

placebo group, 15.8% in the alogliptin 12.5 mg/day group, and 

9.6% in the alogliptin 25 mg/day group.136 When combined with 

insulin, 24%, 26.7%, and 27.1% experienced hypoglycemia in 

the placebo, alogliptin 12.5 mg/day, and alogliptin 25 mg/day 

groups, respectively.138 As expected, the rates of hypoglycemia 

were higher in insulin-treated T2DM patients, but alogliptin did 

not significantly exacerbate the risk of hypoglycemia.

Alogliptin selectivity
Selectivity of alogliptin for DPP-4 inhibition is defined as 

a . 10,000 greater affinity for the DPP-4 enzyme than for 

competing DPP enzymes, such as DPP-2, 8, and 9. Activation 

of DPP-8 and DPP-9 have been associated with untoward 

side effects, including thrombocytopenia, anemia, splenic 

enlargement, alopecia, and skin lesions. Therefore, selectivity 

for DPP-4 is desirable. DPP-4 inhibition can also prolong the 

action of endogenous peptides, such as pituitary adenylate 

cyclase-activating peptide, growth hormone-releasing hor-

mone, peptide YY, neuropeptide Y, and substance P, as well 

as several other chemokines. However, to date, alogliptin has 

not been reported to cause an increase in side effects that 

may be related to inhibition of the degradation of the above 

peptides, and short-term studies with doses of alogliptin up 

to 400 mg/day for 14 days in T2DM subjects have reported 

no dose-limiting toxicities.131

Drug–drug interactions
Alogliptin has not been associated with any significant drug-

drug or drug-food interactions. Alogliptin may be taken 

without regard to meals.139 Alogliptin has been studied in 

combination with pioglitazone, glyburide, metformin, cime-

tidine, cyclosporine, and digoxin. Pioglitazone increased the 

AUC of alogliptin by 10%, but this is considered to be of no 

clinical significance.140

Alogliptin–pioglitazone combination 
therapy
The combination of two antihyperglycemic agents with dif-

ferent, but complementary, mechanisms of action, a low risk 

of hypoglycemia, and easy, once-daily dosing is a logical 

step in the treatment of T2DM. Several studies or abstracts 

have examined this combination.

Pratley et al141 reported an international double-blind, 

randomized, placebo-controlled study in T2DM subjects 

randomized to alogliptin 12.5 mg/day (n = 197), alogliptin 

25 mg/day (n = 199), or placebo (n = 97). Subjects were on 

a TZD at baseline and, during a four-week run-in period, 

were stabilized on pioglitazone at 35 mg/day on average. 

If subjects were on pioglitazone, the current daily dose was 

continued; if on rosiglitazone, the subject was switched to 

the equivalent dose of pioglitazone, at 30 mg or 45 mg daily, 

and subjects were continued on metformin or sulfonylurea if 

their dose was stable for at least one month. At baseline, sub-

jects were well matched with respect to mean age (55 years), 

ethnicity (white, 74%), duration of diabetes (7.6 years), body 

mass index (BMI, 32.8 kg/m2), and baseline HbA
1c

 (8.0%). 

Concomitant therapy was metformin in 55% (mean dose 

1688 mg/day), sulfonylurea in 20% (mean dose 37 mg/day), 

and no concomitant therapy (25%) at baseline. After 

26 weeks, HbA
1c

 and FPG were significantly reduced from 

baseline versus placebo (alogliptin 12.5 mg/day: −20 mg/dL 

and −0.66%; alogliptin 25 mg/day: −0.8% and −20 mg/dL; 

placebo: −0.19% and −6 mg/dL). Subjects treated with either 

dose of alogliptin, 12.5 mg (44.2%) or 25 mg (49.2%), were 

more likely than placebo (34%) to reach the HbA
1c

 goal 

of #7.0%, P = 0.01). The number of subjects achieving a 

HbA
1c

 reduction $1.0% was two-fold greater in the alogliptin 

12.5 mg/day group and three-fold higher in the alogliptin 

25 mg/day group compared with placebo, and significantly 

fewer alogliptin subjects needed hyperglycemic rescue treat-

ment (Figure 9). Average weight gain was approximately 

1 kg with no significant differences between any of the 

three groups. Both doses of alogliptin were well tolerated 

and similar numbers of subjects (3%–4%) compared with 

placebo discontinued therapy due to adverse events. The 

total number of adverse events was similar (18%–19%) 

between alogliptin and placebo groups. Adverse reactions 

possibly related to alogliptin included one subject each with 

palpitations, CHF, road traffic accident, hypokalemia, serum 

sickness, and sudden death (no autopsy was performed). 

