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Abstract: Epstein–Barr virus (EBV) is a specific tumorigenic factor in the pathogenesis of

nasopharyngeal carcinoma (NPC). Viral products encoded by EBV (LMP1, LMP2A,

EBNA1, and miRNAs) have been shown to promote NPC metastasis. EBV-encoded onco-

proteins and miRNAs have been shown to induce epithelial–mesenchymal transition (EMT)

indirectly by inducing EMT transcription factors (EMT-TFs). These EBV-encoded products

also promote the expression of EMT-TFs through post-transcriptional regulation. EMT

contributes to generation of circulating tumor cells (CTCs) in epithelial cancers. CTCs

exhibit stem cell characteristics, including increased invasiveness, enhanced cell intravasa-

tion, and improved cell survival in the peripheral system. EBV may contribute NPC

metastasis through promoting generation of CTCs. Furthermore, CTC karyotypes are asso-

ciated with NPC staging, therapeutic sensitivity, and resistance. We summarized studies

showing that EBV-encoded virus-proteins and miRNAs promote generation of NPC CTCs,

and highlighted the associated mechanism. This synthesis indicated that EBV mediates NPC

metastasis through generation of CTCs.
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Introduction
Nasopharyngeal carcinoma (NPC) is a cancer generated in nasopharynx epithelium.

The tumor epicenter is frequently observed at the fossa of Rosenmüller, which is

the location from which the tumor invades adjacent anatomical spaces or organs.1

According to the International Agency for Research on Cancer (IARC), there were

about 129 000 new cases of NPC in 2018, which accounted for only 0.7% of all

newly diagnosed cancers.2 The geographical distribution of NPC is extremely

unbalanced, with >70% of new cases in east and southeast Asia. NPC is one of

the leading malignancies in Southeast Asia, particularly in Southern China.

Epidemiological trends in the past few decades have shown that lifestyle and

environment may be the main contributors to NPC pathogenesis.1,2 These risk

factors include Epstein-Barr virus (EBV) infection, environmental carcinogen,3

high-risk dietary habits and high-risk genotypes.2,4–6 Although the diagnostic

techniques for NPC have improved and individualized comprehensive chemora-

diotherapy strategies have been developed, treatment of NPC remains a significant
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challenge. The main barriers to effective treatment of NPC

are tumor metastasis and recurrence. NPC is a highly

malignant and metastatic tumor, and symptoms are often

absent until the cancer has metastasized to other sites, such

as the neck. More than 70% of newly diagnosed cases are

classified as locoregionally advanced disease, with 5-year

overall survival (OS) rate of 30–50%.1,7 Treatment failure

due to distant metastasis, relapse, or both, results in 20 to

30% of patient deaths.8

Studies have shown that EBV is a major contributor to

NPC pathogenesis. Furthermore, EBV contributes to NPC

metastasis. The EBV-encoded proteins, EBV nuclear antigen

1 (EBNA1), latent membrane protein (LMP) 1, LMP2A and

LMP2B can promote cellular transformation, resulting in

altered gene expression and increased growth, survival, and

invasion of these transformed cells.9,10 In addition, EBV-

encoded miRNAs are involved in NPC development11 and

metastasis.12 Recent reports showed that EBV-DNA levels

were associated with numbers of circulating tumor cells

(CTCs) in patients with NPC,13 and EBV-DNA levels and

CTC number have been shown to correlate with clinical

outcomes of patients with NPC undergoing treatment.14

CTCs and EBV DNA are predictive markers of NPC

metastasis,15 and EBVactivation is associated with the num-

ber of NPC CTC.16 Therefore, we speculate that EBV may

participate in NPC metastasis through metastasis.

