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Abstract: The urotensin II receptor, bound by the ligand urotensin II, generates second 

 messengers, ie, inositol triphosphate and diacylglycerol, which stimulate the subsequent 

release of calcium (Ca2+) in vascular smooth muscle cells. Ca2+ influx leads to the activation 

of Ca2+-dependent kinases (CaMK) via calmodulin binding, resulting in cellular proliferation. 

We hypothesize that urotensin II signaling in pulmonary arterial vascular smooth muscle cells 

(Pac1) and primary aortic vascular smooth muscle cells (PAVSMC) results in phosphorylation of 

Ca2+/calmodulin-dependent kinases leading to cellular proliferation. Exposure of Pac1 cultures 

to urotensin II increased intracellular Ca2+, subsequently activating Ca2+/calmodulin-dependent 

kinase kinase (CaMKK), and Ca2+/calmodulin-dependent kinase Type I (CaMKI), extracellular 

signal-regulated kinase (ERK 1/2), and protein kinase D. Treatment of Pac1 and PAVSMC 

with urotensin II increased proliferation as measured by 3H-thymidine uptake. The urotensin 

II-induced increase in 3H-thymidine incorporation was inhibited by a CaMKK inhibitor. Taken 

together, our results demonstrate that urotensin II stimulation of smooth muscle cells leads to 

a Ca2+/calmodulin-dependent kinase-mediated increase in cellular proliferation.
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Introduction
Hypertrophy, inflammation, and proliferation of vascular cells are major contributors 

to diseases such as atherosclerosis, arteriosclerosis, and hypertension.1 The combined 

effects of these major contributors are increases in cell size, migration of immune 

cells, and abnormal cell growth in affected regions of the vessel.2 Changes in vessel 

structure due to vascular remodeling result in narrowing of the vessel wall and arterial 

stiffness.2 Contraction and relaxation of vascular smooth muscle cells are regulated 

by biologically active mediators which are synthesized and secreted to modulate 

vascular tone.1 Many of these same mediators also play a pathologic role, such as 

urotensin II, which can induce abnormal cellular proliferation during disease-related 

vascular remodeling.1

Urotensin II is similar to somatostatin in both structure and function. Urotensin II 

is an undecapeptide cleaved from a precursor molecule that stimulates potent vasocon-

striction and vascular smooth muscle cell proliferation.3,4 Under nonpathologic condi-

tions, urotensin II influences vascular smooth muscle contraction.5 However, under 

pathologic conditions, urotensin II promotes cellular migration, and modulates large 

blood vessels, as shown in studies conducted in human aortic smooth muscle cells.6

Urotensin II is recognized by the orphan G-protein coupled GPR-14, now identi-

fied as the urotensin II receptor, resulting in generation of the second messengers, 
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inositol triphosphate and diacylglycerol.7,8 These second 

messengers trigger the release of Ca2+ from the sarcoplasmic 

reticulum.9 The urotensin II receptor is expressed in many 

tissues, including vascular smooth muscle, although the 

precise mechanisms activated downstream of the urotensin 

II receptor in vascular smooth muscle cells are largely 

unknown.10 Studies of other Gq-coupled receptors have 

shown that stimulation induces intracellular Ca2+ influx and 

binding of Ca2+ to calmodulin.11,12 Activated calmodulin 

subsequently binds to and stimulates calmodulin-dependent 

kinases (CaMK), such as Ca2+/calmodulin-dependent kinase 

kinase (CaMKK).13 Activation of CaMK members can lead 

to Ca2+-dependent activation of other protein kinases, such 

as extracellular signal-regulated kinase (ERK) and protein 

kinase D (PKD).14–16

ERK phosphorylation is required for proliferation of 

various cell types and cell lines.17,18 Vascular remodeling, 

hypertrophy, and proliferative responses are believed to 

be the result of urotensin II receptor overstimulation.19,20 

Studies in thoracic aortic cells demonstrated that urotensin 

II receptor signaling stimulates the phosphorylation of 

ERK.5,21 In addition to ERK activation, intracellular Ca2+ 

influx can also modulate the activity of PKD.14 Vasoac-

tive agents, such as endothelin-1, that bind Gq-coupled 

receptors, have been demonstrated to mediating PKD 

phosphorylation in various cell types.22 Here, we show 

that urotensin II induces intracellular Ca2+ release which 

stimulates CaMKI phosphorylation in Pac1. Moreover, we 

demonstrate that urotensin II receptor stimulation leads to 

CaMK-dependent phosphorylation of ERK and PKD. We 

go on to reveal that the acute application of urotensin II 

results in cellular proliferation, which can be blocked by 

inhibition of CaMKK. Consistent with our hypothesis, we 

have found that urotensin II-induced CaMKI, ERK, and 

PKD phosphorylation are also blocked by inhibition of 

CaMKK in vascular smooth muscle cells. These observa-

tions potentially indicate that urotensin II-induced signaling 

triggers proliferation and may contribute to hypertrophic 

pathologic conditions.

