ORIGINAL RESEARCH

LncRNA NEATI Promotes Proliferation, Migration And Invasion Via Regulating miR-296-5p/CNN2 Axis In Hepatocellular Carcinoma Cells

This article was published in the following Dove Press journal: OncoTargets and Therapy

Background: Emerging evidence has revealed that long noncompleteNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1), simplified in the development of various cancers. However, the underlying molecular nechanities of NEAT1 in hepatocellular carcinoma (HCC) remain unclear.

Methods: The expression of NEAT a miRe 16-5p and Casonin 2 (CNN2) was detected by quantitative real-time polymerase chain reaction or Western blot, respectively. Cell proliferation and apoptosis were an yzed by 3-(4,5-dime sylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or flow cytometry, respectively. Transwell assay was used to determine cell migration and invasion. The interaction between miR-296-5p and NEAT1 or CNN2 was analyzed by dual-luciferase a porter assay and RIP assay. Huh7 cells transfected with sh-NEAT1 were use the tablish the marine xenograft model.

vas e' in HCC tissues and cell lines. Knockdown of NEAT1 Results: NEAT1 inhibit roliferation, migration and invasion of HCC cells in vitro as well significa th in very NEAT1 was a sponge of miR-296-5p and remarkably reduced the for gro of mit 296-5p in ACC cells. Furthermore, NEAT1 silence significantly decreased the of CNN2, which was the direct target of miR-296-5p. Besides that, the tumor exp n caused by NEAT1 silence could be rescued by CNN2 restoration or miR-296-5p suppres. itro. Additionally, NEAT1 indirectly regulated CNN2 expression by competing inhibition . miR-296-5p in vitro and in vivo.

Construction: LncRNA NEAT1 contributes to HCC progression by regulating miR-296-5p/ CNN2 axis, providing a novel regulatory mechanism for HCC development and a promising therapeutic target for the HCC treatment.

Keywords: NEAT1, miR-296-5p, CNN2, HCC, progression

Introduction

Hepatocellular carcinoma (HCC) is a common malignancy with high lethality worldwide.¹ Aberrant cell differentiation, early metastasis, and fast infiltrating growth are thehallmarks of HCC development.² Although advances in medical, locoregional and surgical therapies, the overall survival rate in HCC remains unsatisfactory.³ Recently, emerging evidence has indicated that the therapies based on the genomic and immune are transforming the treatment of many tumors and are beginning to be used to improve the prognosis outcome of HCC patients.⁴

Long noncoding RNAs (lncRNAs) are a class of non-coding RNAs with longer than 200 nts in length, and have no potential to encode proteins. Numerous

OncoTargets and Therapy 2019:12 9887-9897

9887

Yandong Li¹ Xiyan Ding² Shuqiu Xiu³ Guobin Du⁴ Yahui Liu¹

Surgery, The First Hospital of Jilin University, Changchun City, Jilin, People's Republic of China; ²Department of Neurology, Beihua University, Jilin City, Jilin, People's Republic of China; ³Department of Medical, Beihua University, Jilin City, Jilin, People's Republic of China; ⁴President's Office, The Sixth Peoples's Hospital of Jilin City, Jilin City, Jilin, People's Republic of China

Correspondence: Yahui Liu Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, No. 71 Xinmin Street, Changchun 130021, Jilin, People's Republic of China Tel +86-432-62166423 Email guaxie261348@126.com

© 2019 Li et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution — Non Commercial (unported, v3.0). License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). evidence has exhibited the significant regulatory rolesof lncRNAs in the development, prognosis, and therapy in diverse cancer types.^{5,6} Up to date, various lncRNAs have been identified in HCC to exert roles in diagnosis,⁷ cell differentiation, metastasis, growth,^{8,9} chemoresistance,¹⁰ therapy outcome prediction¹¹ and so on. Thus, lncRNAs are thought to be promising targets for HCC therapy with a view to the regulation in HCC pathogenesis. LncRNA nuclear paraspeckle assembly transcript 1(NEAT1) is a cancer-related lncRNA, and aberrantly NEAT1 expressionin a variety of cancers has been investigated.¹² Besides that, the important rolesof NEAT1 in the pathogenesis and progression of several cancers has also been observed, including HCC.^{13,14} Nevertheless, the precise molecular mechanism of NEAT1 in HCC is still vague.