CTCs are cells derived from primary or metastatic

tumors that reach the blood circulation, and are the progeni-

tors of distant metastasis.17 CTCs play an important role in

metastasis of various malignancies. Moreover, circulating

tumor microemboli (CTM, a cluster of 2 or more CTCs)

have also been shown to contribute to tumor metastasis of

various cancer types, and are more malignant and aggres-

sive than CTCs.18–22 Analysis of CTCs has provided sig-

nificant insight into the metastatic process.23 In clinical

cases of NPC, CTCs were closely associated with NPC

stage, with later clinical stages associated with higher CTC-

positive rates.24 Therefore, CTCs may serve as biomarkers

for monitoring the therapeutic efficacy of treatments for

NPC.25 Studies have shown that EBV proteins participate

in NPC metastasis,26,27 and recent reports suggested that

EBV may be involved in CTC generation.14,16 Based on

these reports, we hypothesized that EBV-mediated CTCs

are major contributors to NPCmetastasis. In this review, we

summarized evidence that EBV promotes NPC metastasis

and highlighted the associated mechanisms. We also sum-

marized studies that showed that EBV-encoded products

participate in generation of CTCs.

EBV Participates in NPC
Pathogenesis
According to the World Health Organization (WHO), NPC

tissues have been classified as keratinizing squamous, non-

keratinizing, or basaloid squamous. Non-keratinizing cancers

can be further subdivided into differentiated non-keratinizing

and undifferentiated carcinoma. The keratinizing (keratiniz-

ing) subtype accounts for less than 20% of cases worldwide,

and this tumor type is relatively rare in southern China. The

non-keratinizing subtype constitutes most cases in endemic

areas (>95%) and is predominantly associated with EBV

infection.28,29 Multiple factors including EBV infection,

host genetic, and environmental factors contribute to the

development of NPC (Figure 1). The presence of monoclonal

EBVepisomes in NPC indicates that viral infection precedes

clonal expansion of malignant cells.30 EBV has been shown

to localize in high-grade (severe dysplastic and in situ carci-

noma), preinvasive lesions in the nasopharynx, but not in

low-grade lesions or normal nasopharyngeal epithelium.

Both high-grade and in situ carcinomas have been to carry

monoclonal EBV genomes.31,32

EBV can readily infect and transform normal

B lymphocytes in vitro.29 Type II EBV latency was originally

identified in NPC biopsies.33 Persistent EBV infection and

genetically altered epithelial cells are prerequisites for initia-

tion of tumorigenic transformation (Figure 1). Prolonged

exposure of the nasopharyngeal mucosa to environmental

carcinogens results in DNA damage, and leads to genetic

changes in epithelial cells that promote establishment of

persistent EBV infection. EBV-DNA encodes type II EBV

latency gene products, such as LMP1, LMP2, EBV nuclear

antigen (EBNA)-1, BART-miRNAs, EBV-encoded RNAs

(EBERs), and BARF1, which disrupt cellular signaling path-

ways, promote cell proliferation, regulate the host microen-

vironment, and promote invasive nasopharyngeal EBV

infection (Figure 1).33 These findings indicated that EBV

infection may be a major pathogenic factor for NPC.

EBV Promotes NPC Invasion and
Metastasis
EBVis associated with NPCmetastasis.26,27 An EBV-encoded

oncoprotein, LMP1 has been shown to trigger a number of

signaling pathways, including the NF-κB, PI3K/Akt and mito-

gen-activated protein kinase (MAPK) pathways, Each of these

pathways is actively involved in induction of the epithelial-

mesenchymal transition (EMT).34–36 Studies have shown that

LMP1 down-regulates E-cadherin expression through
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promotermethylation.35,36 Furthermore, LMP1 promotes tran-