Materials and methods
Cell culture
Rat pulmonary arterial smooth muscle cells (Pac1) were 

cultured according to the method described by Rothman A 

et al.11 In brief, rat Pac1 were cultured in medium 199 (Invit-

rogen, Carlsbad, CA) supplemented with 10% fetal bovine 

serum with gentamicin (Fisher Scientific, Pittsburgh, PA). 

The cells were carried only through passages 3–15.

Primary aortic smooth muscle cells
Rat aortas were isolated from three-month-old Sprague-

Dawley rats according to an established protocol.23 The aortas 

were incubated for five minutes in 10% fetal bovine serum 

and 199 medium, then incubated at 37°C for 30 minutes in 

Hanks Balanced Salt Solution (Invitrogen-GIBCO, Carlsbad, 

CA) with 70 U/mL of collagenase (Millipore-Worthington 

Biochemical Company, Billerica, MA). Adventitias were 

stripped from the aortic tissue with watchmaker forceps and 

discarded. Aortas were digested in Hanks Balanced Salt Solu-

tion with collagenase 70 U/mL and elastase 40 U/mL (Sigma 

Aldrich, St Louis, MO). Aortas were gently agitated at 37°C 

for 90 minutes. The aortic solution was passed through 

a strainer with a 70 µm pore size, and centrifuged at 900 

rpm for five minutes. Cellular suspensions were dispersed 

by pipetting the suspensions up and down. Cells were then 

plated in six-well plates containing 10% fetal bovine serum 

in 199 medium.

Calcium imaging
Pac1 (1 × 105 cells/mL) were grown on coverslips at 

70%–80% confluency, and then bathed in Hanks Balanced 

Salt Solution (containing NaCl 0.137 M, KCl 5.4 mM, 

Na
2
PO

4
 0.25 mM, KH

2
PO

4
 0.44 mM, MgSO

4
 1.0 mM, 

NaHCO
3
 4.2 mM) with and without Ca2+ for measuring 

intracellular Ca2+. Detection of intracellular Ca2+ was quanti-

fied using a ratiometric technique recognized by Fura-2-AM 

(Invitrogen) involving excitation at 340 nm and 380 nm with 

emission at 510 nm according to Prasanne et al.24 A Nikon 

Diaphot microscope using Metafluor software (Universal 

Imaging, West Chester, PA) was used to measure intracellular 

Ca2+. Concentration (nM) of intracellular Ca2+ was calculated 

using the Grynkeiwicz equation. Ethylenediamine tetraacetic 

acid 0.5 µM, a membrane-impermeable chemical chelating 

agent that binds Ca2+, was used to reverse the elevated levels 

of Ca2+. BAPTA-AM (1, 2-bis(2-aminophenoxy)- ethane-

N,N,N’, N’-tetra-acetic acid) 10 µM (Invitrogen) was also 

used as a Ca2+ chemical chelating agent. BAPTA-AM, a 

membrane-permeable compound, also reverses the elevated 

levels of intracellular Ca2+.

Immunostaining
Pac1 and PAVSMC were cultured (1 × 105 cells/mL) on 

glass coverslips and washed twice with phosphate-buffered 

solution and fixed for 15 minutes with 4% paraformal-

dehyde at room temperature. Cells were blocked for one 

hour in blocking solution (3.0% bovine serum albumin 

in phosphate-buffered solution), and then incubated for 
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one hour in primary antibody smooth muscle cell-specific 

antimyosin IgG (Biomedical Technologies Incorporated, 

Stoughton, MA) diluted 1:200 or anti-GPR14R (antibody 

for the urotensin II receptor, Alpha Diagnostic International 

Inc., Woodlake Center, TX) antibody 1:200 with blocking 

solution. The secondary fluorescent labeling was incubated 

with cells using 1:500 Alexa 488 goat/antirabbit (Molecular 

Probes- Invitrogen, Eugene, OR) in blocking solution. The 

cells were washed three times with phosphate-buffered 

solution. Coverslips were mounted on slides with Pro-Long 

Gold Anti-Fade and DAPI (Invitrogen). A DP70 Olympus 

digital camera and AX70 fluorescent microscope was used 

to visualize stained cells (40 × objective).