Recent findings have also shown many microRNAs (miRNAs) play a central role in the regulation of HCC tumorigenesis and development.^{15,16} Among these miRNAs, miR-296-5p was also reported to be down-regulated in HCC tumor tissues and cells and involved in the event of HCC,^{17,18} which was a potential candidate for HCC treatment. Calponin 2 (CNN2), encoded by the CNN2 gene, is an actin filament-associated regulatory protein, and is closely associated with cell proliferation and migration.^{19,20} Recently, Kang et al claimed CNN1 deletion suppressed tumor growth and metastan²¹ indicating the potential roles of CNN2 in HCC molecular target therapy. Therefore, it is also necessary inthe mile opment of HCC treatment to clarify the role as unolecular mechanism of miR-296-5p and CLANA in HCC.

In this study, we aimed to investigue the expression pattern of NEAT1 in HCCL ssues and cell ones, explored the biological functions well at the underlying molecular mechanismof NEAT1 ACHC development and growth in vitro and in vitro

Materia: And methods Patients And Specimens

Tumor tissues and matched paracancerous tissues from 30 HCC patients were collected at The First Hospital of Jilin University. All HCC tissues were histopathologically diagnosed by two independent pathologists and were immediately preserved in liquid nitrogen until used. Patients and hospital had provided the written informed consent and this was conducted in accordance with the Declaration of Helsinki and this work was approved by Ethics Committee of the First Hospital of Jilin University.

Cell Culture And Transfection

The normal human hepatocyte THLE-2, HCC-derived cell lines (HepG2 and Huh7) and 293T cells were purchased from BioVector NTCC Inc. (Beijing, China). All cells were cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco, Grand Island, NY, USA) harboring with 10% fetal bovine serum (FBS; Gibco) and 1% penicillin/ streptomycin at 37°C with 5% CO₂.

The miRNA mimic or inhibitor targeting miR-296-5p (miR-296-5p mimic or miR-296-5p inhibitor) and their corresponding negative control (miRNA NGA, mathitor NC) were purchased from RIBOBIO (Guanga ou, China). Northairpin RNA (shRNA) targeting NEATI (she EATI), shR A scramble control (sh-NC), small interfering RCA (siRLA) targeting NEAT1 (si-NEAT1), a RNA agative (ntrol (si-NC), pcDNA3.1-CNN2 (nerexperied on vector (pcDNA-CNN2), pcDNA3.1 empty vector (pc NA-tontrol) were synthesizedby Generatarma Changhai, Coma). Subsequently, Lipofe ctamine 2000 reagent (avitrogen, Carlsbad, CA, USA) was used transfect these oligonucleotides or vectors into HepG2 and Juh7 cells for owing the protocol of the manufacturer.

Kell Extraction And Quantitative Real-Time Polymerase Chain Reaction qRT-PCR)

rizol reagent (Invitrogen) was used to isolate RNA from HCC tissues and cells following the standard introductions. For mRNA expression analysis, the complementary DNA (cDNA) was synthesized with the PrimeScript RT reagent kit (Takara, Dalian, China). For miRNA expression detection, SuperScript III First-Strand Synthesis System (Invitrogen) was used to generate cDNA. Next, SYBR Premix Ex Taq (Takara) was applied to perform quantitative PCR. The relative expression was calculated using $2^{-\Delta\Delta CT}$ methods with normalization to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or U6. The primer sequences used in this study were listed as followed: NEAT1 F, 5'-TGGCTAGCT CAGGGCTTCAG-3' and R, 5'-TCTCCTTGCCAAGCTTC CTTC-3'; CNN2 F, 5'- GGTCAAGGCCATATCCCAATAC-3' and R, 5'-GGCATAGAAACCACAAACTGCTC-3'; GAP DH F, 5'-AACTTTGGCATTGTGGAAGG-3' and R, 5'-ACACATTGGGGGGTAGGAACA-3'; miR-296-5p F, 5'-TGC CTAATTCAGAGGGTTGG-3' and R, 5'-CTCCACTCCTG GCACACAG-3'; U6 F, 5'-CTCGCTTCGGCAGCACA-3' and R, 5'-ACGCTTCACGAATTTGCGT-3'.

Western Blot

Proteins were isolated from cells and tissues with RIPA reagent (Beyotime, Shanghai, China) and then the content was quantified by a bicinchoninic acid method. Equal proteins were separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto nitrocellulose membrane (Millipore, Billerica, MA, USA). Subsequently, the membrane was incubated with primary antibodies against CNN2 or GAPDH, and followed by interaction with the HRP-conjugated secondary antibody after blockage with 5% non-fat milk for 1 h. Protein signaling was visualized using Enhanced Chemiluminescence.

