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Abstract: In recent years, due to vital need for novel fungicidal agents, investigation on 

natural antifungal resources has been increased. The special features exhibited by neural 

 network classifiers make them suitable for handling complex problems like analyzing  different 

properties of candidate compounds in computer-aided drug design. In this study, by using 

a Levenberg– Marquardt (LM) neural network (the fastest of the training algorithms), the 

 relation between some important thermodynamic and physico-chemical properties of coumarin 

 compounds and their biological activities (tested against Candida albicans) has been evalu-

ated. A set of already reported antifungal bioactive coumarin and some well-known physical 

descriptors have been selected and using LM training algorithm the best architecture of neural 

model has been designed for forecasting the new bioactive compounds.
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Introduction
Human fungal infections have increased at an alarming rate for the last 20 years, 

mainly among immunocompromised individuals.1 Although it appears to be a great 

array of antifungal drugs, there is at present a quest for new generations of antifungal 

compounds due to the low efficacy, side effects, or resistance associated with the 

existing drugs.2,3 However, there are only a limited number of known clinically avail-

able antifungal reagents, including amphoterlcin B, ketoconazole, fluor, oconazole, 

and itraconazole. These antifungal drugs have disadvantages including high toxicity, 

ineffective towards some fungi, and low bioavailability, thus they are not able to 

meet fully the needs of the patients.4 Coumarin compounds are naturally occurring 

constituent of many plants and essential oil which comprise a chromenone ring, often 

a chromen-2-one or chromen-4-one ring.5 Selected coumarins are known to have 

antifungal activity. For example, Sardari et al6 described how a limited number of 

coumarins are active against C albicans, Cryptococcus neoformans, Saccharomyces 

cerevisiae, and Aspergillus niger. Several different parameters should be evaluated 

to design a new coumarin antifungal.7,8 Recently, artificial neural networks (ANNs) 

have most widely been used in drug design. They usually consist of 3 or 4 input layers, 

1 output layer, and 1 or 2 hidden ones.9 In pattern classification, understanding the 

class boundaries by the classifier needs a training phase with a training algorithm.10 

Gradient-based training algorithms, like back-propagation, are not efficient due to 

the fact that the gradient vanishes in the solution.11 Hessian-based algorithms allow 
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the network to learn more subtle features of a complicated 

mapping.12 The training process converges quickly as the 

solution is approached, because the Hessian does not vanish 

in the solution. The Levenberg–Marquardt (LM) algorithm 

is basically a Hessian-based algorithm for nonlinear least 

squares optimization.13,14 For neural network training, the 

objective function is the error function of the type
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A unit in 1 layer is connected to all units in the next,13 

where the a
kl
 is the actual output at the output neuron l for 

the input k, the d
kl
 is the desired output at the output neuron l 

for the input k, p is the total number of training patterns, n
0
 

represents the total number of neurons in the output layer of 

the network, and x represents the weights and biases of the 

network.14 Because they can find the complex relationship 

between predictor variables (inputs) and predicted variables 

(output), LM algorithm trained ANN has received growing 

attention in drug discovery. In this study, first several LM 

neural networks are built for a set of thermodynamic and 

physico-chemical properties of antifungal coumarins. After 

that, the best architecture in terms of the least error and cycle 

of calculation is selected. Eventually, this neural model is 

used to calculate the correlation coefficient between thermo-

dynamic and physico-chemical properties and bioactivity 

of antifungal coumarins (tested against Candida albicans) 

and the role of these properties in bioactivity of coumarins 

antifungal is discussed.

Material and methods
In the first step, some thermodynamic and physico-chemical 

descriptors for all congeners were computed or taken from 

the literature (Table 1).15–18 Geometry optimization is carried 

out by using the semiempirical PM3 method,19 implemented 

in (HyperCube, Inc. Gainesville, FL, USA)TM program 

package.20 All of these descriptor are generated by different 

application such as ACDLAB (11.02 release 21. May 2008), 

HyperChem (8.0.2), and MOPAC 93, together with the help of 

references (Table 1). For example, The basic thermodynamic 

properties such as standard enthalpy of formation, standard 

free enthalpy of formation, molar entropies, heat capacities, 

energies of highest occupied molecular orbital (HOMO), and 

lowest unoccupied molecular orbital (LUMO) are extracted 

from MOPAC 93 data files.