3H-thymidine incorporation assay
Pac1 and PAVSMC were seeded (8 × 104 cells/mL) in RPMI 

(Invitrogen) medium containing 10% fetal bovine serum. 

After 70% confluency, cells were washed with phosphate-

buffered solution and serum starved in serum-free media 

to induce G1 arrest. Cells were serum-starved for 24 and 

48 hours and were incubated in serum-free RPMI media or 

isotonic artificial CSF (ACSF, 142 mM NaCl, 5 mM KCl, 

10 mM glucose, 1.3 mM Mg2+ 10 mM HEPES, and in the 

presence or absence of 3.1 mM Ca2+ containing 1 µCi/mL 

of 3H-thymidine, specific activity 48.0 Ci/mmol (GE-Health-

care-Amersham Pharmacia, Piscataway, NJ) for four hours 

in the CO
2
 incubator at 37°C in the presence and absence of 

urotensin II 100 nM (Sigma Aldrich) and STO609 250 nM 

(Sigma Aldrich). After the four-hour incubation period, cells 

were washed with phosphate-buffered solution. Cells were 

precipitated with 15% trichloroacetic acid and incubated 

overnight at 4°C. Cells were then lysed with 1 Normal NaOH 

and were incubated for 30 minutes at room temperature. Cell 

lysates were transferred to tubes containing scintillation fluid 

for analysis using a Beckman 1539 scintillation counter. Pro-

liferation was measured by incorporation of 3H-thymidine.

Western blot analysis
Pac1 were seeded at a density of 4 × 104 cells/mL and cul-

tured until cells were 80% confluent in 100 mm3 dishes. 

The day prior to treatment, the cells were serum-reduced 

in 0.1% fetal bovine serum and 199 medium with gen-

tamicin  (Invitrogen) or 0.1% fetal bovine serum in ACSF. 

Twenty-four hours after serum reduction, cells were treated 

with 100 nM rat urotensin II (Sigma Aldrich), and 250 nM 

STO609, a synthetic 7-oxo-7H-benzimidazo [2,1-a]benz[de]

isoquinoline-3-carboxylic acid-acetic acid peptide (Sigma 

Aldrich). All treatment conditions were carefully selected 

based on preliminary dose- and time-dependent studies. 

Experiments with the use of inhibitors were conducted 

under optimal conditions, and the concentrations were based 

on previous studies as referenced earlier. Inhibitors were 

incubated 30 minutes prior to urotensin II treatments. Dose-

 response and time-course investigations were conducted with 

urotensin II treatment. Cells were lysed using RIPA buffer 

(50 mM TrisHCl, 150 mM NaCl, 2 mM ethylenediamine 

tetraacetic acid, 1% NP-40, and 0.1% sodium dodecyl sulfate 

pH 7.4) and a protease inhibitor cocktail (Sigma Aldrich) 

containing phosphate inhibitors. Protein concentration was 

measured by the bicinchoninic acid method. Equal amounts 

of protein (20–30 µg) were loaded and electrophoresed 

in 10% sodium dodecyl sulfate-acrylamide gel. Proteins 

were transferred to PVDF membrane (Millipore, Billerica, 

MA). The membrane was incubated with respective phos-

phospecific primary antibodies at 4°C overnight and with 

corresponding horseradish peroxidase-conjugated secondary 

antibody at room temperature for one hour. After washing 

with 1 × phosphate-buffered solution three times at room 

temperature, the phosphorylation state of the proteins were 

detected by chemiluminescence (GE Healthcare Amersham). 

Phosphospecific antibodies used for the Western blots were 

p-ERK1/2 (Cell Signaling-9106S), p-PKD (Cell Signaling, 

Boston, MA) and pCaMKI (threonine 178, T Soderling Vol-

lum Institute, Oregon Health Science University, Portland, 

OR). Loading control was determined by stripping the blot 

and reprobing with anti-beta actin antibody (Santa Cruz 

Biotech, Santa Cruz, CA). Expression of the urotensin II 

receptor was measured using anti-GPR14R (antibody for 

the urotensin II, Alpha Diagnostic International Inc., San 

Antonios, TX) antibody.