Cell Proliferation Assay

Transfection cells were cultured in 96-well plates at 37°C overnight. Subsequently, each well was interacted with 10 μ L 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (Sigma, St. Louis, MO, USA) for another 4 h, followed by incubation with 150 μ L DMSO (Sigma) after removing the supernatants. Finally, the absorbance at 490 nm was analyzed.

Cell Apoptosis Assay

Apoptotic cells were detected with the help of Ann tin V-FITC/PI apoptosis detection kit (BD Plaser aces, Shi Jose, CA, USA) following the standard protocol. Briefly cells were resuspended with binding buffly, and the stained with 10 μ L Annexin VLATC and CL for 15 min in the dark. Finally, the apoptoth cells were thalyzed by FlowJo software.

Cell Migratic And Invasion

For migration assay, an ansfection cells resuspended in serum-free DME, were code onto the top of the transwell chambers. After that, the lower chamber was filled with 500 μ L DME, one ced with ~0% FBS. After incubation for 24 h at 37°C, increased cells were stained and counted with a microscope. For invasion assay, the upper chamber membrane was pre-coated with Matrigel (BD Biosciences) and the other steps were similar to cell migration assay.

Dual-Luciferase Reporter Assay

The WT or MUT NEAT1/CNN2 3'UTR containing with miR-296-5p binding sequences was synthesized and cloned into the pmirGLO Vector (Promega, Shanghai, China). Then 293T cells were co-transfected with constructed vector

and miR-296-5p mimics or miRNA NC for 48 h, accordingly. Finally, a dual-luciferase reporter assay kit (Promega) was utilized to analyze the relative luciferase activity.

RNA Immunoprecipitation (RIP) Assay

RNA immunoprecipitation (RIP) assay was performed with the Magna RIP Kit (Millipore). HepG2 and Huh7 cells were lysed in RIP buffer (Millipore), and then the lysate was incubated with magnetic beads coated with human anti-Ago2 or IgG antibody. Subsequently, the enrichment of NEAT1, CNN2 or 10, 296-5p was measured by qRT-PCR as describe above, repectively.

Murine Xenograf. Assa

BALB/c nude might (male 4–6 weak old, N=6, each group for 3 mige) we used for the xenograft assays. The study was pranitted by the Apital Research Committee of The First respital of Jacobi University and performed in accordance with the guidelines of the National Animal Cole and Ethics Institution. Huh7 cells (2×10^6) transfected with lentivity harboring sh-NEAT1 or sh-NC were subutaneously elected into the nude mice. Subsequently, the tuber size was monitored every 7 d and the tumor volume was calculated. After 30 d, all mice were sacrificed and tuber mass was weighted and harvested for subsequent molecular analysis.

Statistical Analysis

Data from at least three independently experiment were indicated as mean \pm standard deviation (SD). The differences among different groups were analyzed by Student's *t*-test or one-way analysis of variance (ANOVA). *P* < 0.05 exhibited a statistically significance. All statistical analyses were conducted using the GraphPad Prism 7 software (GraphPad Inc., San Diego, CA, USA).

Results

The Expression Of NEATI And CNN2 Is Up-Regulated In HCC Tissues And Cells

The expression of NEAT1 and CNN2 in 30 pairs HCC tissues and normal tissues was investigated using qRT-PCR or Western blot, and results indicated the expression-levels of NEAT1 and CNN2were high in HCC tissues compared with the normal tissues (Figure 1A–C). Similarly, we also observed the same changes that NEAT1 and CNN2 was up-regulated in HCC cell lines (HepG2 and Huh7) compared to the normal human hepatocyte

Figure I The expression of NEATI and CNN2 is up-regulated in HCC tissues and cells. (A-C) pression of NEATI and CNN2 in HCC and normal tissues was detected using qRT-PCR or Western blot. (D-F) The expression of NEATI and CNN2 in no real human hepatocyte THLE2 and HCC cell lines (HepG2 and Huh7) was measured by qRT-PCR or Western blot. *P<0.05.

THLE-2 (Figure 1C–F), indicating the potential involvement of NEAT1 and CNN2 in HCC progression and the possible correlation between NEAT1 and CNN2 in HCC.

