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Objective: Cancer stem-like cells (CSC) are thought to be involved in the cisplatin

resistance of tumors. This study was designed to investigate the effect of PRDX6 on CSCs

present in cisplatin-resistant non-small cell lung cancer (NSCLC) tumors.

Materials and methods: CD133+/ABCG2+ H1299 CSCs and A549 CSCs were isolated.

The IC50 values for cisplatin in treatment of CSCs were detected using the CCK8 assay. Then

the isolated cells were identified using CD133. Wnt/β-catenin expression was evaluated by

Western blot assays. Specimens of tumor and adjacent para-carcinoma tissue were collected

from 30 NSCLC patients and examined by immunohistochemistry (IHC), qRT-PCR, and

Western blotting to determine and compare their levels of PRDX6 and CD133 expression.

Finally, siRNA-mediated silencing of PRDX6 was employed with both types of CSCs to

determine the impact of PRDX6 on CD133 enrichment by flow cytometry, cell viability, and

sphere formation ability.

Results: High levels of PRDX6 and CD133 expression were detected in samples of tumor

tissue from NSCLC patients, and expression of PRDX6 and CD13 presented a positive

relationship. Increasing levels of cisplatin resistance and upregulated levels of PRDX6,

ABCG2, Wnt, and β-catenin expression were detected in CD133+/ABCG2+ H1299 and

A549 CSCs. Transfection with siRNA targeting PRDX6 changed these cellular character-

istics by decreasing the levels of PRDX6, ABCG2, Wnt, and β-catenin expression. We

further demonstrated that exogenous silencing of PRDX6 effectively inhibited the sphere

formation ability of CSCs and re-sensitized them to cisplatin.

Conclusion: Our results strongly suggest that PRDX6 promotes cisplatin resistance in

human lung cancer cells by promoting the stem-like properties of cancer cells. Our findings

also suggest PRDX6 as a target for treating cisplatin resistant NSCLC.
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Introduction
Non-small cell lung cancer (NSCLC) accounts for ~80% of all lung cancers and has a

dismal 5-year patient survival rate of 15%. Furthermore, ~66%ofNSCLC cancer patients

initially present with stage IV disease.1,2 In recent years, the 5-year survival rate of

NSCLC patients has not substantially increased, and remains as low as 20%, especially

among patients with stage III/IV disease.3 Although new therapies have benefitted

patients with predefined subclasses of carcinoma, cisplatin-based chemotherapy remains
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the standard treatment for NSCLC. However, cisplatin resis-

tance to targeted therapy, which can result from multiple

factors, is a major issue affecting the efficacy of NSCLC

treatments.4,5 Many previous studies revealed that a combina-

tion of factors, including accelerated drug clearance, activation

of alternative proliferation signaling pathways, and suppres-

sion of apoptotic pathways, may be involved in cisplatin resis-

tance. Recent studies have indicated that some unique

populations of cells are capable of surviving tumor treatments,

and those cells are designated as cancer stem cells (CSCs), due

to their stem cell-like characteristics, self-renewal ability, and

multi-potency.6–8

As a special population of undifferentiated cells that

contribute to the pathogenesis and progression of tumors,

CSCs have been found in a variety of cancers, including

myeloid leukemia, glioblastoma, gastric, and epithelial

cancers.9,10 Due to their stem cell properties, CSCs have

the capacity for multipotency, unlimited self-renewal, and

proliferation with a natural tolerance to chemotherapy that

result from their decreased cell cycling and enhanced expres-

sion of proteins associated with DNA repair and resistance to

apoptosis.11 Various alleged stem cell markers, selective for

human stem cells and their counterparts in tumors, have been

used to identify and isolate CSCs; these markers include

CD133 (prominin-1), a five-transmembrane glycoprotein,12

and ATP-binding cassette superfamily G member 2 (ABCG-

2).13 ABCG2 is always co-expressed with CD133, and is

accepted as a drug resistance marker due to its ability to

confer the side population’s phenotype.14,15 Accordingly,

the identification of some oncogenic factors that result in a

persistent activation of CSCs is essential for further elucidat-

ing NSCLC pathobiology, as well as for developing novel

effective therapies.