Adenoviral infection
Pac1 were seeded into six-well plates. Cells were grown 

in 199 medium containing 10% serum with penicillin and 

streptomycin. Cells were allowed to reach near confluency 

and were infected with the adenovirus Ad- urotensin II and 

Ad-GO-GFP. The adenovirus-containing (Ad-urotensin II-

GFP) and the control adenovirus (Ad-GO-GFP) were both 

obtained from Walter Thomas (Baker Heart Research Insti-

tute, Melbourne, Australia).25 Plaque forming units (PFU) 

in HEK293 cells were measured to determine the viral titer, 

which was approximately 1.5 × 107 PFU/mL. The efficiency 

of infection for viral load was determined by observation of 

GFP fluorescence under the microscope. Virus-containing 

media was washed from the cells, and 10% serum-containing 

media was incubated for 18 hours for expression of virus.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Vascular Health and Risk Management 2010:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

726

Iglewski and Grant

Statistical analysis
Western blot densitometry values were normalized and 

evaluated relative to control. Ca2+ imaging data were pre-

sented relative to control in terms of percentage change. 

Densitometry, Ca2+, and proliferation data were subjected to 

one-way analysis of variance (ANOVA, GraphPad-Prism, 

San Diego, CA) and the Newman-Keuls multiple range test 

was used for pairwise comparisons of the means. Statistical 

significance was indicated by P # 0.05.

Results
Urotensin II receptor is expressed  
in Pac1 and PAVSMC
To investigate urotensin II-induced signaling, we used both 

Pac1 and PAVSMC to verify the expression of the urotensin II 

receptor. Pac1 are rapidly dividing cells,11 and therefore may 

not accurately represent the characteristics observed in normal 

vascular smooth muscle cells. Thus, we incorporated the 

two cell types to identify the urotensin II receptor signaling 

mechanisms. Previous studies have identified urotensin II 

receptor expression in PAVSMC, but urotensin II receptor 

expression in Pac1 lines have not been examined.10 Western 

blot analysis confirms that Pac1 have higher levels of the 

urotensin II receptor compared with PAVSMC (Figure 1A). 

Immunocytostaining of both cell types with anti-urotensin II 

receptor antibody indicated the presence of the urotensin II 

receptor in both Pac1 and PAVSMC (Figure 1B).

Urotensin II induces mobilization  
of Ca2+ in Pac1 and PAVSMC
It is well established that binding of urotensin II to the uro-

tensin II receptor leads to mobilization of intracellular Ca2+.26 

We measured intracellular Ca2+ transients in urotensin II-

treated Pac1 and PAVSMC using Fura-2-AM dye and digital 

imaging microfluorometry. Figures 2A and 2B demonstrate 

that urotensin II increases Ca2+ to 800 nM over 30 seconds 

in Pac1 (Figure 2A) and 600 nM in PAVSMC (Figure 2B). 

Pac1 and PAVSMC (Figure 2C) are representative images 

before and after urotensin II treatment. The Fura-2-AM scale, 
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Figure 1 Urotensin II is expressed in Pac1 and PAVSMC. A) A representative 
immunoblot using anti-GPR14 (antibody to urotensin II) demonstrates that urotensin II 
is expressed in both Pac1 and PAVSMC. Densitometry analysis was conducted on 
Western blots (n = 3, *P # 0.05). B) Merged image urotensin II immunocytochemistry 
in Pac1 (image 20 × objective) and PAVSMC (image 40 × objective) cells is highlighted 
by the green stain using anti-GPR14 antibody (antibody to urotensin II) and the 
nuclei staining is identified with DAPI, which is shown in blue.
Abbreviations: Pac1, pulmonary arterial vascular smooth muscle cells; PAVSMC, 
primary aortic vascular smooth muscle cells.
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Figure 2 Urotensin II induces elevated levels of intracellular Ca2+ in Pac1 and 
PAVSMC. Modulation of intracellular Ca2+ in response to urotensin II treatment in 
Pac1 (A) and PAVSMC (B) preloaded with Fura-2 and treated with urotensin II. Cells 
were captured at the 340/380 fluorescence ratio of Fura-2 and cells were monitored 
to detect changes in Ca2+. Urotensin II concentrations were chosen according to 
our previous dose response studies. Data are from an average of Ca2+ response 
in a population of Pac1(A) and PAVSMC (B) stimulated with urotensin II (n = 14), 
and a representation of three independent experiments of urotensin II treatment 
in Pac1 and PAVSMC were graphically plotted. Urotensin II-induced mobilization of 
Ca2+ response was plotted as Ca2+ concentration versus time. D) A representative 
scale demonstrating the correlation between color and Ca2+ levels. High levels of 
Ca2+ are shown with bright colors (yellow/red/orange) and low levels correspond to 
the dark colors (violet/blue/green). C) Fluorescent images of Pac1 and PAVSMC C 
cells were captured with preloaded Fura-2 AM and urotensin II treatment. Images 
depict (C-top) control and (C-bottom). E) Pac1 cells were treated with urotensin 
II and Hanks Balanced Salt Solution ± Ca2+. These treatment groups were compared 
to determine if intracellular Ca2+ is the predominant source. Pac 1 exposed to 
membrane-impermeable ethylenediamine tetraacetic acid and membrane-permeable 
BAPTA-AM were used to reverse the elevated levels of Ca2+. Experiments were 
conducted in three separate experiments (n = 14, *P # 0.05).
Abbreviations: Pac1, pulmonary arterial vascular smooth muscle cells; PAVSMC, 
primary aortic vascular smooth muscle cells.
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as shown in Figure 2D, illustrates the level of intracellular 