Hypoglycemia rates were dependent on baseline therapy. 

Importantly, in subjects taking the sulfonylurea–pioglitazone 

combination, rates of hypoglycemia were about 20% versus 

about 3% in subjects taking pioglitazone–metformin. This 

substantiates our previous observations that combination 

therapy with medications, such as metformin, pioglitazone, 

and GLP-1-based incretinomimetic agents, are associated 

with a very low risk of adverse effects and hypoglycemia. This 
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will increase the likelihood of patients continuing therapy 

and achieving glycemic goals.

Alogliptin–pioglitazone combination 
therapy
Combination therapy with alogliptin-pioglitazone has been 

examined in conjunction with various background therapies 

(Table 1). In a randomized, double-blind, placebo-controlled, 

26-week study, DeFronzo et al142 investigated the combination 

of alogliptin-pioglitazone in subjects inadequately controlled 

on metformin. Arms of the study included  placebo, aloglip-

tin 12.5 mg/day and 25 mg/day, pioglitazone 15 mg/day, 

30 mg/day, and 45 mg/day, and alogliptin 12.5 mg/day or 

25 mg/day combined with pioglitazone 15 mg/day, 30 mg/day, 

or 45 mg/day. For analysis, the authors pooled all doses 

of pioglitazone, alogliptin 12.5 mg/day plus any dose of 

pioglitazone, and alogliptin 25 mg/day plus any dose of 

pioglitazone. The mean change in HbA
1c

 from baseline was 

−0.89% in the pioglitazone groups, −1.43% in the alogliptin 

12.5 mg + pioglitazone groups, and −1.42% in the alogliptin 

25 mg + pioglitazone groups (both alogliptin doses + pio-

glitazone were significant at P , 0.001 versus pioglitazone 

alone). The mean change in FPG was −28, −45, and −44 mg/

dL for the pioglitazone, alogliptin 12.5 mg + pioglitazone, 

and alogliptin 25 mg + pioglitazone groups, respectively.143 

The combination of alogliptin–pioglitazone significantly 

improved beta cell function measures of the proinsulin to 

insulin ratio and HOMA-IR versus pioglitazone alone (−0.087 

and 18.2; −0.076 and 22.2; −0.027 and 5.1, respectively). 

HOMA-IR improved in all groups, but did not reach statistical 

significance between groups (Table 1).143

In a randomized, double-blind, 26-week study, 655 

subjects (age 53 years, duration of diabetes 3.2 years, 

HbA
1c

 8.8%, FPG 191 mg/dL, BMI 21 kg/m2) inadequately 

controlled on diet and exercise were given an alogliptin–

pioglitazone combination (alogliptin 12.5 mg + pioglitazone 

30 mg or alogliptin 25 mg + pioglitazone 30 mg daily) or 

monotherapy with alogliptin 25 mg/day or pioglitazone 

30 mg/day. At 26 weeks, the decrements in HbA
1c

 and FPG 

in the four groups were 1.7% and 50 mg/dL, 1.56% and 

48 mg/dL, 1.1% and 28 mg/dL, 0.96% and 26 mg/dL for the 

alogliptin 25 mg + pioglitazone 30 mg, alogliptin 12.5 mg + 

pioglitazone 30 mg, pioglitazone 30 mg/day, and alogliptin 

25 mg/day groups, respectively. HbA
1c

 reduction was superior 

with both combination therapies compared with alogliptin 

alone (P , 0.001) and alogliptin 25 mg + pioglitazone 30 mg 

was superior to pioglitazone monotherapy (P , 0.001). 

Weight changes were +3.1, +2.5, +2.2, and −0.3.0 kg in 

the four groups, respectively. Hypoglycemia was #3.0% in 

all groups.144 Combination alogliptin-pioglitazone therapy 

improved beta cell function compared with alogliptin alone. 