scriptional inhibition of E-cadherin to promote EMT.37–39 In

addition, LMP1 regulates the transcription factors Twist, Snail,

and β-catenin (Figure 2).36,38,39 Another important EBV-

related oncoprotein, LMP2A has been shown to be over-

expressed in most EBV-associated cancers, particularly

NPC.40 Immunostaining showed that LMP2A was mainly

localized at the tumor invasive front,40 and cell experiments

demonstrated that LMP2A induced EMT through activation

of the 4EBP1–eIF4E axis, which resulted in enhanced expres-

sion of metastatic tumor antigen-1 through targeting of the

rapamycin (mTOR) pathway. LMP2A also augments inva-

sive/migratory ability and induces changes in EMT-like bio-

markers (Figure 2). EBNA1 up-regulates EMT biomarker

expression and induces NPC invasion and metastasis.41 In

addition, EBNA1 induces EMT through regulation of trans-

forming growth factor-β (TGF-β), ZEB, Slug, Snail, miR-200,

vimentin, occludins-1, and E-cadherin (Figure 2), which are

important genes associated with EMT.41,42 Multiple EBV-

encoded proteins mediate EMT, and EBV-mediated EMT

may be an important factor in NPC metastasis.

miRNAs encoded by EBV promote NPC metastasis

through promotion of EMT.34,43 Twenty-five EBV-

associated miRNAs precursors and 44 mature miRNAs

have been identified, and maps at the BHRF1 (4 miRNA)

and BART regions (40 miRNA) of EBV genome.44 miR-

BART9 has been shown to be over-expressed in all EBV-

positive NPC tissues and to promote NPC cell metastasis by

targeting E-cadherin and inducing a mesenchymal pheno-

type (Figure 2).45 A recent study showed that miR-BART7

-3p down-regulated epithelial markers, which resulted in

mesenchymal features through modulation of the PI3-K/

Akt/GSK-3 signaling pathway. These effects resulted in

increased expression and nuclear accumulation of Snail

and β-catenin in NPC, which correlated positively with

lymph node metastasis.46 In EBV-positive gastric carci-

noma, EBNA1 mediates EMT by inhibiting the miR-200

family, resulting in up-regulation of ZEB1 and ZEB2. Other

latency types I genes (BARF0, LMP2A, EBERs) have

a synergistic effect on down-regulation of the miR-200

family (Figure 2).47 miRNAs encoded by EBV mediate

EMT of NPC cells, resulting in NPC metastasis.

Figure 1 Schematic illustration of EBV-encoded products participating in NPC development. Normal epithelial cells being infected with EBV generate genetic changes, and

become precancerous lesions. EBV infection produces LMP1, LMP2, EBNA1, BART-miRNA, EBERs, and BARF1. These EBV-products further induce precancerous lesions and

dysplastic lesions, and finally result in carcinoma. These virus-products also promote tumor metastasis.

Abbreviations: BARF1, BamHI-A rightward frame 1; EBER, Epstein-Barr-Encoded-RNA; EBNA1, EBV nuclear antigen 1; EBV, Epstein–Barr virus; LMP, latent membrane protein.
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EBV Promotes Generation of NPC
CTCs
Clinical studies have shown that EBV-DNA levels were

associated with CTC number in patients with NPC.14,16

During tumor development, various types of cells are

observed in the peripheral blood, such as CTCs and CTC

clusters. In addition, the presence of disseminated tumor

cells (DTCs) in the peripheral blood which are normally

present in bone marrow is an important factor in metastasis

development.48 CTC clusters consist of various types of

cells, such as tumor cells, accessory cells, stromal fibro-

blasts, endothelial cells, platelets, and immune cells.

Complexes of these cells are called microemboli.49 The

inner microenvironment of CTC clusters may protect them

from being lysed by immune attacks and shear stress in the

peripheral blood, resulting in facilitation of metastasis.50

Generation of CTCs by EMT results from four steps: 1)

detachment from the tumor mass; 2) invasion of the basal

membrane and surrounding tissues; 3) entry of vessels; 4)