Ca2+, demonstrating that urotensin II induces an increase in 

Ca2+. In Figure 2E we show that urotensin II-induced Ca2+ 

release does not depend on extracellular Ca2+. The increase 

in cytoplasmic Ca2+ in response to urotensin II is the same 

for cells cultured in Hanks Balanced Salt Solution media 

with or without Ca2+. Ethylenediamine tetraacetic acid 

(membrane-impermeable) and BAPTA-AM (membrane-

permeable) served as our controls in Figure 2E. Taken as a 

whole, the results in Figure 2 suggest that 100 nM urotensin 

II causes a release of Ca2+ from internal stores in Pac1 and 

PAVSMC. Urotensin II induces phosphorylation of CaMKI, 

ERK, and PKD in Pac1. Western blot analysis was used 

to assess phosphorylation of CaMKI, PKD, and ERK in 

response to urotensin II (Figures 3A–3F) in Pac1. There 

was a dose-dependent (Figures 3A–C) and time- dependent 

 (Figures 3D–F) increase in CaMKI  phosphorylation 

 (Figures 3A and 3D). PKD phosphorylation (Figures 3B 

and 3E), and ERK phosphorylation (Figures 3C and 3F) in 

Pac1 treated with urotensin II. Using 100 nM urotensin II, 

CaMKI phosphorylation was maximal at 10 minutes, and 

preceded PKD phosphorylation, which peaked at 15 min-

utes. Phosphorylation of ERK occurred later and was still 

increasing at 60 minutes.

Urotensin II-induced phosphorylation of CaMKI, 
PKD, and ERK reduced in presence of CaMKK 
inhibitor in Pac1
To test if CaMKK is an integral target affecting the activation 

of several downstream effectors in the urotensin II signaling 

cascade, we used the CaMKK inhibitor prior to the addition 

of 100 nM urotensin II for 10 minutes, and measured CaMKI 

phosphorylation via Western blot analysis (Figure 4A). 

Our results in Figure 4A revealed that STO609 blocked the 
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Figure 3 Urotensin II induces phosphorylation of CaMKI, PKD, and ERK in Pac1. Western blot analysis of the time course of CaMKI, PKD, and ERK phosphorylation (A, B, 
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calmodulin-dependent kinase Type I; ERK, extracellular signal-regulated kinase.
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urotensin II-induced phosphorylation of CaMKI. We also 

pretreated Pac1 with 250 nM STO609 for 30 minutes, fol-

lowed by a treatment of 100 nM urotensin II for 15 minutes 

to measure PKD phosphorylation (Figure 4B). Our findings 

demonstrated a reduction in urotensin II-stimulated PKD 

phosphorylation in the presence of STO609 (Figure 4B). We 

then used 250 nM STO609 for a 30-minute pretreatment, fol-

lowed by a treatment of 100 nM urotensin II for 30 minutes. 

Under these treatment conditions, STO609 reduced urotensin 

II-induced ERK phosphorylation in Pac1 (Figure 4C). By and 

large, the inhibition of CaMKK reduces urotensin II-induced 

phosphorylation of CaMKI, PKD, and ERK (Figure 4). 

Therefore, our results with STO609 establish CaMKK’s 

involvement in urotensin II receptor signaling (Figure 4).

Characterization of primary cell cultures
Urotensin II-induced signaling mechanisms are poorly under-

stood in vascular smooth muscle cells, therefore we looked 

at urotensin II receptor signaling in both a cell line and a 

primary culture. We verified isolation of primary rat aortas by 

immunostaining the cells with a smooth muscle cell-specific 

antibody-antimyosin primary antibody for smooth muscle 

cells. As shown in Figure 5A, more than 70% of PAVSMC 

are smooth muscle cell-positive. Western blot analysis was 

used to determine if urotensin II treatment of PAVSMC 

induces ERK phosphorylation. Our results demonstrate that 

PAVSMC exposed to 100 nM urotensin II induces phospho-

rylation of ERK maximally after 15 minutes (Figure 5B). 