Besides that, the association between NE444 corression levels and HCC patients' progression was an eved. Based on the statistical analysis results correctined to Table 1, it implied that high expressionNEAA closes significantly associated with the high moderne of tunor size (P=0.0097), TNM stage (P=0.0281) and comphatic metastasis (P=0.0410). Therefore, NEAT1 might be an important regulator for HCC progression.

NEAT I Silvace Inhibits Call Proliferation, Migration And Invasion But Induces Apoptosis In ACC

To explore the pointial biological functions of NEAT1 in HCC progression, the expression of NEAT1 was downregulated using siRNA sequences. As expected, an obviously decreased expression of NEAT1 in cells transfected with si-NEAT1 was observed (Figure 2A). After that, MTT assay showed that knockdown of NEAT1 significantly inhibited proliferation of HepG2 and Huh7 cells (Figure 2B and C). Furthermore, compared with the si-NC group, NEAT1 deletion showed an obviously promotion in cell apoptosisfrom 5.86% to 17.43% (total early and late apoptosis) (Figure 2D). Beside, that, the swell assay results exhibited a remarkable bition of cell migration and invasion in HCC induced by MATT science (Figure 2E and F). Taken together, these data

able I Correlation Between NEATI Expression And Clinical Clinicopathological Parameters Of HCC

Parameter	Case	NEATI Expression		р
		Low (n=15)	High (n=15)	
Age (years) ≤60 >60	9 	14 7	5	0.56
Gender Female Male	7 3	10 5	7 8	0.27
Tumor size ≤5 cm >5 cm	16 14	14 6	2 8	*0.0097
TNM stages I-II III-IV	4 6	10 5	4	*0.0281
Lymphatic metastasis Negative Positive	22 8	5 5	17 3	*0.0410

Note: *P<0.05.

Figure 2 NEATI silence inhibits cell proliferion, migration an invasion but induces apoptosis in HCC. HepG2 and Huh7 cells were transfected with si-NEATI or si-NC. (A) The level of NEATI was examined by (A + B), (B, C) Cell proferation was analyzed by MTT assay. (D) Flow cytometry was used to analyze cell apoptosis. (E, F) The number of migration and invasion cells were detailed by transwell assay. *P<0.05.

suggested that NEAL silence could inhibit cell progression in HCC.

NEAT: Silerce Suppresses HCC Progression By Regulating CNN2 Expression

When the expression of NEAT1 was inhibited using siRNA sequences in HCC cells, we found a significant reduction of the level of CNN2 at mRNA and protein level, while this decrease could be rescued by following CNN2 overexpressing plasmid transfection (Figure 3A and B). Thus, based on the regulation between NEAT1 and CNN2 in HCC cells, we hypothesized that CNN2might involve in NEAT1 mediated acceleration on HCC progression. We found CNN2 overexpression attenuated NEAT1 deletion-induced cell proliferation

inhibition of HepG2 and Huh7 cells (Figure 3C and D). Cell apoptosis was greatly promoted by the depletion of NEAT1, but CNN2 up-regulation obviously weakened NEAT1 silencemediated cell apoptosis promotion (Figure 3E). Moreover, overexpressed CNN2 also impaired NEAT1 knockdowninduced inhibition in migration and invasion of HepG2 and Huh7 cells (Figure 3F and G). These results indicated NEAT1 promoted HCC progression by regulating CNN2 expression.

NEATI Silence Mediates The Inhibition On HCC Progression By Directly Sponging miR-296-5p

To explore how CNN2 participated in NEAT1-mediated regulation on HCC development. The starbase v2.0 program was used to search the potential miRNA targets of NEAT1,

Figure 3 NEAT I silence suppresses HCC progression by relating CNN2 expression. HepG2 and Huh7 cells were transfected with si-NC, si-NEAT I + pcDNA-Control, si-NEAT I + pcDNA-CNN2 (\mathbf{F}, \mathbf{B}) The expression CNN2 was detected using qRT-PCR or Western blot. (\mathbf{C}, \mathbf{D}) MTT assay was performed to determine cell proliferation. (\mathbf{E}) The apoptotic converse measured using flow sytometry. (\mathbf{F}, \mathbf{G}) Transwell assay was applied to examine cell migration and invasion abilities. *P<0.05.

the binding sites of and miR-296-5p foun o conta NEAT1 (Figu 4A). uciferase reporter assay bseque is predictionand results showed was performed to co miR-296-5p obviously reduced the lucithat overexpres ferase activity of V NEAT1 reporter but not MUT-NEAT1 reporter in 293T cells (Figure 4B), and qRT-PCR revealed that down-regulated NEAT1 promoted miR-296-5p expression in HepG2 and Huh7 cells (Figure 4C), indicating that NEAT1 interacted with miR-296-5p and negatively regulated miR-296-5p expression. Furthermore, RIP assay using anti-Ago2 antibody also confirm that NEAT1 interacted withmiR-296-5p in HepG2 and Huh7 cells (Figure 4D and E).