survival in the peripheral system. The EMT process and the

associated regulatory networks promote CTC generation,

which increases tumor cell invasiveness, promotes cell

intravasation, and facilitates cell survival in the peripheral

system. Molecular changes during EMT are regulated by

EMT-inducible transcription factors (EMT-TFs). These fac-

tors include Snail (Snail family zinc finger transcriptional

factors), ZEB1 (zinc finger E-box binding homeobox),

Twist (Twist family BHLH transcriptional factor), tran-

scription factor 4 (TCF4), and forkhead box C2

(FOXC2).51–53 In addition to EMT-TFs, some extracellular

molecules (TGF-β, FGF, EGF, HGF, Wnt, Notch, and

Hedgehog), and related pathways (MAPK, PI3K, NF-κB,
Wnt/β-catenin, and Notch) in the tumor microenvironment

may also be involved in tumor cell EMT (Figure 3).52,54–56

A hallmark of EMT is functional loss of E-cadherin

(encoded by CDH1), which is believed to be a suppressor

of invasion during carcinoma progression.57 Down-

regulation of E-cadherin is an important step in tumor

invasion. LMP-1 down-regulates E-cadherin gene expres-

sion and induces cell migration activity through cellular

DNA methylation.47 miR-BART9 has been shown to be

expressed in all EBV-positive NPC tissues, and has been

shown to increase E-cadherin expression and induce

Figure 2 The model of EBV-encoded products targeting signal molecules and mediating signal-pathways. LMP1 targets E-cadherin, Twist, Snail, and β-catenin, and also activates

NFκB and MAPK, and finally participates in EMT. LMP2A targets 4EBP1-elF4E and EMT markers, and activates mTOR, and finally participates in EMT. EBNA1 regulates EMT

markers, TGF-β, ZEB, Slug, Snail, Vimentin, Occludins-1 and E-cadherin, and also activates mTOR, and finally participates in EMT. miR-BART9 and miR-BART7-3 regulate EMT

markers, and miR-BART7-3 activates PI3K/Akt/GSK3 pathway, and finally participates in EMT.

Abbreviations: MAPK, mitogen-activated protein kinase; EMT, epithelial–mesenchymal transition; miR, microRNA; NFκB, nuclear factor kappa B; TGF-β, transforming

growth factor-β; ZEB, zinc finger E-box-binding.
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mesenchymal phenotypes to promote NPC metastasis.45

Several TFs that strongly inhibit cadherin-1 (CDH1),58

such as the Snail, ZEB and basic helix-loop-helix (bHLH)

family members are believed to be involved in tumor pro-

gression. The Snail zinc finger family is comprised of

Snail1 and Snail2 (Slug). Each is capable of binding to the

E-box sequences of the E-cadherin gene, resulting in tran-

scriptional repression.59,60 Several miRNAs located in EBV

BART clusters (BART-miRNA) may be collectively

involved in regulation of EMT genes. miR-BART10-3p

can suppress the activity of βTrCP E3 ubiquitin ligase

through inhibition of BTRC expression, which results in

increased expression of β-catenin and Snail.61 The zinc

finger E-box-binding family proteins, ZEB1 (δEF1) and

ZEB2 (SIP1), can down-regulate E-cadherin expression,

and have been implicated as effectors of malignancy in

multiple different human tumors.62,63 ZEB1 has been

shown to be a key player in maintenance of EBV latency

in certain physiologically relevant cell types. In addition,

ZEB2 plays an important role in maintenance of EBV

latency.64 Furthermore, ZEB1 and ZEB2 can repress the

expression of the EBV BZLF1 gene by directly binding to

the ZV element of Zp. The product of the BZLF1 gene,

BZLF1 protein, is a key regulator in the switch from EBV

latency to lytic replication.65–67 Therefore, both ZEB1 and

ZEB2 can regulate the switch between latency and lytic

replication of EBV.64

Increasing evidence has indicated that some bHLH fac-

tors, and the Id HLH subfamily, play important roles in tumor

cell invasion and metastasis. Twist, a member of the bHLH

family, represses CDH1 repressor and induces EMT. bHLH

factors play significant roles in modulation of the cell-cycle,

proliferation and angiogenesis in tumor development.68,69

TGF-β is an inducer of EMT, and is a major cytokine.