Peroxiredoxins (PRDXs) comprise a newly discovered

class of non-selenium-dependent peroxidase proteins that are

widely distributed in various organisms.16 PRDX a type of

antioxidant enzyme, is thought to catalyze redox reactions

and maintain the balance of hydrogen peroxide in cells.17

Presently, PRDX1-PRDX6 have been found to contain a 1-

Cys PRDX group and 2-Cys PRDX group. PRDX1-5

belongs to the 2-Cys group, and PRDX6 belongs to the 1-

Cys PRDX group.18,19 Besides helping to protect cells

against oxidative stress (OS), PRDX6 uniquely possesses

calcium independent phospholipase A2 (PLA2) activity and

glutathione peroxidase activity that can help to prevent oxi-

dative stress.20 Moreover, numerous studies have proven that

PRDX6 plays essential roles in tumor maintenance and cell

survival by protecting cells from OS-induced apoptosis.21,22

Recent studies have also confirmed that PRDX6 can attenu-

ate cisplatin-induced apoptosis.23 In contrast, silencing of

PRDX6 expression was shown to result in peroxide-induced

cell death.24 Meanwhile, PRDX6 was also shown to promote

the invasion and metastasis of lung cancer cells by activating

the Akt pathway.25 However, the role played by PRDX6 in

NSCLC, and its mechanism of action, remain unclear.

In this study, we examined the levels of PRDX6 and

CD133 expression in NSCLC cells and tissues, the correla-

tion between cisplatin resistance and PRDX6 expression,

and further demonstrated the effect of PRDX6 on CSC

maintenance in NSCLC. Our results suggest that downre-

gulation of PRDX6 expression might be a potential biomar-

ker and represent a strategy for treating NSCLC patients.

Materials And Methods
Patient Characteristics, Clinical Features,

And Tissue Harvest
Between December 2016 and December 2017, this study

enrolled a total of 60 pathologically diagnosed NSCLC

patients, including 30 patients with resistance to cisplatin.

No patient had a radiological record of disease develop-

ment. The protocol for this study was approved by the

Ethics Committee of Nanchong Central Hospital, and a

signed Informed Consent form was obtained from each

participant prior to study enrollment. Tumor tissues and

adjacent tissues were harvested and immediately stored at

−80°C or fixed in 4% paraformaldehyde for use in further

experiments. The study was performed in accordance with

the ethical principles of the Declaration of Helsinki.

Immunohistochemistry Analysis (IHC)
IHC methods were used to detect PRDX6 in tumor and

para-carcinoma tissues. The tissues were fixed overnight in

4% paraformaldehyde, and then embedded in paraffin and

sliced into 5 μm sections with a microtome (Cat. #HM325,

Thermo, USA). After deparaffinization and hydration, the

sections were incubated overnight at 4°C with a primary

antibody against PRDX6 (Abcam, Cambridge, UK). The

immunostained tissue sections were then photographed 3

times at ×400 magnification.

Cell Culture And Treatment
A549 and H1299 cells were obtained from the American

Type Culture Collection (ATCC, Manassas, VA, USA).

A549 cells were cultured for ~24 h in high glucose-

DMEM medium (Hyclone, Logan, Utah, USA); H1299
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cells were cultured for 24 h in Roswell Park Memorial

Institute (RMPI-1640) medium (Hyclone). All media con-

tained 10% fetal bovine serum (FBS, Hyclone) and 1%

penicillin/streptomycin (P1400, Solarbio, Beijing, China).

Both A549 and H1299 cells were grown in a humidified

atmosphere with 5% CO2 at 37°C.

Following dilution into single cell suspensions and

being seeded into the wells of different plates (1 x 105

cells/mL), the cells were transfected with or without

PRDX6-siRNA (1 nM, Genepharma, Shanghai) for 72 h,

with the use of Lipofectamine 2000 (Invitrogen, Carlsbad,

CA, USA). Subsequently, the cellular proteins were har-

vested at specified times. Cells transfected with PRDX6-

siRNA-NC served as control cells.