Taken together, we hypothesized miR-296-5p might implicate in NEAT1-mediated regulation on HCC development. To verify this hypothesis, we first detected the level of miR-296-5p and found miR-296-5p was down-regulated in HCC tissues and cell lines (Figure 4F and G), indicating the regulatory roles of miR-296-5p in HCC. Next, miR-296-5p expression was inhibited via the transfection of miR-296-5p inhibitor, and a significant reduction of miR-296-5p was observed (Figure 4H). After that, the HepG2 and Huh7 cells were respectively transfected with si-NC, si-NEAT1, si-NEAT1 + inhibitor NC or si-NEAT1 + miR-296-5p inhibitor to conduct rescue experiments and results showed inhibition

of miR-296-5pmarkedlyreversed NEAC deleting mediated suppression of proliferation (Figure 41 and a), migration (Figure 4L), invasion (Figure 41 and promotion of apoptosis (Figure 4K) in HepG2 and Huh) alls. In all, these results implied that NEAT1 silvice repressed a CC progression by directly targeting mile 296-5p.

Overexpressed N¹R-225-5p Suppresses HCC progression by Directly Targeting CNN2

Using the beinformatics tools StarBase v2.0 program, CNN2 was found to contain the wild-type or mutant putative binding sites for miR-296-5p (Figure 5A). Afterwards, we constructed luciferase reporters containing the miR-296-5p binding sites on the CNN2 3'UTR, and then observed miR-296-5p overexpression reduced the luciferase activities of the WT-CNN2 reporter vector, but there was no notable change in MUT-CNN2 reporter after overexpression of miR-296-5p in HepG2 and Huh7 cells (Figure 5B). Additionally, we also found miR-296-5p upregulation reduced the expression of CNN2 at mRNA and proteinlevel in HepG2 and Huh7 cells (Figure 5C and D), indicating the direct interaction between miR-296-5p and CNN2. In the meanwhile, the interaction between miR-296-5p and CNN2 also was confirmed by using RIP assay because of the enrichment of miR-296-5p and CNN2after Ago2 RIP (Figure 5E and F).

Based on the relationship between miR-296-5p and CNN2, we further wanted to know whether miR-296-5p/ CNN2 wasresponsible for the progression of HCC. Subsequently, HepG2 and Huh7 cells were transfected with miRNA NC, miR-296-5p mimic, miR-296-5p mimic + pcDNA-Control or miR-296-5p mimic + pcDNA-CNN2, respectively. Then we discovered overexpressed miR-296-5p repressed cell proliferation, while this inhibition could be reversed by CNN2 up-regulation (Figure 5G and H). Cell apoptosis rate was significantly increased when miR-296-5p was increased, whereas CNN2 overexpression induced an opposite result and weakened miR-296-5p mimic-induced cell apoptosis promotion (Figure 5I). Moreover, CNN2 overexpression also partially overturnedmiR-296-5p mimic

Figure 5 Overexpressed miR-296-5p suppresses HCC progression by directly targeting CNN2. (A) The boung condition between Cond and miR-296-5p were predicted, and the red bases were the putative binding sites. (B) The Luciferase activity was analyzed in 293T cells co-transfect with WT-CNN2 or MUT-CNN2 and miRNA NC, miR-296-5p mimic. (C, D) The expression of CNN2 in HepG2 and Huh7 cells transfected with miRNA NC or miR-296-5p mimic was measured using qRT-PCR or Western blot. (E, F) The RIP assay was used to determine the interaction between miR-296-5p and CNN1 in HepG2 and Huh7 cells. H) MTT assay was utilized to determine cell proliferation. (I) The apoptotic cells were examined using flow cytometry. (J, K) Transwell approx was performed to determine cell migration and invasion. *P<0.05.

transfection-induced suppression of cell migration and invasion in HCC (Fig. J, K). These data exhibited that CNL restoration could overturn miR-296-5p overexpression induced inhibition on HCC progression.