Furthermore, 30 minutes of pretreatment with 250 nM 

STO609 blocked urotensin II-induced ERK phosphorylation 

in PAVSMC (Figure 5C). Therefore, our results demon-

strate that  urotensin II induces the phosphorylation of ERK 

in PAVSMC, and CaMKK exposure to PAVSMC blocks 

 urotensin II-induced phosphorylation of ERK (Figure 5).

Urotensin II stimulates proliferation  
of Pac1 and PAVSMC
Studies have linked urotensin II-induced ERK phosphorylation 

with cellular proliferation in thoracic aortic cells.21 Therefore, 

we tested whether urotensin II induces cellular proliferation 

in Pac1 and PAVSMC. We measured 3H- thymidine uptake 

as a proliferative assay in Pac1 (Figure 6A) and PAVSMC 

(Figure 6B). Cellular proliferation was measured by counting 

numbers of Pac1, and we found that the cell number is greater 

with urotensin II treatment (Figure 6C). Representative images 

of urotensin II-treated Pac1 were taken to show differences 

in cell numbers with urotensin II treatment (Figure 6D). 

Urotensin II induced proliferation of both cell types in a 

dose-dependent manner (Figure 6).

CaMKK inhibitor blocks urotensin II-induced cellular 
proliferation in Pac1 and PAVSMC
Pretreatment with STO609 to inhibit CaMKK blocks uro-

tensin II-induced proliferation of PAVSMC (Figure 7A and 

B) and Pac1 (Figure 7C). Representative images were taken 

(Figure 7E), and cellular proliferation was measured by 

counting cell numbers to show that STO609 blocks urotensin 

II-induced proliferation in Pac1 (Figure 7D).

Extracellular Ca2+ does not alter urotensin II-induced 
phosphorylation of CaMKI and cellular proliferation
To determine if 100 nM urotensin II in the presence of 

extracellular Ca2+ alters CaMKI phosphorylation, the 

 urotensin II-induced phosphorylation status of CaMKI was 
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Figure 4 Urotensin II receptor-induced phosphorylation of CaMKI, PKD, and ERK is inhibited by CaMKK inhibitor in Pac1. Urotensin II receptor-induced phosphorylation 
of A. CaMKI, B. PKD, and C. ERK inhibited by CaMKK. Densitometry analysis was conducted on Western blots (n = 4, *P # 0.05). 
Abbreviations: Pac1, pulmonary arterial vascular smooth muscle cells; PKD, protein kinase D; CaMKI, Ca2+/calmodulin-dependent kinase Type I; ERK, extracellular signal-
regulated kinase; C, control; UII, urotensin II; U/S, urotensin II ± STO609.
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Figure 5 Characterization of PAVSMC. A) PAVSMC were immunostained with antimyosin smooth muscle cell-specific antibody to identify if cultured cells are composed 
of vascular smooth muscle cells. Merged image of cultured PAVSMC depicts positive antimyosin smooth muscle cell staining (left image). Antimyosin smooth muscle cell 
antibody is highlighted by the green stain (top image), and the nuclei staining is identified with DAPI, which is shown in blue (bottom image). B) A representative immunoblot 
demonstrates that urotensin II induces ERK phosphorylation in a time-dependent manner. Densitometry analysis was conducted on Western blots (n = 3, *P # 0.05.  
C) and D) A representative Western blot demonstrating that CaMKK blocks urotensin II receptor-induced phosphorylation of ERK (10% serum and 10% fetal bovine serum 
in media (n = 2, *P # 0.05, #P # 0.05). 
Abbreviations: PAVSMC, primary aortic vascular smooth muscle cells; ERK, extracellular signal-regulated kinase; C, control; UII, urotensin II; U/S, urotensin II ± STO609; 
SF, reduced serum media.

measured in 0.1% fetal bovine serum in ACSF media in the 

presence and absence of Ca2+ via Western blot analysis (Fig-

ure 8A and 8B). The results indicated no statistical difference 

between treatment groups (ACSF + urotensin II) and (ACSF 

+ urotensin II + Ca2+, n = 3, Figure 8B). To address the role 

of extracellular Ca2+ and 100 nM urotensin II-induced cellular 

proliferation, we treated cells for 24 hours with reduced serum 

ACSF in the presence and absence of Ca2+ and measured 

cellular proliferation via 3H-thymidine incorporation assay 

(Figure 8C). Results in Figure 8C demonstrate that urotensin 

II treatment in ACSF media, in the presence or absence of 

Ca2+, did not alter the levels of cellular proliferation.

