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Abstract: Tumor-associated regulatory T cells (Tregs) are important effectors in the tumor

microenvironment (TME), acting as accomplices in the promotion of tumor progression.

Currently, the importance of removing the immunosuppressive activity in the TME has

received its due attention, and Tregs have been focused on. The cytokine-receptor axes are

among the essential signaling pathways in immunocytes, and tumor-associated Tregs are no

exception. Therefore, manipulating cytokine-receptor pathways may be a promising effective

strategy for treating various malignancies. Here, we summarize the classification, immuno-

suppressive mechanisms, existing immunotherapies, and potential biomarkers related to

tumor-infiltrating Tregs to guide the development of effective cancer immunotherapies.

Keywords: Tregs, immune suppression, chemokine receptors, biomarkers, cancer

immunotherapies

Introduction
The tumor microenvironment (TME) is the microenvironment around a tumor,

consisting of the surrounding blood vessels, immunocytes, fibroblasts and extra-

cellular matrix. The tumor cells and the TME are closely related and interact

constantly. Development and progression of tumor cells involves complex genetic

and epigenetic changes within the cells themselves, which also influence the TME

by releasing extracellular signals. In turn, the immunocytes in the TME can affect

the growth and evolution of cancer cells.1,2 Effective immunotherapies that promote

the tumor-killing effect mediated by effector T cells (Teff) requires Teff activation

and removal of the immunosuppressive activity in the TME, especially regarding

the effects of immunosuppression-related immunocytes.

Regulatory T cells (Tregs) are a specialized subpopulation of CD4+ T cells. Tregs

express transcription factor forkhead box P3 (FoxP3) and the surface molecule CD25.

They have been widely regarded as critical effectors in the maintenance of healthy

immune homeostasis and also play pivotal roles in preventing autoimmune diseases.

Systemic depletion of Tregs can cause severe inflammation, autoimmune diseases, and

allergies in both mice and humans.3,4 The increased number of Tregs in various cancer

types, such as gastric, breast, cervical, hepatocellular, renal, melanoma, pancreatic and

non-small cell lung cancer, is highly associated with poor prognosis and tumor grade.5–8

However, in some particular cancer types such as colorectal, bladder, and head and neck

cancers, high infiltration of Tregs is positively associated with better prognosis.9,10

Inhibitory immune checkpoints such as cytotoxic T-lymphocyte-associated pro-

tein 4 (CTLA-4) and programmed cell death 1 (PD-1) are known targets in cancer
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immunotherapies. These conventional immunotherapeutic

strategies seem to have a better therapeutic effect in

patients with higher tumor-specific antigen (TSA) levels.

However, TSA is rarely detected in most patients, and only

20–30% of treated patients benefit from conventional

immunotherapy. What is worse, a subset of treated patients

develop severe adverse reactions, including immune-

associated inflammation.11–13 Additionally, CTLA-4 and

PD-1 are highly expressed in Tregs, so blockage of

CTLA-4 or PD-1 can simultaneously disable the systemic

Tregs. Given that Tregs play an essential role in maintain-

ing healthy immune homeostasis, this may partly explain

why drugs targeting CTLA-4 or PD-1 can lead to immune-

associated inflammation.14,15

Cancer vaccines can be classified as whole-cell tumor

vaccines, tumor protein (or peptide) vaccines, genetically

engineered (tumor DNA or RNA) vaccines and monoclo-

nal antibody tumor vaccines. Since the US Food and Drug

Administration approved the first therapeutic cancer vac-

cine, Provenge (which treats advanced prostate cancer) on

29 April in 2010,16 therapeutic cancer vaccines have been

used to treat cancer. Whole-cell tumor vaccines lack major

histocompatibility complex (MHC) dependence and TSA

dependence. Whole tumor cells express an array of TSA

that are both identified and unidentified. In addition, whole

tumor cells contain abundant epitopes of both CD8+ and

CD4+ Teff. These features can allow whole-cell tumor

vaccines to activate CD4+ and CD8+ Teff more efficiently.