Further, TGF-β promotes metastasis and cancer develop-

ment. In the early stages of tumor development, TGF-β
signaling plays a suppressive role by inhibiting cell cycle

progression from G1 to S, and promoting apoptosis, senes-

cence and differentiation.70–72 In contrast, in advanced

tumors, TGF-β acts as a tumor promoter by inducing EMT,

migration, invasion, metastasis, and immune escape.72–74

EBV-positive and -negative cells respond differently to

TGF-β. For example, EBV-negative cells are sensitive to

TGF-β-mediated growth inhibition and apoptosis75–77 and

these responses do not occur in EBV-positive cells.78–80

The EBV-positive NPC cell line, C666-1, has been shown

to be resistant to TGF-β1-mediated growth inhibition and

apoptosis. However, the EBV-negative NPC cell line, CNE-2

did not respond to exogenous TGF-β1.81 Loss of TGF-β
responsiveness is a critical event in tumorigenesis of EBV-

infected cells. Smad 2/3 are bound to Smad 4 to form

a complex. When this complex becomes phosphorylated, it

is translocated into the nucleus and interacts with transcrip-

tional factors that regulate the expression of EMT-specific

genes.82 TGF-β promotes EMT through activation of the

PI3K/Akt signaling through non-Smad signaling pathways

(Figure 3).83 In addition, TGF-β has been shown to play

different roles in different stages of various cancers. TGF-β
maintains cell proliferation and differentiation under physio-

logical conditions or early cancer, but can promote invasion

and metastasis in advanced cancers.84 Furthermore, TGF-β
directly activates core EMT TFs (Snail, ZEB and Twist).

TGF-β is critical for Snail1 activation, and Snail1 can also

be activated by the Wnt family, Notch proteins and receptor

tyrosine kinases (RTKs–Ras). These pathways are activated

to varying degrees under physiological or pathological

conditions.51

A negative-feedback mechanism was recently described

for SNAI1 regulation by scattering factor (such as hepatocyte

growth factor, HGF), which involves the MAPK target pro-

tein early growth response (EGR)-1.85 Inhibitor of DNA

binding (Id) protein can repress the activities of bHLH

class I proteins. In mammalian cell systems, Id protein can

Figure 3 The EMT-related regulatory networks. EMT-TFs including Snail 1, Snail 2

(Slug), ZEB1 and Twist play a central role in the networks, and regulate molecular

changes during EMT. The EMT regulatory network is an interactive, integrated and

precisely regulated network where some important extracellular molecules in the

tumor microenvironment, such as TGFβ, HGF, FGF, Wnt and Notch, bind to their

respective receptors to induce EMT.

Abbreviations: EGF, epidermal growth factor; EMT, epithelial–mesenchymal tran-

sition; HGF, hepatocyte growth factor; FGF, fibroblast growth factor; MAPK, mito-

gen-activated protein kinase; NFκB, nuclear factor kappa B; PDGF, platelet-derived

growth factor; TGF-β, transforming growth factor-β.

Dovepress Yang et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
11797

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


be induced by several effectors that promote EMT and/or

oncogenic pathways, such as TGFβ-BMP, vascular endothe-

lial grown factor (VEGF) or insulin-like growth factor

(IGF)-1, which results in activation of Ras, β-catenin, or
phosphatidylinositol 3-kinase (PI3K).68,69 LMP1-mediating