NEAT I Indirectly Regulates CI N2 Expression By Competing To miR 196-5p In HCC Cells

To investigate the regulator relationship mong NEAT1, miR-296-5p and CNN2 in HCC cells, HepO2 and Huh7 cells were transfected with side *C*, si-NEAT1, si-NEAT1 + inhibitor NC or ni-NEAT1 + next-296-5p inhibitor. Immediately, i.e observed that the expression of CNN2 at mRN, and pro in level in HepG2 and Huh7 cells was stably inmored by the silence of NEAT1, but was restored by neulfibilition of miR-296-5p (Figure 6A and B), indicating NEAT1 could regulate CNN2 expression by competing p miR-296-5p in HCC cells.

Knockdown Of NEAT I Inhibits Tumor Growth Of HCC In Vivo

To further elucidate the hepatocarcinogenesis role of NEAT1 in vivo, we established xenograft models using Huh7 cells stably transfected with sh-NEAT1 or sh-NC. After 7 days following the inoculation, we found compared with these in the sh-NC group, tumor volume and

Figure 6 NEAT1 indirectly regulates CNN2 expression by competing for the binding of miR-296-5p in HCC cells. (A–B) The expression of CNN2 was detected in HepG2 and Huh7 cells transfected with si-NC, si-NEAT1 + inhibitor NCor si-NEAT1 + miR-296-5p inhibitor using qRT-PCR or Western blot analysis. *P<0.05.

weight were greatly repressed in the sh-NEAT1 group (Figure 7A and B). Afterwards, qRT-PCR analysis indicated the inhibition of NEAT1 significantly decreased the levels of NEAT1 and CNN2 but increased the expression of miR-296-5p in sh-NEAT1 group compared with that in sh-NC group (Figure 7C–F). Therefore, we demonstrated that NEAT1 silence might inhibit tumor growth by regulating miR-296-5p and CNN2 expression in vivo.

Discussion

Emerging researches have demonstrated that lncRNAs participate in a variety of biological processes and potentially regulate tumor development.²² LncRNAs may be valuable candidates for the therapyof numerous diseases. Among these lncRNAs, NEAT1 has been reported to be a major driver on the development of many kinds of cancers, such as breast cancer,²³ colorectal cancer,²⁴ pancreatic cancer,²⁵ ovarian cancer,²⁶ non-small cell lung cancer (NSCLC)²⁷ and so on. Besides that, recent studies also indicated the regulation of NEAT1 in HCC progression. In the current study, a significantly high expression of NEAT1 was observed in HCC tissues and cell lines, indicating the potential involvement of NEAT1 in HCC progression. Immediately, functional experiments were conducted and results suggested NEAT1 deletion obviously inhibited cell proliferation, metastasis but stimulated cell apoptosis in vitro. Additionally, NEAT1 deletion also suppressed tumor growth in vivo. Hence, we validated that NEAT1 silence could repress HCC progression in vivo and in vitro.

Based on the ceRNA hypothesis, lncRNAs may act as competing endogenous RNAs (ceRNAs) to compete with other genes for miRNAs binding by inversely reguget mRNAs.²⁸ lating miRNA-mediated inhibition of the The lncRNA-miRNA-mRNA nction net ork has been indicated to exert implant effect on v ous biological processes, which proving involving the component of many ne s.^{29,30} Until now, it has been diseases, including documented hat NETA is closely related to a variety of rous serving as ceRNA. For example, NEAT1 cancers/ promoted breast ncer growth by miR-101 dependent A2 regulation.³¹ EAT1 functioned as a ceRNA for -regulate ZEB1 expression, thereby contriniR-194 to itaxel resistance in ovarian cancer cells.³² ting to pa

Figure 7 Knockdown of NEAT1 inhibits tumor growth of HCC in vivo. Huh7 cells stably transfected with sh-NEAT1 was used to establish xenograft models. (A) Tumor volume was calculated every week. (B) Mice were killed and tumor weight was analyzed in each group. (C–F) The levels of NEAT1, miR-296-5p and CNN2 were measured in two groups by qRT-PCR or Western blot. *P<0.05.

Thus, we hypothesized NEAT1 might implicate in this network by acting as a sponge for miRNAs to regulate the expression of targeted genes in HCC.