Therefore, whole-cell tumor vaccines have better thera-

peutic effects than other types of cancer vaccines, and

they have been regarded as the most developed and pro-

mising therapeutic cancer vaccines. However, when used

alone, whole-cell tumor vaccines cannot maintain long-

term anticancer effects.17 In contrast, combined use of

a whole-cell tumor vaccine with a Treg scavenger results

in better anticancer immune responses.12

The existing evidence indicates that enhanced tumor

cytotoxicity combined with a reduction of tumor-

associated Tregs can evoke more effective anticancer

immune responses. Additionally, the degree of depletion

of tumor-associated Tregs should be taken into account to

maximally reduce side effects. Thus, identifying specific

biomarkers for tumor-associated Tregs is critical. Here, we

summarize the classification, immunosuppressive mechan-

isms, existing immunotherapies, and potential biomarkers

related to tumor-infiltrating Tregs to guide the develop-

ment of effective cancer immunotherapies.

Treg Classification
Double-positive (DP) CD4+CD8+ T cells undergo positive

selection in the thymus. Only DP T cells that can recognize

either major histocompatibility complex I (MHCI) or major

histocompatibility complex II (MHCII) are allowed to

undergo negative selection. During negative selection, transi-

ently activated single-positive (SP) CD4+ T cells show high

affinity for antigen-MHCII complexes and can differentiate

into regulatory CD4+ T cells. However, persistently activated

SP T cells show high affinity for antigen-MHCI/II complexes

and lead to apoptosis.13 Tregs formed in the thymus are

referred to as natural Tregs (nTregs), which possess high

efficiency at limiting overactive immune responses as they

can be activated by a lower antigen-MHC complex concentra-

tion compared with Teff.18 On the other hand, mature naïve

CD4+ T cells can differentiate into Tregs in the presence of

transforming growth factor beta (TGF-β) and all-trans retinoic
acid (ATRA; a metabolic product of vitamin A), and this type

of Treg that form in the periphery are referred to as inducible

Tregs (iTregs)19 (Figure 1A).

nTregs and iTregs are classified based on the site of differ-

entiation. A second classification explains why a high level of

tumor-infiltrating Tregs can indicate different prognoses even

within the same malignancy type. In this classification, Tregs

can be divided into three fractions based on the differential

expression levels ofCD45RAandFoxP3 (orCD25 can replace

the indicator FoxP3). Fraction I is the FoxP3loCD45RA+ sub-

population, also referred to as naïve Tregs (nTregs). This set of

Tregs is not yet activated and thus possesses weak immuno-

suppressive activity. In addition, Fraction I can differentiate

into Fraction II under antigenic stimulation. Fraction II is the

FoxP3hiCD45RA− subpopulation, referred to as effector Tregs

(eTregs), which possess high immunosuppressive activity.

Colorectal cancer (CRC) patients with tumor-infiltrating

Tregs dominated byFraction II tend to have a poor prognosis.10

Fraction III is the FoxP3loCD45RA− subpopulation, referred to

as non-Tregs. This subpopulation lacks immunosuppressive

activity. However, FoxP3loCD45RA− non-Tregs can secrete

pro-inflammatory cytokines such as interleukin (IL)-17 and

interferon (IFN)-γ. CRC patients with tumor-infiltrating

FoxP3+ T cells dominated by this Fraction III tend to have

a better prognosis10,20 (Figure 1B).

Immunosuppressive Mechanisms of
Tregs
The immunoregulatory mechanisms of Tregs are compli-

cated. There are several known mechanisms (Figure 2): (1)
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Figure 1 (A) Double-positive (DP) CD4+CD8+ T cells can recognize either MHCI or MHCII and are allowed to undergo negative selection. During negative selection,

transiently activated single-positive (SP) CD4+ T cells show high affinity for antigen-MHCII complexes and can differentiate into regulatory CD4+ T cells. However,

persistently activated SP T cells show high affinity for antigen-MHC complexes and lead to apoptosis. Tregs formed in the thymus are referred to as natural Tregs (nTregs).