Id1 is involved in suppression of p16INK4a expression in

nasopharyngeal epithelial cells. During EMT progression,

the components responsible for intercellular junctions, such

as E-cadherin, claudin, occludins, and desmosomes, are

directly down-regulated by Snail, Slug, and Smad interacting

protein (SIP)-1 (Figure 3).86–89 The expressions of these

proteins are involved in cytoskeleton reconstruction, which

changes cell morphology to a spindle-like shape for suitable

migration.90 Some important extracellular factors, such as

TGFβ, FGF and Wnt, participate in the regulation network

associated with EMT and/or matrix metalloproteinase

(MMP) expression.52,54,55 The mechanisms of activation of

this network are similar to those of extracellular factors under

hypoxic conditions.91–94 Hypoxia-inducible factor (HIF)-1,

a principal oxygen-sensing transcription factor, is comprised

of HIF1A and HIF1H subunits.95 The expression of HIF1A

is elevated in EBV type II and type III latently infected cells,

and is involved in induction of VEGF. LMP1 regulates

HIF1A expression through increased production of reactive

oxygen species and activation of the p42/p44 MAPK

pathway (Figure 3).96 Under physiological conditions, mod-

ification of HIF1A by prolyl hydroxylase domain enzyme

(PHD)-1/3, results in recruitment of von Hippel-Lindau

(VHL) protein97 and components of the ubiquitin ligase

system to promote ubiquitination and proteasomal degrada-

tion of HIF1A. The expression levels of HIF1A are typically

low under normoxic condition. In addition, LMP1 increases

Siah1 levels, and high Siah1 induces degradation of PHD1/

PHD3 to maintain appropriate levels of PHD1/PHD3.98

When levels of PHD1/PHD3 are low, HIF1A is not subject

to ubiquitin-mediated protein degradation, resulting in

accumulation.99 HIF1 is a transcription factor that controls

the expression of at least 40 genes involved in tumor angio-

genesis, invasion and metastasis.100 These findings showed

that regulatory factors and pathways activated by EBV infec-

tion play important roles in generation of CTCs, which

promote cell invasion, angiogenesis, intravasation, therapy

resistance, and tumor cell survival.

The Role of CTCs in NPC
CTCs are highly heterogeneous, and the molecular fea-

tures of CTCs often differ among subpopulations, which

may play different roles in cancer progression.101,102

Increasing numbers of studies have begun to evaluate the

genotypes and phenotypes of CTCs. Markers of EMT have

the potential for use as biomarkers of CTCs in various

cancers. EMT has been shown to promote invasion and

motility,103,104 and CTC subpopulations with EMT mar-

kers may contribute to cancer progression.105,106

Expression of EMT markers in CTCs has important clin-

ical implications, as EMT is believed to promote stemness

of CTCs,107 and overexpression of EMT markers in CTCs

has been shown to be accompanied by increased expres-

sion stem cell markers such as ALDH1 and CD133 in

breast cancer.108–110 Markers of EMT can be classified

into three categories: epithelial cell markers, mesenchymal

markers, and regulatory factors.111 Epithelial markers are

molecular biomarkers that are often used to detect CTCs

and confirm their epithelial origin. Traditional epithelial-

based CTC detection techniques may not detect some

invasive and highly metastatic cells in the peripheral cir-

culation, and CTCs with pure mesenchymal or heterozy-

gous EMT phenotypes may be better indicators of risk of

tumor metastasis than CTCs with a purely epithelial

phenotype.112–115 EMT-TFs and their related pathways

regulate molecular elements in EMT progression, and

these elements, such as Twist, Snail, Slug, and ZEB1,

may also be markers of EMT. Twist, Snail, Slug, and

ZEB1 down-regulate E-cadherin and are associated with

cancer progression. In addition, these TFs are also good

indicators of CTC EMT status.51,116 Studies have shown

that PI3K and Akt act as central elements of the PI3K/Akt/

mTOR pathway, and can be used as mesenchymal markers

in CTCs.108,117,118 Recent studies have attempted to iden-

tify specific EMT markers in CTCs. These studies

indicated that EMT and stem cell markers are frequently

over-expressed in CTCs, regardless of cancer type. These

corresponding EMT and stem cell markers were detected

in 18% and 5% of CTC-negative group.108 Therefore,

increasing numbers of studies have explored genotypes

and phenotypes of CTCs, and focused on cancer-specific

phenotypes. For example, some reports have evaluated

human epidermal growth factor receptor (HER)-2 levels

in CTCs of patients with breast cancer.119,120 AR gene

status in CTCs of patients with prostate cancer,121 epider-

mal growth factor receptor (EGFR) mutations in patients

with lung cancer, and Kirsten rat sarcoma viral oncogene

(KRAS) mutations in patients with colorectal cancer.122,123

A number of studies have reported that CTCs have a close

relationship with clinical characteristics in various types of

cancer.124–126
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Studies that have evaluated CTCs in NPC are lacking.