Urotensin II overexpression enhances ERK 
phosphorylation and proliferation of Pac1
In order to delineate whether urotensin II-induced signal-

ing occurs through the urotensin II receptor, cells were 

kept in reduced serum for treatment groups (Ad-GoGFP, 

Ad-urotensin II receptor, Ad-urotensin II receptor + uro-

tensin II, Ad-urotensin II receptor + urotensin II + STO609). 
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Figure 6 Urotensin II-induced cellular proliferation in a dose-dependent manner. 3H-thymidine uptake in A. Pac1 and B. PAVSMC treated with urotensin II in a dose-dependent 
manner stimulates proliferation (n = 4, *P # 0.01). C) Cell counting was used as a measure of cellular proliferation in Pac. Experiment was blinded and six independent 
experiments were conducted with triplicates (n = 18, *P # 0.05). D) A representative image of control and 100 nM urotensin II (image 20 × objective) in Pac1.
Abbreviations: Pac1, pulmonary arterial vascular smooth muscle cells; PAVSMC, primary aortic vascular smooth muscle cells; UII, urotensin II.

We overexpressed the urotensin II receptor by infecting 

Pac1 with a urotensin II receptor adenovirus (Ad-urotensin 

II) in the presence and absence of urotensin II or STO609. 

Ten percent of serum-treated cells in the presence of the 

Ad-urotensin II receptor were compared with the reduced 

serum treatment groups to determine if urotensin II or 

full serum specifically affects the urotensin II receptor 

proliferation signaling pathway. We measured downstream 

targets, such as ERK phosphorylation (Figure 9A), and cel-

lular proliferation (Figures 9B–D). Our results reveal that 

urotensin II receptor overexpression enhances urotensin 

II-induced ERK phosphorylation and cellular prolifera-

tion of Pac1.

Discussion
The results reported here demonstrate that urotensin II 

induces Ca2+/calmodulin-dependent kinase-dependent 

 proliferation of Pac1 and PAVSMC. Furthermore, our 

 present study identified that, in vascular smooth muscle cells, 

urotensin II-induced phosphorylation of several urotensin II 

receptor downstream targets can be blocked using a CaMKK 

inhibitor. These findings suggest that CaMKK inhibition may 

have therapeutic relevance by blocking cellular proliferation 

in Pac1 and PAVSMC.

The urotensin II receptor signaling pathway was initially 

thought to be activated by the single agonist, urotensin II.5 

However, recent evidence identified urotensin II-related 

peptide as an additional agonist of the urotensin II recep-

tor, similarly activating urotensin II-induced downstream 

targets.27 Both agonists have been observed to play a role in 

disease processes, although the scope of our study did not 

include urotensin II-related peptide effects on urotensin II 

receptor signaling.27,28 Hirose et al demonstrated that dur-

ing heart failure, urotensin II-related peptide  expression is 
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increased in the atrium and right ventricle of the heart.29 