On the other hand, mature naïve CD4+ T cells can differentiate into Tregs in the presence of transforming growth factor beta (TGF-β) and all-trans retinoic acid (ATRA),

and this type of Tregs formed in the periphery are referred to as inducible Tregs (iTregs). (B) Tregs can divide into three fractions based on the differential expression levels

of CD45RA and FoxP3. Fraction I is the FoxP3loCD45RA+ subpopulation, also referred to as naïve Tregs (nTregs). This set of Tregs is not yet activated and thus possess

weak immunosuppressive activity. Fraction II is the FoxP3hiCD45RA− subpopulation, referred to as effector Tregs (eTregs), and they possess high immunosuppressive activity.

Fraction III is the FoxP3loCD45RA− subpopulation, referred to as non-Tregs, and they lack immunosuppressive activity. However, FoxP3loCD45RA− non-Tregs can secrete

pro-inflammatory cytokines such as IL-17 and IFN-γ.
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Direct intercellular contact may be the primary suppressive

mechanism of Tregs.21 (2) Tregs secrete immunosuppressive

cytokines, such as IL-10, IL-35 and TGF-β. Additionally,

they induce adjacent immune cells such as dendritic cells

(DC) to secrete IL-10.22 IL-10 is often considered as

a significant factor controlling the immunosuppressive

TME. IL-10 can stimulate the expression of the E3 ubiquitin

ligaseMarch-I in activated macrophages. Additionally, IL-10

can inhibit DC self-activation, thereby downregulating

MHC-II and antigen presentation to CD4 T cells.23

However, it has been reported that IL-10 can activate CD4+

T cells and CD8+ Teff under certain in vitro and in vivo

conditions,24 and it has also been reported that the IL10-

dependent signaling pathway may not be the critical immu-

nosuppressive mechanism of Tregs.25 Therefore, the

paradoxical effects of IL-10 on tumors need further clarifica-

tion. (3) Tregs produce granzyme B, which directly leads to

Teff’s death.26 (4) Direct contact of Tregs with DCs can

induce DCs to produce and secrete indoleamine 2, 3-dioxy-

genase (IDO). IDO selectively impairs the function of Teff

by producing the toxic catabolic product kynurenine.27,28 (5)

Tregs secrete the extracellular enzymes CD39 (ectonucleo-

side triphosphate diphosphohydrolase) and CD73. CD39 can

degrade ATP or ADP into AMP, and then AMP is degraded

Treg

TIGITLAG-3

CTLA-4

TCR

CD25

Treg

DC

DC
Teff

Teff

Teff

Direct contact 

Teff

Granzyme B

Cytolysis

Cytokines

IL10
IL35

TGFβ

Competition

IL2
Teff

PDL1

Teff
Lower MHC-

peptide complex
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APC

TCR

Efficiency

IL2R

ATP/ADP

AMP

Adenosine

CD39

CD73

Teff
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DC
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IDO

Metabolism

P1R

Figure 2 Known immunoregulatory mechanisms of Tregs: (1) Direct intercellular contact may be the primary suppressive mechanism of Tregs. (2) Tregs produce granzyme

B, which directly leads to Teff ’s death. (3) CD25 is highly constitutively expressed on Tregs, which gives Tregs an advantage regarding competitively combining with IL-2 to

inhibit Teff proliferation. (4) Tregs secrete immunosuppressive cytokines, such as IL-10, IL-35 and TGF-β. (5) The antigen concentration required for stimulating CD25+CD4

+ T cells to exert suppression is much lower than that required for stimulating CD25-CD4+ T cells to proliferate. (6) Tregs secrete the extracellular enzymes CD39 and

CD73. CD39 can degrade ATP or ADP into AMP, and then AMP is degraded into adenosine by CD73. Adenosine binds to the adenosine receptors (P1 receptors), which are

expressed by activated Teff, thus inducing an immunosuppressive effect. (7) Direct contact of Tregs with DCs can induce DCs to produce and secrete indoleamine 2,

3-dioxygenase (IDO). IDO selectively impairs Teff function by producing the toxic catabolic product kynurenine. (8) Immune checkpoints such as TIGIT, LAG-3, CTLA-4 and