Cyclooxygenase (COX) −2 is an enzyme involved in con-

version of arachidonic acid to prostaglandins, and has been

to stimulate tumor cell proliferation, angiogenesis, and

invasiveness, and to promote resistance apoptosis.127,128

In patients with NPC, the percentage of CTCs that

expressed COX-2 at baseline and at the end of treatment

were 66.4% and 46.1%, respectively.129 Expression of

COX-2 in CTCs was significantly associated with unfavor-

able treatment response, and patients with high COX-2

levels were at increased risk of local-regional relapse and

distant metastasis.129 MMP9 has been shown to participate

in degradation of environmental barriers, which results in

increased risk of metastasis.130 The positive rate of MMP9

in mesenchymal CTCs was very high (71.2%), and was

low in the complex of epithelial and mesenchymal.

However, the proportion of cells that exhibited moderate

MMP9 expression was highest in hybrid CTCs, and the

mechanisms associated with MMP9 expression in these

cells has not been characterized.131 Future studies should

focus on core molecules in the signaling pathways acti-

vated by EBV in NPC.

Conclusion
NPC is significantly different from other epithelial head and

neck tumors. NPC has significant regional and etiological

characteristics, and EBV infection is specific pathogenic

factor for NPC. The non-keratinizing (non-keratinizing) sub-

type constitutes most cases in endemic areas (>95%), and is

predominantly associated with EBV infection.28,29 EBV-

DNA encodes type II EBV latency gene products, such as

LMP1, LMP2, EBNA1, BART-miRNAs, EBERs, and

BARF1. These gene products induce EMT by indirectly

inducing EMT-TFs.33 EBV-encoded products also promote

EMT-TF expression through post-transcriptional

regulation.36,38,39 EMT promotes CTC generation through

detachment from the tumor mass, invasion of the basement

membrane and surrounding tissues, and survival of CTCs in

the periphery. EMT phenotypes are commonly used to dis-

tinguish CTC subtypes. Studies have suggested that CTC

count and karyotyping may indicate disease severity, and

dynamic monitoring of CTC number may allow for assess-

ment of treatment outcomes in real-time. Recent studies have

shown that CTC karyotypes in recent years showed that CTC

karyotyping may provide a potential method for monitoring

chemical resistance and predicting chemical efficacy during

treatment of NPC, and evaluation of CTCs may be critical

during follow-up of patients with NPC. CTC karyotype is

also associated with NPC staging, chemosensitivity, and drug

resistance.129 However, the clinical significance of CTC

detection in NPC requires further characterization.
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growth factor; FOXC2, forkhead box C2; HER2, human

epidermal growth factor receptor2; HGF, hepatocyte

growth factor; HIF, hypoxia-inducible factor; Id, inhibitor

of DNA binding; IGF1, insulin-like growth factor 1;

KRAS, kirsten rat sarcoma viral oncogene; LMP, latent

membrane protein; MAPK, mitogen-activated protein

kinase; miRNA, microRNA; MMP, matrix metalloprotei-

nase; NFκB, nuclear factor kappa B; NPC, nasopharyngeal
carcinoma; PHD, prolyl hydroxylase domain enzyme;

PI3K, phosphatidylinositol3-kinase; SIP1, Smad interact-

ing protein1; TCF4, transcription factor4, TGF-β, trans-
forming growth factor-β; VEGF, vascular endothelial

grown factor; VHL, von Hippel-Lindau; ZEB, zinc finger

E-box-binding.
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