The dataset is composed of some coumarins and 

 coumarin derivatives that have previously shown antifungal 

activity. Bioactivities of these compounds are screened by 

the well dilution method and have been taken by literature 

search (Table 2).6,21–26 One major problem is the reporting 

of antifungal activity in 2 different forms of 50% inhibitory 

concentration (IC
50

) and minimal inhibitory concentration 

(MIC). By multiplying the IC
50

 values by 2,17 we obtain a 

close equivalent of MIC level; hence, our dataset becomes 

uniform, because this calculated number is approximately 

equal to MIC. We used antifungal screening results of isolates 

of C albicans for the simulation of their bioactivity. The Error 

Back Propagation (EBP) algorithm has been a significant 

improvement in neural network research, but it has a weak 

convergence rate.27,28 Many efforts have been made to speed up 

EBP algorithm.29,30 All of these methods lead to little accept-

able results. The LM algorithm ensues from development of 

EBP algorithm dependent methods. It gives a good exchange 

between the speed of the Newton algorithm and the stability 

of the steepest descent method 31 that are 2 basic theorems of 

LM algorithm. In this paper, a feed-forward neural network 

with LM algorithms applied for modeling the bioactivity of 

coumarins antifungal. A standard feed-forward network, with 

LM algorithms and with 1–3  hidden layer architecture, was 

chosen. For solving the problem of over-fitting, the number 

of neurons was kept at a minimum. However, the optimum 

architecture with target error less than 0.02% was created with 

Table 1 some thermodynamic and physico-chemical descriptors 
for all congeners

Descriptor Parameter References

1 Vicinal carbon atoms substitution pattern 8
2 sasvol (solvent-accessible volume) 8
3 Vdwvol (van der Waals volume) 8
4 symmetry of molecule 8
5 Maxq+ (the largest positive charge over  

the atoms in molecules)
8

6 Vapor pressure 8
7 energy of hUMO (highest occupied 

molecular orbital)
8

8 energy of LUMO (lowest unoccupied 
molecular orbital)

8

9 Molecular mass (Da) 8
10 Dipole moment of the molecule 15
11 Density (g/cm) 15
12 retention time 15
13 heat capacity 16
14 standard enthalpy of formation 16
15 Specific polarizability of molecule 17
16 Molar refractivity (cm3) 17
17 Molar volume (cm3) 18
18 Log P 18
19 surface tension (dyne/cm) 18
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Table 2 structure and bioactivity of studied coumarins. The observed MiCs and structures of coumarin compounds are derived 
from mentioned references

1 OO O

EtOOC

1 ,000
2 OO O

HOOC

2 ,000

Number Compound MIC

observed, 

MIC

observed, 

Number Compound

µg/mL µg/mL

3
O OHO

1 ,000
4

O O

HO

HO

1 ,000

5

O O

O

250
6

OO O

NH(CH2)9CH3

O

250

7

O O

1 ,000
8

O OO

62.5

9
OO O

NH(CH2)2CH3

O

250
10

O

O

O

250

11
O O

O

250
12

O O

CH2CH2CH3

HO

HO

250

13
O OHO

PhH2CO

CH2CHOHCH2OH

1 ,000
14

OO O

HO

250

15
OO O

MeO

500 16
OO O

PhH2CO

500

17
OO O

H3COCO

250 18
O O

PhH2CO

OHCH2CO

1 ,000

(Continued)

variation in the total number of nodes and hidden layers. This 

neural model is built with NeuroSolutions (NeuroDimension, 

Inc. Gainesville, FL, USA) (version: v5.07, 2008). For vali-

dation of our model and to analyze the influence of inherent 

randomness on the prediction stability, 10 repetitions of the 

complete validation process with different random seeds 

were made in all cases (Y-scrambling test). Accuracy has 

been selected for evaluation of predictive performance of a 

single validation process, whereas a coefficient of correlation 

of accuracies obtained across 10 repetitions is established 

as a measure of learning stability. Also cross-validation was 

applied by leave-n-out method.
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Table 2 (Continued)
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(Continued)
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Table 3 Different plan of some applied networks by focus on errors