PD-L1 are highly expressed on the surface of tumor-infiltrating eTregs.
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into adenosine by CD73. Adenosine binds to the adenosine

receptors (or P1 receptors), which are expressed by activated

Teff, thus inducing an immunosuppressive effect.29 (6)

Immune checkpoints such as TIGIT, LAG-3 and CTLA-4

are highly expressed on the surface of tumor-infiltrating

eTregs. TIGIT can induce adjacent DCs to secrete IL-10

and LAG-3 binds to ligands such as MHC-II, which is

expressed by antigen presentation cells (APCs), to induce

APCs’ death.30,31 The human monoclonal antibodies BMS-

986207 and MK-4280 (which target TIGIT and LAG-3,

respectively) plus nivolumab or pembrolizumab (anti-PD-1

antibodies) are currently undergoing Phase 1 clinical trials in

patients with advanced solid tumors. The results show that no

autoimmune disease has appeared so far.32,33 Moreover,

autoimmunity did not occur in TIGIT-deficient or LAG-3-

deficient mice.32,33 This evidence indicates that TIGIT and

LAG-3 are mainly expressed on tumor-associated Tregs and

may play a dispensable role in maintaining homeostasis. (7)

Tregs inhibit Teff proliferation due to Tregs highly constitu-

tively expressing CD25 (also known as IL-2RA, a high-

affinity receptor for IL-2). IL-2 is produced mainly by

conventional T cells (Tconv), and it is hardly secreted by

Tregs because FoxP3 binds to and attenuates two transcrip-

tion factors that are required for the production of IL-2. IL-2

is an essential cytokine for the proliferation of

both T and B lymphocytes. Therefore, CD25 highly

constitutively expressed on Tregs gives Tregs an advantage

regarding competitively binding to IL-2 to inhibit Teff

proliferation.34,35 (8) The antigen concentration required for

stimulating CD25+CD4+ T cells to exert suppression is

much lower than that required for stimulating CD25-CD4+

Tcells to proliferate.18 (9) The programmed cell death 1 (PD-

1)/PD-ligand (PD-L) pathway can promote the development

and enhance the function of Tregs. At sites where TGF-β is

present, PD-L1 can promote the de novo generation of CD4

+FoxP3+ iTregs from naïve CD4+ T cells. PD-L1 can also

enhance and maintain the suppressive function of established

iTregs.36 In mechanistic studies, PD-L1 induces the produc-

tion of iTregs from naïve T cells by attenuating Akt-mTOR

signaling and concomitantly upregulating PTEN.36 More

specifically, the development of PD-L1 iTregs is mediated

through the downregulation of phospho-Akt, mTOR, S6,

ERK2 and the concomitant upregulation of PTEN.14,36

Existing Treg Immunotherapies
The known mechanisms of tumor immune escape involve

altering tumor antigens so that they are expressed less by

immunogenic tumor cells, and causing the MHC allele in

leukocytes to be lost to reduce their ability to present

neoantigens.37–39 Furthermore, high infiltration of eTregs

in the TME is positively associated with a poor prognosis

for many cancer types. Developing therapies to combat

these mechanisms will expand the therapeutic anticancer

strategies. Here, we summarize the existing Treg immu-

notherapies to treat cancers.

Anti-CTLA-4 Antibodies
CD28 is the natural ligand of B7 family members (including