Proinsulin to insulin ratio (30% versus 14%, P = 0.006), 

HOMA-β (67% versus 16%, P = 0.018), and HOMA-IR 

(46% versus 16%, P , 0.001) improved more in the aloglip-

tin 25 mg + pioglitazone 30 mg group than in the alogliptin 

25 mg/day alone groups. In addition, the increases in adi-

ponectin and decrease in high-sensitivity CRP were signifi-

cantly improved with alogliptin 25 mg + pioglitazone 30 mg 

versus alogliptin 25 mg/day monotherapy145 (Table 1).

Conclusion
Type 2 diabetes is characterized by at least eight pathophysi-

ologic abnormalities (Figure 10).17 The combination of 

alogliptin plus pioglitazone improves at least six of these 

pathophysiologic disturbances, including improved insulin 

resistance in skeletal muscle (→↑ muscle glucose uptake), 

liver (→↓ hepatic glucose production), and adipocytes 

(↓ lipolysis →↓ plasma FFA), increased incretin effect, 

enhanced insulin secretion, and decreased glucagon secre-

tion (Figure 10). Insulin resistance is an early manifestation 

in individuals with IGT and T2DM and increases beta cell 

stress, contributing to beta cell failure and the eventual 

development of overt T2DM. Insulin resistance can be 

improved with insulin-sensitizing drugs. Metformin is a 

weak peripheral (muscle) insulin sensitizer, but improves 

hepatic insulin sensitivity and reduces HGP. TZDs, such as 

pioglitazone, are potent insulin sensitizers in both peripheral 

tissues (muscle and adipocytes) and liver. Beta cell function 

is markedly impaired in T2DM, and alpha cell secretion of 

glucagon is increased. GLP-1 is deficient in T2DM, and 

beta cell responsiveness to GLP-1 is markedly impaired. On 

average, the incretin effect in T2DM individuals is reduced 

by approximately half compared with nondiabetic patients. 

GLP-1 increases insulin secretion, decreases glucagon, slows 

gastric emptying, and results in satiety and weight loss. The 

two methods of replacing GLP-1 include GLP-1 receptor 

agonists, which are effective in mimicking all the actions of 

GLP-1. Blocking the endogenous enzyme, DPP-4, which 

degrades active GLP-1, which is also effective in elevating 

to normal the reduced circulating GLP-1 levels that are pres-

ent in T2DM. DPP-4 inhibitors augment beta cell function 

and simultaneously reduce elevated plasma glucagon levels 

in T2DM patients.

Alogliptin has been studied as monotherapy and in 

combination with metformin, sulfonylureas, TZDs, and 

insulin. Alogliptin significantly improves HbA
1c

, is weight 
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neutral, does not cause hypoglycemia unless combined with 

an insulin secretagogue or insulin, has few associated side 

effects, and very few people discontinue the medication due 

to intolerance. Pruritic reactions appear to be slightly higher 

with alogliptin versus placebo, but no significant increase in 

skin lesions has been observed. The alogliptin–pioglitazone 

combination reverses multiple metabolic defects in T2DM 

(Figure 10). With regard to the beta cell defect, pioglitazone 

decreases lipotoxicity and exerts direct effects via the peroxi-

some-proliferator activated receptor-gamma to augment insulin 

secretion, while alogliptin improves islet function by increasing 

insulin secretion and lowering glucagon secretion in response 

to elevated plasma glucose levels. Alogliptin–pioglitazone 

gives an additive effect to improve HbA
1c

 and reduce FPG, 

while the risk of hypoglycemia is similar to that with placebo. 

Alogliptin is weight neutral, whereas alogliptin–pioglitazone 

combination therapy is usually associated with a 1–3 kg of 

weight gain during the first year of treatment. Combination 

therapy also reduces high-sensitivity CRP and increases adi-

ponectin levels. CHICAGO, PERISCOPE, and PROActive 

demonstrate that pioglitazone has positive effects on vascular 

function and reduces cardiovascular events. The combination 

of pioglitazone–alogliptin addresses insulin resistance and islet 

cell dysfunction in T2DM patients in a once-daily medication 

that is well tolerated, effectively lowers HbA
1c

, and has a very 

low risk of hypoglycemia. In summary, alogliptin–pioglitazone 

combination therapy can reverse known several pathophysi-

ologic processes in T2DM and is clinically effective.
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