Immunomagnetic Separation (IMS)
Cells were rinsed in PBS and resuspended at a density

of 1 × 107 cells/mL. Next, 300 mL of cell suspension

was incubated with FcR blocking reagent (100 mL) and

CD133-PE antibody (100 mL) for 30 min at 4°C in the

dark. An immunoglobulin G-PE antibody served as a

negative control. The cell suspension (500 mL) was

rinsed twice with PBS and used to determine the per-

centage of CD133+ cells by flow cytometry (Becton

Dickinson, Franklin Lakes, NJ, USA). The CD133-posi-

tive (CD133+) and CD133-negative (CD133−) cells

were re-suspended in serum-free RMPI media. Flow

cytometry was used to determine the percentages of

CD133+ cell subpopulations prior to and following the

separation process.

Immunofluorescence Staining

After separation, cell spheres were plated onto coverslips in

RPMI 1640 medium containing 10% FBS and let sit for ~ 24

h before any further use. After 48 h of transfection, the

SW620 cells were fixed with 4% PFA for 20 min, and then

incubated with 0.3% Triton X-100 for 10 min at room tem-

perature. Next, the treated cells were blocked with 5% goat

serum for 30 min at 37°C, and then incubated overnight with

the anti-F-actin IgG (1:2000, Biosensis, Australia) at 4°C;

after which, they were incubated with goat anti-IgG conju-

gated to Cy3 (dilution, 1:400; Jackson ImmunoResearch,

West Grove, PA, USA) for 1 h at 37°C. Finally, DAPI

(1:1000; Sigma-Aldrich, Inc., MO, USA) was used to coun-

terstain the nuclei, and the cells were observed and photo-

graphed under an inverted fluorescence microscope

(Olympus). Cells in the negative control group were incu-

bated with PBS rather than the primary antibody.

Cell Proliferation Assay

Cells were plated into individual wells and treated with

different concentrations of cis-platinum for 24 h. Next,

100 uL of CCK8 solution (Dojindo, Japan) was pipetted

into each well and incubated at 37°C for an additional 1 h.

The absorbance of each well was measured at 450 nm with

a microplate reader.

Real-Time Reverse Transcription-PCR (qRT-PCR)

Total cellular RNAwas isolated with an RNA Isolation Kit

and UNIQ-10 column (Sangon, Shanghai, China). Next, 1

μg of total RNAwas reverse transcribed in a 20 μL volume

of reaction solution with the use of a GoScriptTM Reverse

Transcription Kit (Promega, Madison, WI, USA).

A 2 μL aliquot of cDNA was subjected to qRT-PCR

performed with a TaKaRa Ex Taq RT-PCR Version 2.1 kit

(TaKaRa, Shiga, Japan). The relative levels of gene expression

were normalized to those for GAPDH and analyzed using the

2−ΔΔCt method. The PCR primers used for PRDX6, CD133,

ABCG-2, and GAPDH were as follows: PRDX6: F: 5ʹ-

AAGCTAGCGCCCTAGCGCGATCGCGAGG-3ʹ, R: 5ʹ-AA

ACGCGATCGATATCGACCCCATCGAC-3ʹ; CD133: F: 5ʹ-

GGCGCCTATAGCTAGCTAGCGCGAT-3ʹ, R: 5ʹ-CGCGAT

CGATGATATCGCGCATA-3ʹ; GAPDH: F: 5ʹ-CGGAGTC

AACGGATTTGGTCGTAT-3ʹ, R: 5ʹ-AGCCTTCTCCATGG

TGGTGAAGAC-3ʹ.

Western Blot Assay
A total protein isolation kit (Solarbio, Beijing, China) was

used to extract the total proteins from tissues and cells. The

protein concentration of each sample was estimated with a

BCA protein assay kit (P0012, Beyotime, Shanghai, China).