CD80 and CD86), and the inhibitory immune checkpoint

CTLA-4 is the congener of CD28. B7 family members are

expressed on activated APCs, and the B7-CD28 signaling

pathway plays an essential role in activating the second co-

stimulatory signals of T cells. Physiologically, when

the second signals are not activated, even though the first

signals have been initiated by the binding of the antigen-

MHC complexes to TCRs, the T cells cannot achieve com-

plete activation. The affinity between CTLA-4 and B7 family

members is a hundred times greater than the affinity between

CD28 and B7 family members. CTLA-4 is highly expressed

in both Tregs and Teff in patients with tumors.40 Due to these

characteristics of CTLA-4, it can outcompete CD28 regard-

ing binding to B7 family members and inhibit the second

signals of Teff.15 Additionally, CTLA-4+ Tregs can reduce

the expression level of B7 family members on APCs, thereby

promoting tumor immune escape.41

The anti-CTLA-4 antibodies ipilimumab and tremeli-

mumab were initially used with the aim of restoring the

tumor cytotoxicity of Teff. However, the major antitumor

effect of anti-CTLA-4 antibodies is now considered to be

a result of their cytotoxicity against Tregs.42 Moreover, Fc

receptors (FcR), which are mostly expressed on innate

immunocytes, can recognize and combine with the Fc

fragment of antibodies, thus inducing innate immunocytes

to mediate antibody-dependent cell-mediated cytotoxicity

(ADCC).43 The effect of anti-CTLA-4 antibodies partly

depends on the binding affinity of the human Fc fragment

of IgG receptors (FcγRs) and highly immunogenic tumors

such as advanced melanoma. Preclinical trial results44

showed that antibodies with isotypes equivalent to anti-

CTLA-4 antibodies mediate tumor-associated Treg deple-

tion in vivo. Antibodies with improved FcγR binding

affinity have superior antitumor responses and survival

outcomes and, in particular,45 the IgG1 isotype confers

higher relative binding affinity than IgG2.

A pooled meta-analysis of the long-term outcomes of

patients with melanoma treated with ipilimumab showed
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that in Phase II and III clinical trials, some patients have

a long survival period, sometimes exceeding 10 years.

However, only 20–30% of the participants had long-

lasting antitumor immune responses, and these participants

frequently experienced severe autoimmune disease.11 In

a phase II clinical trial for patients with mesothelioma

treated with tremelimumab plus durvalumab (an anti-PD-

L1 antibody), 63% of patients experienced disease control,

but 75% of patients developed treatment-related adverse

effects.46

Anti-CD25 Antibodies
CD25 is highly constitutively expressed on Tregs, which

gives Tregs an advantage regarding competitively binding

with IL-2 to inhibit the proliferation of Teff. This charac-

teristic of Tregs is considered as an immunotherapeutic

target. In a preclinical trial, the anti-CD25 antibody dacli-

zumab resulted in selective downregulation of FoxP3

among Fraction II Tregs; moreover, Fraction II Tregs in

the daclizumab group could be converted into Fraction III

Tregs and obtain the ability to produce IFN-γ.47 In

a clinical trial for patients with metastatic breast cancer

treated with daclizumab plus an anticancer vaccine, the

daclizumab group had a significant and prolonged

decrease in Tregs.47 In contrast, a preclinical trial showed

that anti-CD25 antibody depletes peripheral Tregs, but not

tumor-infiltrating Tregs.48 In Phase I and II clinical trials

for patients with metastatic melanoma pretreated with

daclizumab before DC vaccine treatment, the daclizumab

pretreatment group had all CD25high immune cells

depleted from their circulation, but there was no signifi-

cant effect on the progression-free survival compared with

the control group, as daclizumab pretreatment could not

maintain a durable depletion of CD25high immune cells.49

Cyclophosphamide (CTX)
CTX is an alkylating nitrogen mustard antineoplastic agent

that undergoes biotransformation in the liver to produce

the active form aldophosphamide. The immunosuppressive

mechanisms of CTX involve inducing cross-linkages

between DNA strands, inhibiting nucleic acid replication

and inducing polarization of Th1 cells (a subpopulation of

T helper cells). Its mechanism also involves transiently

increasing the levels of interferon regulatory factor-1

(IRF-1). Downstream effectors like caspase-1 and IL-1β
are subsequently increased in a direct IRF-1-dependent

manner, while IL-6 and CXCL10 are decreased in an

indirect IRF-1-dependent manner.50

The application of high-dose CTX severely affects all

T cell types, whereas low-dose CTX with an extended

treatment cycle selectively reduces the high proliferation

of Tregs by decreasing the expression of FoxP3.51 In phase

I and II clinical trials for patients with metastatic CRC

treated with 2-week-long courses of low-dose CTX, there

was significant Teff activation with an absolute reduction

of Tregs.52 Similar therapeutic effects were shown in

a phase I clinical trial for patients with metastasized breast

cancer; depletion of Tregs was mirrored by a significant

boost in tumor-reactive T cells.53 However, CTX often

causes adverse reactions such as myelosuppression, exces-

sive immunosuppression and opportunistic infections.