HL Design Y-scrambling R2 Validation set error Calculation cycles Training set error

1 19-3-1 0.672 0.007787 668 0.009987
1 19-6-1 0.761 0.009988 564 0.009941
1 19-8-1 0.763 0.009277 456 0.009781
1 19-11-1 0.553 0.009900 787 0.009887
1 19-15-1 0.221 0.009856 623 0.009924
2 19-6-10-1 0.447 0.009677 980 0.00996
2 19-10-11-1 0.664 0.09967 1345 0.09999
2 19-13-12-1 0.774 0.9779 2321 0.09999
3 19-8-3-5-1 0.441 0.09959 1255 0.08812
3 19-7-8-6-1 0.364 0.08999 876 0.06812

Abbreviation: hL, hidden layers.

Table 2 (Continued )

45
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Cl

2 ,705

Number Compound MIC

observed, 

µg/mL

MIC

observed, 

µg/mL

Number Compound

Result
The computed basic physico-chemical and thermody-

namic descriptors for coumarins presented in Table 1. 

Various architectures of neural network are shown in 

Table 3. In this study, LM trained ANN has been used to 

build a neural model for prediction of leading antifungal 

coumarins. The best  architecture, according to the term 

of calculation cycles and considering the correlating 

behavior and output cycles of calculation was 19-8-1. 

ANNs are used to modeling systems that receive inputs 

and produce outputs. The  relationships between the 

inputs, outputs, and the  representation  parameters are 

critical issues in the design of a good model for bioactive 

compounds and sensitivity analysis concerns methods to 

analyze these relationships. Perturbations of neural net-

works are caused by machine imprecision, and they can 

Abbreviation: MiC, minimal inhibitory concentration
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be simulated by  embedding disturbances in the original 

inputs or connection weights, allowing us to study the 

characteristics of a function under small perturbations of 

its parameters. Sensitivity  analysis is a measure of how 

the outputs change when the inputs are changed. The 

result of this analysis could help to predict the bioactiv-

ity of new antifungal coumarins. Result shows that the 

most sensitive input are Log P and molar  refractivity. The 

input importance shows the relative  importance of each 

input column. The importance is the sum of the absolute 

weights of the  connections from the input node to all 

the nodes in the first hidden layer. Descriptors energy of 

LUMO, energy of HOMO, and surface tension were the 

most important inputs. The least important descriptor 

was determined as the density. The correlation coeffi-

cient between the observed and the predicted MIC value 

was 0.9266.  Predicted activity varies from 22.55878 to 

2010.87537 (Figure 1). Y-scrambling result showed that 

the classification accuracy for randomized datasets was 

significantly lower than for the original datasets (data not 

shown). The highest error is observed for compound 11, 

34, and 43. Cross-validation is done by leave-some-out 

(some = 4) validating method. Validation showed that 

average of absolute errors was 0.029.

Discussion
The development of a new drug is still a challenging, time-

consuming, and cost-intensive process. Computational meth-

ods can be used to assist and speed up the drug discovery 

process. In contrast to classical statistical methods such as 

regression analysis or partial least squares analysis, the ANNs 

enable the investigation of complex nonlinear relationships. 

Therefore, neural networks are ideally suited to be used in 

drug design and Quantitative structure-activity relationship 

(QSAR). They consist of many basic units, called artificial 

neurons (or simply neurons), which perform identical tasks. 