After separation by 10% SDS-PAGE electrophoresis, the

target proteins were transferred onto polyvinylidene fluoride

(PVDF) membranes (Millipore, Burlington, MA, USA),

which were subsequently blocked with 5% non-fat milk for

2 h. The membranes were then incubated with primary anti-

bodies overnight at 4°C, and then treated with a secondary

antibody (peroxidase-conjugated) for 2 h. Finally, the immu-

nostained proteins were visualized with X-ray film

(Fujifilm). The primary antibodies included anti-PRDX6

(1:10000; Santa Cruz Biotechnology, Dallas, TX, USA),

anti-CD133 (1:10,000; Abcam, Cambridge, UK), anti-

ABCG-2 (1:4000; Abcam), anti-Wnt (1:1500; Abcam),

anti-β-catenin (1:2000; Abcam), and anti-GAPDH

(1:10,000; Santa Cruz Biotechnology).
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Sphere Formation Assay
After 7 days of culture, spheres were seeded into 6-well

plates and cultured in a serum-free medium supplemented

with EGF (20 ng/mL, Sigma-Aldrich), 2% B27 (Invitrogen),

and basic fibroblast growth factor (20 ng/mL, bFGF; BD).

Data Analysis
All statistical analyses were performed using SPSS

Statistics for Windows, Version 17.0 (SPSS, Inc.,

Chicago, IL, USA), and results are expressed as the

mean ± SD. Differences between groups were analyzed

by using one-way ANOVA or student’s t-test. A P-value <

0.05 was considered statistically significant.

Results
CD133+ And ABCG2+ Subpopulations

Presented Resistance To DDP
Prior to immunomagnetic selection by flow cytometry, our

results showed that CD133+/ABCG2+ cells comprised

0.22% ± 0.03% of the H1299 cells and 0.10% ± 0.04%)

of the A549 cells. After cell subpopulation enrichment,

74.89% ± 5.35% of the cells were CD133+/ABCG2+ in

H1299-CSC, while 0.22 ± 0.03% were CD133 of cells in

H1299. Similarly, 81.36 ± 3.02% of cells with CD133

+/ABCG2+ in A549-SCS, while 0.10 ± 0.04% in A549

cell line (Figure 1A and B).

As shown in Figure 1C and D, for both the H1299 cell

line and A549 cell line, the cisplatin IC50 values for the

enriched H1299 and A549 stem-like cells were increased

when compared to values for the non-enriched human lung

cancer cells, suggesting that the enriched stem-like cells

had a higher potential for cisplatin resistance (Figure 1E).

PRDX6 Expression Was Positively

Related To CD133 In NSCLC

Upregulation Of PRDX6 And CD133 In

NSCLC Patients
Immunofluorescence studies were performed to demon-

strate the expression of PRDX6 and CD133 in A549

(Figure 2A) and H1299 (Figure 2B) cells, and both cell

types showed more intense staining after enrichment. We

also found that PRDX6 and ABCG2 expression, as well as

the expression of several important signaling pathway

proteins such as Wnt and β-catenin, were induced after

immunomagnetic selection and the enrichment of human

lung cancer cells (Figure 2C).

To investigate the PRDX6 expression in patients’ tissues,

immunohistochemical assay was performed. Results of

immunohistochemical assays showed that PRDX6 was

expressed at higher levels in the tumor tissues than in the

adjacent tissues (Figure 2D). Next, qRT-PCR analyses were

performed to validate findings from the IHC assays. The

qRT-PCR analyses suggested that both PRDX6 and CD133

mRNA levels were up-regulated in the tumor tissues when

compared with those in the adjacent tissues (Figure 2E, left

and middle panel). Interesting, we found that CD133, a stem

cell marker, was positively related to PRDX6 (Figure 2E,

right panel). Furthermore, similar results were obtained by

Western blot analyses (Figure 2F).

PRDX6 Silencing Inhibited The Stem-Like

Properties Of Lung Cancer Cells
Knockdown of PRDX6 with siRNA was used to examine

the role of PRDX6 in cisplatin resistance. After measured

by flow cytometry, results showed CD133+/ABCG2+cells

accounted for 40.46% ± 5.04% of total H1299 cells in NC

and 16.07% ± 2.41% of total A549 cells after PRDX6

knockdown. Besides, that was 64.98 ± 4.88% and

36.47 ± 4.59%, respectively (Figure 3A and B).