The existing immunotherapies (summarized in Table 1)

have similar drawbacks in that they are not specific enough

to target tumor-associated eTregs. Given that peripheral

Tregs are essential in maintaining host homeostasis, this

may partly explain why these immunotherapies often lead

to severe autoimmune disease. The following strategy may

provide an idea for how to solve this problem:54 based on

identifying new biomarkers that allow accurate identifica-

tion of tumor-associated eTregs, targeted medicines may

preserve peripheral Tregs and prevent autoimmune dis-

eases. Therefore, it is imperative to identify potential bio-

markers specific to tumor-associated eTregs.

Potential Treg Biomarkers
Cancer immunotherapies can be classified into two types:

those that can recover the tumor-killing effect of Teff and

those that remove the immunosuppression of the TME.

Chimeric antigen receptor effector T cells and TCR-

engineered T cells belong to the former type, while the

existing immunotherapies mentioned in this review belong

to the latter type. Given that tumor-associated Tregs are

important effectors in the TME, the intention of the fol-

lowing section is to summarize and describe more specific

targets regarding tumor-associated Tregs in order to attain

better therapeutic effects and minimize off-target adverse

events.

CCR6
The number of thymic recirculating Tregs is lower in

CCR6−/- mice than in wild-type controls, which suggests

that CCR6 is a critical component involved in the circulation

of peripheral Tregs. Additionally, high CCR6 expression in

tumor-associated Tregs is positively associated with tumor

progression, including in patients with laryngeal squamous

cell carcinoma, hepatocellular carcinoma and breast
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cancer.55–58 Besides, CCL20 (a CCR6 ligand) has been

detected in medullary thymic epithelial cells (mTECs)59

and diverse cancer stem cells (CSCs) including cells from

pancreatic, colorectal, gastric, lung, breast and head and neck

cancer.60–62 In the preclinical trial for advanced cutaneous

T-cell lymphoma, knockdown of CCR6 by micro RNA-150

(miR-150) led to a distinct decrease in tumor metastasis and

invasion.63 Similarly, altering the enrichment of CCR6+

Tregs in the TME can lead to a beneficial antitumor effect

against breast cancer.64 The CCR6-CCL20 axis is therefore

considered as an essential pathway in chemotaxis and func-

tions in tumor-associated Tregs.