Within the past decade, studies have observed the effects of 

urotensin II binding of the urotensin II receptor in various 

tissues including the brain, kidney, heart, and vessels.30 Cel-

lular proliferation in all these tissue types, except for heart, 

has shown a close correlation with increases in urotensin II 

levels.30 Previous studies involving human umbilical vein 

cells show that urotensin II induces ERK phosphoryla-

tion and cellular proliferation.20 ERK has been recognized 

as a target for several G-protein coupled  receptors, and 

its activation is correlated with proliferation.18,31 ERK 

activation is dependent on several intracellular signals, 

including an increase in intracellular Ca2+.32 Tamura et al 

has shown that urotensin II receptor signaling stimulates 

ERK phosphorylation via the classical pathways involving 

Ras and Raf in primary thoracic aortic cells.21 Conversely, 

Sauzeau et al revealed via BrdU and cell counting assays 

that urotensin II stimulates human aortic smooth muscle cell 

proliferation through RhoA and Rho kinase.33 Although our 

studies indicate that activation of cell proliferation by the 
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Figure 7 CaMKK inhibitor reduces urotensin II-induced cellular proliferation in Pac1 and PAVSMC. Proliferation studies involved serum starvation for A 24 hours and B 
48 hours. Pac1 were treated with urotensin II and were measured via 3H-thymidine incorporation assay. Inhibitor studies using CaMKK inhibitor in the presence of urotensin 
II were conducted in Pac1 (A and B) and PAVSMC (C), and were analyzed through 3H-thymidine incorporation as a measurement of cellular proliferation (10% serum and 
10% fetal bovine serum in media (n = 4, *P # 0.05, ++P # 0.01, +++P # 0.001, ***P # 0.001). C) Cell counting was performed as a method to measure cellular proliferation 
(three independent experiments, n = 18, P # 0.05). E) A representative image was taken comparing cellular proliferation in Pac1 cells (image 40 × objective).
Abbreviations: Pac1, pulmonary arterial vascular smooth muscle cells; CaMKK, Ca2+/calmodulin-dependent kinase kinase; PAVSMC, primary aortic vascular smooth muscle 
cells; U, urotensin II, U/S, urotensin II ± STO609; SF, reduced serum medium.
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Figure 8 Intracellular Ca2+ is the predominant source of Ca2+ involved in urotensin II-induced phosphorylation of CaMKI and cellular proliferation in Pac1. 
A) A representative immunoblot demonstrates that urotensin II-induced phosphorylation of CaMKI is independent of extracellular Ca2+. Pac1 were treated with 
ACSF + urotensin II ± Ca2+. B) Densitometry analyses of treatment groups are compared in pairwise t-tests. The y-axis data is plotted as a fraction of control (n = 2).  
C) Proliferation studies conducted in Pac1 were measured via 3H-thymidine incorporation in Pac1. Treatment groups for ACSF + urotensin II ± Ca2 were compared in a 
pairwise t-test (n = 4).
Abbreviations: Pac1, pulmonary arterial vascular smooth muscle cells; ACSF, isotonic artificial CSF; CAMKI, Ca2+/calmodulin-dependent kinase Type I.

urotensin II receptor and its Gq-coupled receptor requires 

Ca2+ activation of CaMK, it is possible that induction of 

Ras/Raf or Rho kinase pathways may also be involved. 

Schmidt et al had shown in hippocampal cells that CaMKI 

stimulates ERK phosphorylation, and conversely reduced 

ERK phosphorylation using a dominant negative CaMKI 

or pharmacologic inhibitors to CaMKI, which is consistent 

with our findings.20

Previous studies examining cellular proliferation identi-

fied the sarcoplasmic reticulum as the predominant source 

of Ca2+ release during proliferation. Dramatic changes 

in Ca2+ flux have been linked to cardiovascular disease, 

such as arteriosclerosis and renal disease.34,35 However, 

the mechanisms inducing intracellular Ca2+ flux are not 

yet well defined. Others have demonstrated that Ca2+/

ATPase and sarco/endoplasmic reticulum Ca2+-ATPase 

pumps could modulate cytoplasmic Ca2+ increases during 

proliferation.37 Recent proliferation studies have shown that 

the intracellular store involved in sarcoplasmic reticulum 

release (via Ca2+-induced Ca2+ release) may occur through 

the ryanondine receptor.36,37 We have not identified the 

source or the specific mechanism of intracellular Ca2+ 

release, although future studies will entail delineating 

which intracellular Ca2+ store is involved in the urotensin 

II-induced signaling pathway. Currently it is our belief 

that the primary mechanism of this Gq signaling-mediated 

event occurs through inositol triphosphate and modulates 

the release of Ca2+.

Although our studies indirectly identify Ca2+/calmodulin 

kinases as the target signaling kinases in the urotensin II-

urotensin II receptor pathway, future studies are needed to 

elucidate urotensin II receptor signaling mechanisms using 

a urotensin II receptor-specific antagonist. We have used an 

adenovirus to overexpress the urotensin II receptor, although 

using siRNA to the urotensin II receptor or a direct inhibitor 

will determine the involvement of Ca2+/calmodulin kinases in 

the urotensin II-induced proliferation pathways of vascular 

smooth muscle cells.

In summary, Pac1 and PAVSMC cultures exposed to 

urotensin II result in cellular proliferation, and CaMKK 

inhibitor treatment blocks cellular proliferation. Understand-

ing CaMKK’s role in urotensin II-induced proliferation may 

provide further insight into potential therapeutic targets for 

vascular smooth muscle cell proliferation.
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Figure 9 Overexpression of the urotensin II receptor in the presence of urotensin II enhances ERK phosphorylation and cellular proliferation in Pac1 cells.  A) A representative 
immunoblot demonstrates that the Ad-urotensin II receptor in the presence of urotensin II, induces ERK phosphorylation in Pac1. B) A representative image of proliferating 
Pac1 were taken of Ad-urotensin II receptor + serum, Ad-urotensin II receptor, (image 40 × objective) and C) Ad-GFP, Ad-urotensin II receptor + urotensin II, Ad-urotensin II 
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Abbreviations: Ad-, adenovirus infected; Pac1, pulmonary arterial vascular smooth muscle cells; ERK, extracellular signal-regulated kinase.
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