In this study, NEAT1 was predicted and confirmed to be a sponge of miR-296-5p and negatively modulated miR-296-5p expression in HCC cells. MiR-296-5p has been documented to function as a tumor suppressor to regulate cell progression by interacting with targeted genes or downstream signaling pathway in many types of cancers. For instances, miR-296-5p inhibited cell progression by directly targeting PLK1 in NSCLC.33 MiR-296-5p functioned as a tumor suppressor to repress cell metastasis of esophageal squamous cell carcinoma via negatively regulating STAT3 signaling.³⁴ Thus, we further explored the potential targets of miR-296-5p in HCC and results indicated that miR-296-5p directly targeted CNN2 and suppressed CNN2 expression in HCC cells. After that, co-expression analysis was performed to investigate the regulatory relationship among NEAT1, miR-296-5p and CNN2, and we demonstrated that NEAT1 indirectly regulated CNN2 expression by serving as a sponge for miR-296-5p in vitro and in vivo. Thus, the NEAT1/miR-296-5p/CNN2 regulatory network was identified in HCC cells. Afterwards, rescue experiments were conducted and we found the inhibitory effects mediat by NEAT1 silence on cell progression of HCC could b reversed by CNN2 restoration or miR-296-5p inhibition. In addition, CNN2 restoration also dramatically erturn l the inhibition on HCC cell progression media to by m 206 5p overexpression.

Conclusion

In sum up, we observed the NEAT1 deletic for miR-296-5p overexpression could inhibit cell proliferation and metastasis. Mechanistic real as further demonstrated the involvement of 12,2,01/miR-96-5r cNN2 regulatory network in the regulation of HCC nevelopment, which may shed new light on the regulatory mechanisms and provide a promising the peutic approach for HCC.

Disclosure

The authors report no conflicts of interest in this work.

References

- Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262
- Stotz M, Gerger A, Haybaeck J, et al. Molecular targeted therapies in hepatocellular carcinoma: past, present and future. *Anticancer Res.* 2015;35(11):5737–5744.

- Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. *Semin Diagn Pathol.* 2017;34(2):153–159. doi:10.1053/j.semdp.2016.12.011
- Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies. *Mol Cancer*. 2017;16(1):149. doi:10.1186/s12943-017-0712-x
- Lavorgna G, Vago R, Sarmini M, et al. Long non-coding RNAs as novel therapeutic targets in cancer. *Pharmacol Res.* 2016;110:131–138. doi:10.1016/j.phrs.2016.05.018
- Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–463. doi:10.1016/j.ccell.2016.03.010
- Yuan W, Sun Y, Liu L, et al. Circulating LncRNAs serve as diagnostic markers for hepatocellular carcinoma. *Cell Physiol Biochem*. 2017;44(1):125–132. doi:10.1159/000484589
- Cheng S, Wang L, Deng CH, et al. ARID14 processes hepatocellular carcinoma cell proliferation and migratine through a SRNA MVIH. *Biochem Biophys Res Commun.* 2017 (1):178–182. pi:10.1016/j. bbrc.2017.07.072
- Shen Y, Liu S, Yuan H, et al. 2009 no. oding RN4 uncRNA-PE promotes invasion and epitheral-mesenchyma. Cansil at in hepatocellular carcinoma through the miR-2009 ZEB1 processy. *Tumour Biol.* 2017;39(5):101042831776 56. doi:10.1177/1010428317705756
- Xiao J, Lv Y, Jin L et al. L Lu AA HAN promotes tumorigenesis and increase or demoresistant vin he locellular carcinoma. *Cell Physiol Biotram.* 17;43(5):1920. 28. doi:10.1159/000484116
 Quagliata L, Matter V, Piscuoglio S, et al. Long noncoding RNA
- 11. Quagliata L, Matter L, Piscuoglio S, et al. Long noncoding RNA HOTTIP/IOXA13 expl. cion is associated with disease progression appredicts outcome L hepatocellular carcinoma patients. *Inpatology*. 2014;59(3):911–923. doi:10.1002/hep.v59.3
- 12. X, Li Z, Zher, H, et al. NEAT1: a novel cancer-related long n coding RNA. *Cell Prolif.* 2017;50(2):e12329.
- 13. Tu Schao Z, 2 M, et al. NEAT1 upregulates TGF-beta1 to induce hepatocentral carcinoma progression by sponging hsa-mir-139-5p. *J. Physiol.* 2018;233(11):8578–8587.
 - Zhang XN, Zhou J, Lu XJ. The long noncoding RNA NEAT1 contributes to hepatocellular carcinoma development by sponging miR-485 and enhancing the expression of the STAT3. *J Cell Physiol*. 2018;233(9):6733–6741. doi:10.1002/jcp.26371
- Toffanin S, Hoshida Y, Lachenmayer A, et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. *Gastroenterology*. 2011;140(5):1618–1628.e1616. doi:10.1053/j.gastro. 2011.02.009
- Gramantieri L, Fornari F, Callegari E, et al. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med. 2008;12 (6a):2189–2204.
- Shi DM, Li LX, Bian XY, et al. miR-296-5p suppresses EMT of hepatocellular carcinoma via attenuating NRG1/ERBB2/ERBB3 signaling. J Exp Clin Cancer Res. 2018;37(1):294. doi:10.1186/ s13046-018-0957-2
- Ma X, Zhuang B, Li W. MicroRNA2965p downregulated AKT2 to inhibit hepatocellular carcinoma cell proliferation, migration and invasion. *Mol Med Rep.* 2017;16(2):1565–1572. doi:10.3892/ mmr.2017.6701
- Hossain MM, Hwang DY, Huang QQ, et al. Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation. *Am J Physiol Cell Physiol.* 2003;284(1):C156–167. doi:10.1152/ajpcell.00233.2002
- Tang J, Hu G, Hanai J, et al. A critical role for calponin 2 in vascular development. J Biol Chem. 2006;281(10):6664–6672. doi:10.1074/ jbc.M506991200
- 21. Kang X, Wang F, Lan X, et al. Lentivirus-mediated shRNA targeting CNN2 inhibits hepatocarcinoma in vitro and in vivo. *Int J Med Sci.* 2018;15(1):69–76. doi:10.7150/ijms.21113
- Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. *Cancer Discov.* 2011;1(5):391–407. doi:10.1158/2159-8290. CD-11-0209