CXCR4
CXCR4+ Tregs are abundant in the bone marrow of term-

inal cancer patients, and CXCL12 (a CXCR4 ligand),

which can recruit CXCR4+ Tregs to enter the bone mar-

row, is highly expressed in the bone marrow.65 Besides,

CXCR4-CXCL12 is positively related to tumor advance-

ment and metastasis in ovarian carcinoma and non-small

cell lung cancer (NSCLC).6,66–68 Administration of gran-

ulocyte colony-stimulating factor (G-CSF) to deplete

CXCL12 can remove Tregs in the bone marrow in both

humans and mice.69 This partly explains the many kinds of

late malignancies that often accompany osseous metasta-

sis. CXCR4 is also expressed on tumor cells, and CXCL12

can directly promote tumor progression via the CXCR4-

CXCL12 axis under the synergistic effect of vascular

endothelial growth factor (VEGF). In preclinical trials for

primary brain tumors, non-Hodgkin’s lymphoma and

breast cancer, blocking CXCR4 inhibited tumor progres-

sion and prolong survival.70–72 The mechanisms involved,

including blockage of CXCR4, can enhance antitumor

immune responses mediated by Teff and induce Treg con-

version into T helper cells. The effect of CXCR4 blockage

is related to both high CXCR4 expression and chemotactic

responses to CXCL12 in ovarian cancer.73,74

CCR4
CCR4 is abundantly expressed on tumor-associated eTregs

in various types of cancer, including breast, bladder, color-

ectal, ovarian and oral squamous cancer and Hodgkin’s

lymphoma. Additionally, the expression of CCR4 on

Tregs is positively associated with poor prognosis in ovar-

ian carcinoma, oral squamous cell carcinoma, Hodgkin’s

lymphoma, colon adenocarcinoma, primary breast cancer

and bladder cancer.6,75–79 CCR4 is essential for the migra-

tion of Tregs to non-lymphoid tissues; in contrast, Tregs that

scarcely express CCR4 lack the ability to migrate.80 The

mechanisms of immunosuppression of CCR4+ Tregs

relates to the fact that CCR4+ Tregs possess high chemo-

taxis ability and can also inhibit the activation of T and NK

cells via TGF-β signaling pathways.81 CCR4 blockage can

selectively deplete tumor-associated eTregs and effectively

increase the number of Teff in human and canine

models.79,82 The anti-CCR4 antibody mogamulizumab

Table 1 Existing Treg Immunotherapies

Therapeutic

Target

Mechanisms Clinical Effect Application References

CTLA-4 Highly expressed on Tregs;

Outcompetes CD28 in binding with B7

family members and inhibiting

the second signals

In phase II or III clinical trials for melanoma

and a phase II clinical trial for mesothelioma,

some patients benefited

Ipilimumab

monotherapy;

tremelimumab

combined with

durvalumab

[11, 15, 40–

46]

CD25 Constitutively expressed on Tregs, and

gives Tregs an advantage in

competitively combining with IL-2 to

inhibit Teff proliferation

In a clinical trial for metastatic breast cancer,

daclizumab led to a significant and prolonged

decrease in Tregs;

In phase I and II clinical trials for metastatic

melanoma, daclizumab pretreatment had no

significant effect on progression-free survival

Daclizumab plus an

anticancer vaccine

[47–49]

DNA strands Induce cross-linkages between strands

of DNA;

Regulate IRF-1 and its downstream

effectors

In phase I and II clinical trials for metastatic

colorectal cancer and a phase I clinical trial

for metastasized breast cancer, CTX-induced

Tregs depletion was mirrored by a significant

boost in tumor-reactive T cells

Low-dose CTX

with a long

treatment cycle

[50–53]
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first underwent a clinical trial in humans in 2007.83 It was

approved in Japan in 2012 for the treatment of CCR4+ adult

T-cell lymphoma (ATCLL), and for CCR4+ cutaneous

T cell lymphoma (CTCL) in 2014.84 However, the thera-

peutic effect of CCR4 blockage in other types of solid

tumors requires further investigations.

CCR8
CCR8 is mainly expressed in tumor-associated eTregs in

NSCLC, CRC and breast cancer,40,85–88 and high expres-

sion of CCR8 in NSCLC and CRC is positively associated

with poor prognosis. Furthermore, peripheral Fraction II

Tregs are phenotypically the closest to tumor-associated

Tregs, which implies that tumor-associated Tregs in the

TME may be derived from the peripheral blood.87,88 The

effects of CCR8 on Tregs involve prompting differentia-

tion, survival, function and migration of Tregs via the

STAT3 signaling pathway, but CCR8 does not influence

Treg proliferation in CRC and graft-versus-host

disease.25,89 The anti-CCR8 antibody prevents naïve

T cells from differentiating into Tregs and inhibiting the

immunosuppression of tumor-associated Tregs, but without

influencing the function of peripheral Tregs in CRC.90

CCL1 is a recognized ligand of CCR8 that is secreted by

activated T cells or Tregs. CCL1 upregulates the expression

of CCR8 and other factors such as FoxP3, CD39, granzyme

B and IL-10 in Tregs.25 The anti-CCL1 antibody can pre-

vent de novo conversion of Tregs, which is consistent with

the effect of the anti-CCR8 antibody.91 Another known

ligand of CCR8 is CCL18. Tumor-associated Tregs secrete

IL-10, which causes tumor-associated macrophages (TAM)

to abundantly express the chemokine CCL18. This

enhances the immunosuppression of tumor-associated

Tregs, thus forming a vicious cycle that leads to tumor

progression.92–94 Knockdown of CCL18 reduces tumor

growth and invasiveness in bladder cancer and esophageal

squamous cell carcinoma.93,95

Conclusion and Perspective
The existing immunotherapeutic strategies need to be

improved. Take anti-CTLA4 antibodies as an example.