Meanwhile, sphere formation assays were conducted to

examine the role of PRDX6 in promoting cellular self-

renewal, which is a critical trait of CSCs. The sphere

formation efficiency of A549 CSCs was suppressed by

siRNA, as indicated by a decrease in both spheroid dia-

meters (Figure 3C). Forced depletion of PRDX6 dramati-

cally also reduced the numbers of H1299 CSCs

(Figure 3C).

Western blot assays also showed the effect of PRDX6

silencing. As shown in Figure 3D, the levels of PRDX6,

ABCG2, and some important signaling pathway proteins

such as Wnt and β-catenin were decreased in human lung

CSCs transfected with PRDX6 siRNA.

Knockdown Of PRDX6 Suppressed

Cisplatin Resistance In H1299 And A549

Cancer Stem-Like Cells
As shown in Figure 4, the cisplatin IC50 values for H1229

and A549 stem-like cells were significantly reduced when

the cells were transfected with stable PRDX6 siRNA,

suggesting that cisplatin resistance was inhibited by

knockdown of PRDX6.
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Discussion
Although significant advances have been made in using sur-

gery, external radiation, and interventional radiology in the

treatment of patients with NSCLC, the survival rate of those

patients, and especially patients with stage III/IV disease, has

plateaued in recent years. One reason for that plateau is the

resistance of tumors to chemotherapeutic drugs.26 Therefore, it

is important to increase the sensitivity of cancer cells to

chemotherapy. Our results suggest that NSCLC patients with

cisplatin-resistance might have increased levels of PRDX6, as

well as more cancer stem-like cells with positive markers,

which is consistent with previous research. We also found

Figure 1 CD133+/ABCG2+ subpopulations presented resistance to DDP. (A–B) Representative flow cytometry graphs and the percentages of CD133+/ABCG2+

subpopulations among H1299 cells and A549 cells before and after immunomagnetic selection. (C–E) inhibitive rate of A549 (C) and H1299 (D) to cisplatin. ***P <0.001.
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that the CSCs might increase their tolerance to chemotherapy

by activating the Wnt signaling pathway and possess an

enhanced sphere formation ability that can be reversed by

PRDX6 silencing. These findings imply that silencing of

PRDX6 can be used as a new therapeutic strategy for the

clinical management of cisplatin-resistant NSCLC. They also

suggest PRDX6 as a specific pharmacological target and

reducing PRDX6 levels as a potential method of therapeutic

intervention.

Ever since the discovery of a subpopulation of CSCs in

solid tumors with enhanced tumorigenicity and chemoresis-

tance, CSCs have been considered as a cause of treatment

Figure 2 PRDX6 expression was positively related to CD133 in cells and clinical tissues. (A–B) Representative images showing immunofluorescent staining of A549 CSCs

(A) and H1299 CSCs (B) for the presence of PRDX6 (green) and CD133 (red), with DAPI (blue) counterstaining; bar: 15 µm. (C) Levels of PRDX6, ABCG2, Wnt, and β-
catenin proteins in human lung CSCs as detected by Western blotting, when compared to those in human lung cancer cells. ***Indicates P < 0.001 vs lung cancer cells. (D)

PRDX6 levels in NSCLC patients were detected by IHC. (E) left panel: CD133 expression in clinical tissues. Middle panel: PRDX6 expression in clinical tissues. Right panel:

positively relationship between CD133 and PRDX6 in clinical tissues. (F) expression of PRDX6 and CD133 in clinical tumor tissues (T) and para-carcinoma tissues (N).