- 23. Zhao D, Zhang Y, Wang N, et al. NEAT1 negatively regulates miR-218 expression and promotes breast cancer progression. *Cancer Biomark*. 2017;20(3):247–254. doi:10.3233/CBM-170027
- 24. Peng W, Wang Z, Fan H. LncRNA NEAT1 impacts cell proliferation and apoptosis of colorectal cancer via regulation of Akt signaling. *Pathol Oncol Res.* 2017;23(3):651–656. doi:10.1007/s12253-016-0172-4
- 25. Cao J, Zhang Y, Yang J, et al. NEAT1 regulates pancreatic cancer cell growth, invasion and migration though mircroRNA-335-5p/c-met axis. *Am J Cancer Res.* 2016;6(10):2361–2374.
- 26. Ding N, Wu H, Tao T, et al. NEAT1 regulates cell proliferation and apoptosis of ovarian cancer by miR-34a-5p/BCL2. Onco Targets Ther. 2017;10:4905–4915. doi:10.2147/OTT
- 27. Sun C, Li S, Zhang F, et al. Long non-coding RNA NEAT1 promotes non-small cell lung cancer progression through regulation of miR-377-3p-E2F3 pathway. *Oncotarget*. 2016;7(32):51784–51814. doi:10.18632/oncotarget.10108
- Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? *Cell*. 2011;146(3):353–358. doi:10.1016/j.cell.2011.07.014

- 29. Xia T, Liao Q, Jiang X, et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. *Sci Rep.* 2014;4:6088. doi:10.1038/srep06088
- Ergun S, Oztuzcu S. Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. *Tumour Biol.* 2015;36 (5):3129–3136. doi:10.1007/s13277-015-3346-x
- 31. Qian K, Liu G, Tang Z, et al. The long non-coding RNA NEAT1 interacted with miR-101 modulates breast cancer growth by targeting EZH2. *Arch Biochem Biophys.* 2017;615:1–9. doi:10.1016/j. abb.2016.12.011
- 32. An J, Lv W, Zhang Y. LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. Onco Targets Ther. 2017;10:5377–5390. doi:10.2147/OTT
- 33. Xu C, Li S, Chen T, et al. miR-296-5p suppresses cell viability by directly targeting PLK1 in non-small or blung cancer. *Oncol Rep.* 2016;35(1):497–503. doi:10.3892/00015.43x
- Wang ZZ, Luo YR, Du J, et al. McC296-5p inhhere cell invasion and migration of esophageal squamovingell carcinoma endownregulating STAT3 signaling. *Europev Met. Pharmace Sci.* 2019;23 (12):5206–5214. doi:10.0355/eurrev_a.0066/1.85

OncoTargets and Therapy

Dovepress

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic agents and protocols on patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/ testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/oncotargets-and-therapy-journal