A neuron collects a series of input signals and transforms 

them into the output signal via a transfer function. In the 

course of training, such a network of  neurons “learns” by 

changing the weights of its neurons. Two  different learning 

methods can be distinguished:32 supervised and unsupervised 

learning. When learning is unsupervised, the neural network 

is provided with the input patterns. After some iteration, it 

should be settled to a stable state. The goal of supervised 

learning methods is to find a model that associates correctly 

the inputs (representation of the objects) with the targets 

(representation of the responses). The targets serve not only 

as a criterion for how well the system has been trained, but 

also they influence the correction of each weight. Also the 

best-known example of a neural network training algorithm 

is back-propagation, it is the easiest algorithm to understand, 

it is also a good choice if the dataset is very large, contains a 

great deal of redundant data and finally it still has advantages 

in some circumstances, but modern second-order algorithms 

such as conjugate gradient descent and LM are substantially 

faster (eg, an order of magnitude faster). LM is typically the 

fastest of the training algorithms and performs calculations 

using the entire dataset that might improve the performance 

of network.33,34

In this study, LM training algorithm is applied to dis-

cover the relationship between antifungal activity score 

data for a dataset of coumarins antifungal with the thermo-

dynamic and physico-chemical descriptors. Descriptors are 

derived from molecular structure. Among the architectures 

constructed, the best ANN architecture is 19-8-1. Table 3 

shows the statistical criteria of different architecture. The 

quiet low error for the training and validation set indicate 

that training and validation are absolutely successful. 

Thermodynamic and physico-chemical descriptors play 

a crucial role in the interaction of candidate compounds 

with their specific receptors (eg, biological membrane). 

The results have shown that descriptors LUMO and HOMO 

energy are the most important among all descriptors. 

LUMO is the lowest energy level in the molecule that con-

tains no electrons. When a molecule acts as a Lewis acid 

(an  electron-pair acceptor) in bond formation, incoming 

electron pairs are received in its LUMO. Molecules with 

low-lying LUMOs are more able to accept electrons than 

those with high LUMOs; thus, the LUMO descriptor should 

measure the electrophilicity of a molecule. HOMO is the 

highest energy level in the molecule that contains electrons. 

It is crucially important in governing molecular reactiv-

2500

2000

1500

1000

500

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Observed

Predicted

R2 = 0.9266

Compounds

B
io

ac
ti

vi
ty

 (
M

IC
 (

µg
/m

L
))

Figure 1 Plot of predicted activity vs observed one.
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ity and properties. When a molecule acts as a Lewis base 

(an electron-pair donor) in bond formation, the electrons 

are supplied by the molecule’s HOMO. Molecules with 

high HOMOs are more able to donate their electrons and 

are hence relatively reactive compared with molecules 

with low-lying HOMOs; hence, the HOMO descriptor 

should measure the nucleophilicity of a molecule. Both 

descriptors strongly define how a compound could interact 

with a receptor. The third important descriptor is surface 

 tension. This is in accordance with previous studies.17 The 

most sensitive is Log P and molar refractivity. Log P (the 

octanol/water partition coefficient) and molar refractiv-

ity are molecular descriptors that can be used to relate 

chemical structure to observed chemical behavior. Log P is 

related to the hydrophobic character of the molecule. The 

molecular refractivity index of a substituent is a combined 

measure of its size and polarizability. Because of their 

flexibility, supervised neural network have found a great 

application in drug design, for example a network with 

LM learning algorithm can be employed for the following 

applications in drug design: analysis of multidimensional 

data, classification and prediction of biological activity 

and ADME-Tox (absorption, distribution, metabolism, 

excretion, and  toxicity) properties, lead discovery, com-

parison of  compound libraries and  analysis of the similar-

ity.  Unfortunately LM has some important limitations, 

specifically it can be only used on single output networks, 

and be used with the sum squared error function, and has 

memory requirements proportional to W2 (where W is the 

number of weights in the network; this makes it impracti-

cal for reasonably big networks). LM training algorithms 

seem to be very prone to stick in local minima in the early 

phases.35 Modification in LM algorithm to decrease these 

limits may increase its application in drug design.
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The authors report no conflicts of interest for this work.
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