The binding affinity of human FcγRs and their relative

abundance are rarely considered, but the effect of anti-

CTLA-4 antibodies partly depends on the binding affinity

of human FcγRs and highly immunogenic tumors. Thus,

FcγR polymorphism status and tumor mutational burden

should be taken into account during the selection of

patients who are likely to benefit from an anti-CTLA-4

antibody.45 In addition, to obtain the best curative effect,

adjusting the therapeutic dosage, course and administra-

tion route is of prime importance. For instance, it is neces-

sary to deplete tumor-associated eTregs before activating

Teff.96

Existing immunotherapies targeting Tregs can lead to

severe autoimmune diseases due to both robust on-target

mechanisms as well as off-target mechanisms. On-target

adverse events are dependent on drug characteristics and

patient heterogeneity, which is hard to control. Therefore,

the Potential Treg biomarkers section in this review aimed

to summarize and describe more specific targets regarding

tumor-associated Tregs in order to minimize off-target

adverse events. The chemokines that we selected in this

review have comparatively clear and specific ligands, and

the chemokine-receptor axes mentioned are involved in

Treg chemotaxis, function or differentiation and show

high potential as phenotypic and functional markers of

tumor-associated eTregs (as summarized in Table 2).

However, evidence showing the efficiency of the potential

biomarkers mainly come from animal models, and clinical

data are still lacking. Thus, we hope that more researchers

Table 2 Potential Treg Biomarkers

Potential

Biomarker

Mechanisms Chemokine-

Receptor Axis

References

CCR6s CCR6 is an important component involved in the circulation of peripheral Tregs CCR6-CCL20 axis [59]

CXCR4 CXCR4+ Tregs are abundant in the bone marrow of terminal cancer patients; CXCL12 is

highly expressed in the bone marrow and can recruit CXCR4+ Tregs to the bone marrow

CXCR4-CXCL12

axis

[65]

CCR4 CCR4+ Tregs possess high chemotaxis activity and inhibit the activation of T and NK cells

via TGF-β signaling pathways

CCR4-CCL22 axis [80, 81]

CCR8 The effects of CCR8 on Tregs involve prompting Treg differentiation, survival, function and

migration via the STAT3 signaling pathway, but CCR8 does not influence Treg proliferation

CCL1-CCR8 or

CCL18-CCR8 axis

[25, 89]
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can focus on this research field and give pay attention to

the potential biomarkers.

Abbreviations
eTregs, effector regulatory T cells; Tregs, regulatory

T cells; NSCLC, non-small cell lung cancer; Teff, effector

T cells; TSA, tumor specific antigens; TME, tumor micro-

environment; DP, double positive cells; SP, single positive

cells; nTregs, natural Tregs or naive Tregs; cTregs, central

Tregs; CRC, colorectal cancer; DC, dendritic cells; IDO,

indoleamine 2, 3-dioxygenase; APCs, antigen-presenting

cells; CTX, cyclophosphamide; IRF-1, interferon regula-

tory factor-1; mTECs, medullary thymic epithelial cells;

CSCs, cancer stem cells; miR-150, micro RNA-150;

G-CSF, granulocyte colony stimulating factor; VEGF, vas-

cular endothelial growth factor; TAM, tumor-associated

macrophages; ATCLL, CCR4+ adult T-cell lymphoma;

CTCL, CCR4+ cutaneous T cell lymphoma; GZMB, gran-

zyme B; CTLA-4, Cytotoxic T-Lymphocyte Associated

Protein 4; PD-1, programmed cell death 1; PD-L, PD-

ligand; TGF-β, transforming growth factor beta; ATRA,

all-transretinoic acid; FoxP3, forkhead transcription factor

P3; MHCI, major histocompatibility complex I; MHCII,

major histocompatibility complex II; Tconv, conventional

T cells; TCR, T cells receptor; FcR, Fc receptors; ADCC,

antibody-dependent cell-mediated cytotoxicity; FcγRs, Fc
fragment of IgG receptors.
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