Xu et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:1210482

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


failure and tumor recurrence after chemotherapy. Ovarian

CSCs can survive cisplatin treatment due to enhanced transle-

sion DNA synthesis (TLS) resulting from Pol η-mediated

enhancement of miR-93 expression.27 In breast cancer tumors,

a distinct CSC population that potentially causes chemoresis-

tance has been identified and implicated in the clonal evolution

and expansion of cancer stem-like cells.28,29 Although CSCs

have been studied in other diseases, further research needs to

be conducted on the biology of lung CSCs. There is also a

need to identify new therapeutic targets for specifically eradi-

cating that cell population. Recently, scientists generated and

characterized a panel of cisplatin-resistant NSCLC cell lines

Figure 3 Effect of PRDX6 knockdown on the stem-like properties of lung cancer stem-like cells. (A–B) Representative graphs showing the results of immunomagnetic

selection by flow cytometry and the percentages of CD133+/ABCG2+ subpopulations among H1299 cells and A549 cells before and after RNAi. (C) PRDX6 depletion reduced

the stem-like properties of lung cancer cells in vitro. Representative images and quantification of the spheres formed by the indicated H1299 cells and A549 cells. (D) The levels

of PRDX6, ABCG2, Wnt, and β-catenin proteins after siRNA transfection for 48 h, when compared with those in the negative control group. *Indicates P < 0.05 vs data from

CSCs treated with the siRNA-NC and assayed at same time point.
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with a putative stem-like signature for use as a valuable

research tool.30 Our study identified the protective effect of

silencing PRDX6 in NSCLC CSCs in a cisplatin-resistance

scenario in vitro, based on previous observations.

Several studies have found a link between the activation of

PRDX family members and chemotherapy resistance.

Overexpression of PRDX6 has been shown to promote lung

tumor development by activating the JAK2/STAT3 pathway31

and increasing glutathione peroxidase31 and iPLA2 activity

via upregulation of the AP-1 and JNK pathways.31,32

Moreover, it was found that the development of drug resis-

tance was accompanied by a significant increase in PRDX6

expression in various cisplatin-resistant sublines, including

human erythroleukemia K652 cells,33 human breast carci-

noma MCF-7 cells,34 and human ovarian carcinoma SKOV-

3 cells,23 further confirming the important contribution of

redox-dependent mechanisms to the development of cisplatin

resistance. Consistent with those findings, we have provided

evidence that genetic silencing of PRDX6 or its enzymatic

activity renders CSCs sensitive to chemical anti-cancer treat-

ments and abrogates tumor cell sphere formation, laying the

foundation for a promising therapeutic strategy. Endogenous

and overexpressed PRDX6 was shown to reduce oxidative

stress in cancer stem cells, as reflected by lower levels of

oxidized phospholipids. This effect led to an accelerated

malignant progression of existing tumors.35 ABCG2, which

is highly expressed in CSC populations, exports Hoechst-

33342 and certain cytotoxic drugs from the interior regions

cells, as detected by a side population (SP) analysis.36 When

combined with our results, this suggests that a positive corre-

lation might be found between high rates of ABCG2/PRDX6

positivity and high populations of CSCs.

One of the main reasons for the unreasonable use of

chemotherapy and occurrence of medicamentous adverse

reactions is that CSCs are continually produced under con-

ditions of disease progression and stabilization. Studies have

suggested that disorders of highly conserved developmental

pathways, including the mutant Wnt/β-catenin pathway,

might regulate self-renewal in embryonic and adult stem

cells. This regulation could promote CSC proliferation,

metastasis, and chemoresistance.37,38 Furthermore, recent

studies have shown that the Wnt/β-catenin pathway might

participate in regulating stem cells. For example, prolifera-

tion nuclear antigen-associated factor (PAF) has the ability to

promote self-renewal and heterogeneity.39 Consistent with

our study results, aberrant activation of PRDX6 might be

Figure 4 Effect of PRDX6 silencing on the viability of lung cancer stem-like cells. Transfected A549 cells (A) and H1299 cells (B) were treated with cisplatin at different

concentrations, and the IC50 of cisplatin was measured and analyzed (C). *** indicates p < 0.001 vs the negative control.
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involved in dysregulation of the Wnt/β-catenin pathway in

NSCLC, and associated with the maintenance of CSCs.

In this study, we identified two different stem-like cell

lines with a high tolerance to cisplatin and proved that

PRDX6 could accelerate cisplatin resistance in human

lung cancer cells by enhancing stem-like properties. Our

results suggest a potential new therapeutic strategy of

targeting PRDX6 during NSCLC treatment.
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